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1 Auxiliary Result for the
Non-Structured Case

In this section, we prove the following claim made in
Section 3. Note that, in contrast to the main defini-
tion of the LSSC, the vectors here are not necessarily
structured.

Proposition 1.1. Consider a function f ∈ C3(dom f)
with domain dom f ⊆ Rp. Fix x∗ ∈ dom f , and let
Nx∗ be an open set in dom f containing x∗. Let K ≥ 0.
The following statements are equivalent.

1. D2f(x) is locally Lipschitz continuous with respect
to x∗; that is,∥∥D2f(x∗ + δ)−D2f(x∗)

∥∥
2
≤ K ‖δ‖2 , (1)

for all δ ∈ Rp such that x∗ + δ ∈ Nx∗ .

2. D3f(x) is locally bounded; that is,∣∣D3f(x∗ + δ)[u, v, w]
∣∣ ≤ K ‖u‖2 ‖v‖2 ‖w‖2 (2)

for all δ ∈ Rp such that x∗ + δ ∈ Nx∗ , and for all
u, v, w ∈ Rp.

Proof. Suppose that (1) holds. By Proposition 3.3, it
suffices to prove that∣∣D3f(x∗ + δ)[u, u, u]

∣∣ ≤ K ‖u‖32
for all u ∈ Rp. By definition, we have∣∣D3f(x∗ + δ)[u, u, u]

∣∣ = |〈u,Hu〉|

≤ ‖H‖2 ‖u‖
2
,

where

H := lim
t→0

D2f(x∗ + δ + tu)−D2f(x∗ + δ)

t
.

We therefore have (2) since ‖H‖2 ≤ K ‖δ‖2 by (1).

Conversely, suppose that (2) holds. We have the fol-
lowing Taylor expansion [Zeidler, 1995]:

D2f(x∗ + δ) = D2f(x∗) +

∫ 1

0

D3f(xt)[δ] dt,

where xt := x∗+tδ. We also have from (2) and the def-
inition of the spectral norm that

∥∥D3f(x∗ + δ)[δ]
∥∥

2
≤

K ‖u‖2, and hence∥∥D2f(x∗ + δ)−D2f(x∗)
∥∥

2

=

∥∥∥∥∫ 1

0

D3f(xt)[δ] dt

∥∥∥∥
2

≤ K ‖δ‖2 .

This completes the proof.

2 Proof of Theorem 5.1

The proof is based on the optimality conditions on
β̂ for the original problem, and those on β̌ for the
restricted problem. We first observe that β̌n exists,
since the function x 7→ ‖x‖1 is coercive. Recall that
β̌n is assumed to be uniquely defined.

To achieve sparsistency, it suffices that β̂n = β̌n and
supp β̌n = suppβ∗. We derive sufficient conditions
for β̂n = β̌n in Lemma 2.1, and make this sufficient
condition explicitly dependent on the problem param-
eters in Lemma 2.2. This lemma will require that∥∥β̌n − β∗∥∥2

≤ Rn for some Rn > 0. We will derive an

estimation error bound of the form
∥∥β̌n − β∗∥∥2

≤ rn

in Lemma 2.4. We will then conclude that β̂n = β̌n if
rn ≤ Rn and the assumptions in Lemma 2.2 are sat-
isfied, from which it will follow that sign β̌ = signβ∗

provided that βmin ≥ rn.

The following lemma is proved via an extension of the
techniques of [Wainwright, 2009].

Lemma 2.1. We have β̂n = β̌n if∥∥[∇Ln(β̌n)
]
Sc

∥∥
∞ < τn. (3)

Proof. Recall that Ln is convex by assumption. Also
recall that β̌n is assumed to be uniquely defined, and
hence it is the only vector the satisfies the correspond-
ing optimality condition:[

∇Ln(β̌n)
]
S + τnžS = 0 (4)
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for some žS such that ‖žS‖∞ ≤ 1. Moreover, the fact
that (3) is satisfied means that there exists žSc such
that ‖žSc‖∞ < 1 and

∇Ln(β̌n) + τnž = 0,

where ž := (žS , žSc). Therefore, β̌n is a minimizer of
the original optimization problem in Rp.

We now address the uniqueness of β̂. By a similar ar-
gument to Lemma 1 in [Ravikumar et al., 2010] (see
also Lemma 1(b) in [Wainwright, 2009]), any mini-
mizer β̃ of the original optimization problem satisfies
β̃Sc = 0. Thus, since β̌ is the only optimal vector for
the restricted optimization problem, we conclude that
β̂n = β̌n uniquely.

We now combine Lemma 2.1 with the assumptions of
Theorem 5.1 to obtain the following.

Lemma 2.2. Under assumptions 1, 2, 3 and 6 of The-
orem 5.1, we have β̂n = β̌n if β̌ ∈ Nβ∗ ∩ BRn , where
BRn := {β : ‖β − β∗‖2 ≤ Rn, βSc = 0, β ∈ Rp} with

Rn =
1

2

√
ατn
K

. (5)

Proof. Applying a Taylor expansion at β∗, and noting
that both β∗ and β̌n are supported on S, we obtain[

∇L(β̌n)
]
Sc = [∇Ln(β∗)]Sc

+
[
∇2Ln(β∗)

]
Sc,S

(
β̌n − β∗

)
S

+ (εn)Sc , (6)

where the remainder term is given by

εn =

∫ 1

0

(1− t)D3Ln(βt)[β̌ − β∗, β̌ − β∗] dt

with βt := β∗ + t(β̌ − β∗) (see Section 4.5 of
[Zeidler, 1995]), and thus satisfies

‖εn‖∞ ≤ sup
t∈[0,1]

{∥∥D3Ln(βt)[β̌ − β∗, β̌ − β∗]
∥∥
∞

}
.

(7)

Recall the optimality condition for β̌ in (4). Again
using a Taylor expansion, we can write this condition
as

[∇Ln(β∗)]S +
[
∇2Ln(β∗)

]
S,S

(
β̌n − β∗

)
S

+(εn)S + τnžS = 0. (8)

Recall that
[
∇2Ln(β∗)

]
S,S is invertible by the second

assumption of Theorem 5.1. Solving for
(
β̌n − β∗

)
S in

(8) and substituting the solution into (6), we obtain[
∇Ln(β̌n)

]
Sc

= −τn
[
∇2Ln(β∗)

]
Sc,S

[
∇2Ln(β∗)

]−1

S,S žS

+ [∇L(β∗)]Sc

−
[
∇2Ln(β∗)

]
Sc,S

[
∇2Ln(β∗)

]−1

S,S [∇Ln(β∗)]S

+ (εn)Sc

−
[
∇2Ln(β∗)

]
Sc,S

[
∇2Ln(β∗)

]−1

S,S (εn)S .

Using the irrepresentability condition (assumption 3
of Theorem 5.1) and the triangle inequality, we have∥∥[∇Ln(β̌n)

]
Sc

∥∥
∞ < τn provided that

max {‖∇Ln(β∗)‖∞ , ‖εn‖∞} ≤
α

4
τn.

The first requirement ‖∇Ln(β∗)‖∞ ≤ (α/4)τn is sim-
ply assumption 6 of Theorem 5.1, so it remains to de-
termine a sufficient condition for ‖εn‖∞ ≤ (α/4)τn.
Since Ln satisfies the (β∗,Nβ∗)-LSSC with parameter
K, we have from (7) that

‖εn‖∞ ≤ K
∥∥β̌ − β∗∥∥2

2
,

provided that β̌ ∈ Nβ∗ (since Nβ∗ is convex by as-
sumption, this implies βt ∈ Nβ∗). Thus, to have
‖εn‖∞ ≤

α
4 τn, it suffices that

∥∥β̌ − β∗∥∥
2
≤ 1

2

√
ατn
K

and β̌ ∈ Nβ∗ .

To bound the distance
∥∥β̌ − β∗∥∥

2
, we adopt

an approach from [Ravikumar et al., 2010,
Rothman et al., 2008]. We begin with an auxil-
iary lemma.

Lemma 2.3. Let g : Rp → R be a convex function,
and let z ∈ Rp be such that g(z) ≤ 0. Let B ⊂ Rp be a
closed set, and let ∂B be its boundary. If g > 0 on ∂B
and g(b) ≤ 0 for some b ∈ B \ ∂B, then x ∈ B.

Proof. We use a proof by contradiction. Suppose that
z /∈ B. We first note that there exists some t∗ ∈ (0, 1)
such that b+ t∗(z− b) ∈ ∂B; if such a t∗ did not exist,
then we would have zt := b + t(z − b) → z as t → 1,
which is impossible since z /∈ B and B is closed.

We now use the convexity of g to write

g(b+ t∗(x− b)) ≤ (1− t∗)g(b) + t∗g(x) ≤ 0,

which is a contradiction since g > 0 on ∂B.
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The following lemma presents the desired bound on∥∥β̌n − β∗∥∥2
; note that this can be interpreted as the

estimation error in the n > p setting, considering β∗S
as the parameter to be estimated.

Lemma 2.4. Define the set

Brn := {β ∈ Rp : ‖β − β∗‖2 ≤ rn, βSc = 0} ,

where

rn :=
α+ 4

λmin

√
sτn. (9)

Under assumptions 1, 2, 6 and 7 of Theorem 5.1, if

τn <
3λ2

min

2(α+ 4)Ks
, (10)

then β̌n ∈ Brn .

Proof. Set s = |S|, and for β ∈ Rs let Z(β) = (β, 0) ∈
Rp be the zero-padding mapping, where (β, 0) denotes
the vector that equals to β on S and 0 on Sc. Then
we have

β̌S = arg min
β∈Rs

{(Ln ◦ Z)(β) + τn ‖β‖1} .

For δ ∈ Rs, define

g(δ) = (Ln ◦ Z)(β∗S + δ)− (Ln ◦ Z)(β∗S)+

τn (‖β∗S + δ‖1 − ‖β
∗
S‖1) .

We trivially have g(0) = 0, and thus g(δ∗) ≤ g(0) = 0,
where δ∗ := β̌S−β∗S . Now our goal is prove that g > 0
on the boundary of (Brn)S := {δ ∈ Rs : ‖δ‖2 ≤ rn},
thus permitting the application of Lemma 2.3.

We proceed by deriving a lower bound on g(δ). We
define φ(t) := (Ln◦Z)(β∗S+tδ), and write the following
Taylor expansion:

(Ln ◦ Z)(β∗S + δ)− (Ln ◦ Z)(β∗S)

= φ(1)− φ(0)

= φ′(0) +
1

2
φ′′(0) +

1

6
φ′′′(t̃),

for some t̃ ∈ [0, 1] (recall that Ln is three times differ-
entiable by assumption). We bound the term φ′(0) as
follows:

|φ′(0)| = |〈[∇Ln(β∗)]S , δ〉|
≤
√
s ‖[∇Ln(β∗)]S‖∞ ‖δ‖2

≤ ατn
4

√
s ‖δ‖2 ,

where the first step is by Hölder’s inequality and the
identity ‖z‖2 ≤

√
s‖z‖1, and the second step uses as-

sumption 6 of Theorem 5.1. To bound the term φ′′(0),
we use the second assumption of Theorem 5.1 to write

φ′′(0) = δT
[
∇2Ln(β∗)

]
S,S δ ≥ λmin ‖δ‖22 .

We now turn to the term φ′′′(t̃). Again using the
fact that Ln satisfies the (β∗,Nβ∗)-LSSC with param-
eter K, it immediately follows that (Ln ◦ Z) satis-
fies the (β∗S , (Nβ∗)S)-LSSC with parameter K, where
(Nβ)S = {βS : β ∈ Nβ∗}. Hence, and also making use
of Hölder’s inequality and the fact that ‖z‖1 ≤

√
s‖z‖2

(z ∈ Rs), we have∣∣φ′′′(t̃)∣∣ =
∣∣D3(Ln ◦ Z)(β∗S + t̃δ)[δ, δ, δ]

∣∣
≤ ‖δ‖1

∥∥D3(Ln ◦ Z)(β∗S + t̃δ)[δ, δ]
∥∥
∞

≤ K
√
s ‖δ‖32

provided that β∗S + t̃δ ∈ (Nβ)S . Since Brn ⊆ Nβ∗

by assumption 7 of Theorem 5.1, the latter condition
holds provided that δ ∈ (Brn)S .

Using the triangle inequality, we have

|‖β∗S + δ‖1 − ‖β
∗
S‖1| ≤ ‖δ‖1 ≤

√
s ‖δ‖2 .

Hence, and combining the preceding bounds, we have
g(δ) ≥ f (‖δ‖2), where

f(x) = −ατn
4

√
sx+

λmin

2
x2 − K

√
s

6
x3 −

√
sτnx.

Observe that if the inequality

0 < x <
3λmin

2K
√
s
. (11)

holds, then we can bound the coefficient to x3 in terms
of that of x2 to obtain

f(x) >
λmin

4
x2 −

(
1 +

α

4

)√
sτnx. (12)

By a direct calculation, this lower bound has roots at
0 and rn (see (9)), and hence f(rn) > 0 provided that
x = rn satisfies (11). By a direct substitution, this
condition can be ensured by requiring that

τn <
3λ2

min

2(α+ 4)Ks
. (13)

Recalling that g(δ) ≥ f (‖δ‖2), we have proved that
g satisfies the conditions of Lemma 2.3 with z = δ∗,
b = 0, and B = (Brn)S , and we thus have δ∗ ∈ (Brn)S ,
or equivalently β̌n ∈ Brn .

We now combine the preceding lemmas to obtain The-
orem 5.1. We require rn ≤ Rn so the assumption that∥∥β̌ − β∗∥∥∞ ≤ Rn in Lemma 2.2 is satisfied. From the
definitions in (5) and (9), this is equivalent to requiring

τn ≤
λ2

min

4 (α+ 4)
2

α

Ks
,
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which is true by assumption 5 of the theorem. This
assumption also implies that (10) holds, since α

4(α+4) ≤
3
2 for any α ≥ 0. Finally, by the conclusion of Lemma
2.4, we have successful sign pattern recovery if βmin ≥
rn, thus recovering assumption 4 of the theorem.

3 Proofs of the Results in Section 6

3.1 Proof of Corollary 6.2

By a direct differentiation, we obtain for j ∈ {1, . . . , p}
that

[∇Ln(β∗)]j = −
n∑
i=1

εi(xi)j ,

where εi = n−1 (Yi − EYi).

Fix j ∈ {1, . . . , p}, and let Xi := n−1(xi)jYi. As
X1, . . . , Xn are bounded, they can be characterized us-
ing Hoeffding’s inequality [Boucheron et al., 2013].

Theorem 3.1 (Hoeffding’s Inequality). Let
X1, . . . , Xn be independent random variables such
that Xi takes its value in [ai, bi] almost surely for all
i ∈ {1, . . . , n}. Then

P

{∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ t
}

≤ 2 exp

[
− 2t2∑n

i=1(bi − ai)2

]
.

In our case, we can set (bi−ai)2 = n−2(xi)
2
j , since Yi ∈

{0, 1}. Since
∑n
i=1 |(xi)j |2 ≤ n for all k by assumption,

we obtain
n∑
i=1

(bi − ai)2 ≤ 1

n
. (14)

Thus, by Hoeffding’s inequality and the union bound,
we obtain

P
{
‖∇Ln(β∗)‖∞ ≥

ατn
4

}
≤

p∑
j=1

P
{∣∣∣[∇Ln(β∗)]j

∣∣∣ ≥ ατn
4

}
≤ 2 exp

(
ln p− 2nt2

)∣∣
t=ατn

4

.

This decays to zero provided that τn � (n−1 log p)1/2.
Substituting this scaling into the fifth condi-
tion of Theorem 5.1, we obtain the condition
s2 (log p) ν4

nγ
2
n � n. The required uniqueness of β̌ can

be proved by showing that the composition Ln ◦ Z
(with Z being the zero-padding of a vector in Rs) is
strictly convex, given the second condition of Theo-
rem 5.1. One way to prove this is via self-concordant
like inequalities [Tran-Dinh et al., 2013]; we omit the
proof here for brevity.

3.2 Proof of Corollary 6.3

Let Y1, . . . , Yn be independent gamma random vari-
ables with shape parameter k > 0 and scale parameter
θi respectively. We have, for q ∈ N,

E |Yi|q =
Γ(q + k)

Γ(k)
θqi ,

where Γ denotes the gamma function.

To study the concentration of measure behav-
ior of ∇Ln(β∗), we use the following result
[Boucheron et al., 2013].

Theorem 3.2 (Bernstein’s Inequality). Let
X1, . . . , Xn be independent real random variables.
Suppose that there exist v > 0 and c > 0 such that∑n
i=1 EX

2
i ≤ v, and

n∑
i=1

E |Xi|q ≤
q!

2
vcq−2

for all integers q ≥ 3. Then

P

{∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ t
}
≤ 2 exp

[
− t2

2(v + ct)

]
.

We proceed by evaluating the required moments for
our setting. By a direct differentiation, we obtain

[∇Ln(β∗)]j =

n∑
i=1

εi (xi)j

for j ∈ {1, . . . , p}, where εi := n−1 (Yi − EYi).

Fix j ∈ {1, . . . , p}, and let Xi := n−1(xi)jYi. We have

n∑
i=1

EX2
i =

n∑
i=1

(xi)
2
j

n2
EY 2

i

=

n∑
i=1

(xi)
2
j

n2

Γ(k + 2)

Γ(k)
θ2
i .

Recall that θi = k−1 〈xi, β∗〉−1
. Using the first dis-

played equation in Section 7.3, we have

θi ≤ (kµn)
−1
, (15)

and thus
n∑
i=1

EX2
i ≤

1

(nµn)2

Γ(k + 2)

k2Γ(k)

n∑
i=1

(xi)
2
j

‖xi‖22

≤ 1

nµ2
n

Γ(k + 2)

k2Γ(k)
,

where we have applied the assumption
∑n
i=1(xi)

2
j ≤ n.

Using the identity Γ(k+ 2) = k(k+ 1)Γ(k), we obtain

n∑
i=1

EX2
i ≤

k + 1

nµ2
nk
.
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As for the moments of higher orders, we have

n∑
i=1

E |Xi|q =

n∑
i=1

|(xi)j |q

nq
E |Yi|q

=

n∑
i=1

|(xi)j |q

nq
Γ(k + q)

Γ(k)
θqi .

With the upper bound (15) on θi, we have

n∑
i=1

E |Xi|q ≤
Γ(k + q)

(knµn)qΓ(k)

n∑
i=1

|(xi)j |q

=
Γ(k + q)

(knµn)qΓ(k)
‖((x1)j , . . . , (xn)j)‖qq .

Using the identity ‖z‖q ≤ ‖z‖2 for q ≥ 2, and the

assumption
∑n
i=1(xi)

2
j ≤ n, we obtain

n∑
i=1

E |Xi|q ≤
Γ(k + q)

(k
√
nµn)qΓ(k)

.

For k ∈ (0, 1], we have Γ(k+q)
Γ(q) ≤ q!, and hence by a

direct substitution it suffices to choose

v =
k + 1

nµ2
nk

2
, c =

1

k
√
nµn

. (16)

For k ∈ (1,∞), we have by induction on q that
Γ(k+q)

Γ(q) ≤ q!k
q. Thus, for k ∈ (1,∞), it suffices that

v =
2k

nµ2
n

, c =
1√
nµn

. (17)

Thus, applying Bernstein’s inequality and the union
bound, we obtain

P
{
‖∇Ln(β∗)‖∞ ≥

ατn
4

}
≤

p∑
i=1

P
{
|[∇Ln(β∗)]i| ≥

ατn
4

}
≤ 2 exp

[
ln p− t2

2(v + ct)

]∣∣∣∣
t=ατn

4

.

Since Ln is self-concordant and
[
D2Ln(β∗)

]
S,S is pos-

itive definite by assumption, the composition Ln ◦
Z with the padding operator Z is strictly convex
[Nesterov, 2004, Nesterov and Nemirovskii, 1994] and
thus β̌n uniquely exists. Therefore, we can apply The-
orem 5.1. The scaling laws on τn and (p, n, s) follow
via the same argument to that in the proof of Corol-
lary 6.2. Note that the final condition of Theorem 5.1
also imposes conditions on (p, n, s), but for this term
even the weaker condition s2(log p)ν2

n � n suffices.

4 Proof of Corollary 6.4

By a direct differentiation, we obtain

∇Ln(Θ∗) = Σ̂n − (Θ∗)
−1

= Σ̂n − Σ.

We apply the following lemma from
[Ravikumar et al., 2011] to study the concentra-
tion behavior of ∇Ln(Θ∗).

Lemma 4.1. Let Σ and Σ̂n be defined as in Section
6.4. We have

P

{∣∣∣∣(Σ̂n

)
i,j
− Σi,j

∣∣∣∣ > t

}
≤ 4 exp

[
− nt2

128(1 + 4c2)2κ2
Σ∗

]
,

for all t ∈ (0, 8κΣ∗(1 + c)2).

Using the union bound, we have

P
{
‖∇Ln(Θ∗)‖∞ ≤

ατn
4

}
≤ 4p2 exp

[
− nt2

128(1 + 4σ2)2κ2
Σ∗

]∣∣∣∣
t=ατn

4

,

provided that τn → 0, and that n is large enough so
that the upper bound on t in the lemma is satisfied.

Define

Θ̌n ∈ arg min
Θ
{Ln(Θ) + τn |Θ|1 :

Θ > 0,ΘSc = 0,Θ ∈ Rp×p} . (18)

Since Ln is self-concordant and
[
D2Ln(Θ∗)

]
S,S is pos-

itive definite by assumption, the composition Ln ◦
Z with the padding operator Z is strictly convex
[Nesterov, 2004, Nesterov and Nemirovskii, 1994] and
thus Θ̌n uniquely exists. Therefore, we can apply The-
orem 5.1. The scaling laws on τn and (p, n, s) follow
via the same arguments as the preceding examples.
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