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1 Auxiliary Result for the
Non-Structured Case

In this section, we prove the following claim made in
Section 3. Note that, in contrast to the main defini-
tion of the LSSC, the vectors here are not necessarily
structured.

Proposition 1.1. Consider a function f € C3(dom f)
with domain dom f C RP. Fiz x* € dom f, and let
Nz be an open set in dom f containing x*. Let K > 0.
The following statements are equivalent.

1. D2 f(x) is locally Lipschitz continuous with respect
to x*; that is,

HDQf(x* +6) — D*f(z*)
for all § € R? such that z* + 6 € Ny~.

s Kol (1)

2. D3f(x) is locally bounded; that is,
| D? f(z* + &) [u, v, w]| < K [Jully vl wll, (2)
for all 6 € RP such that x* + 6 € Ny«, and for all

u,v,w € RP.

Proof. Suppose that (1) holds. By Proposition 3.3, it
suffices to prove that

| D% f (& + 6) [, ]| < K ul;
for all u € RP. By definition, we have
‘DBf(x* + 5)[u,u,u]| = |(u, Hu)|
< | Hllg lul*

where

2 * _ 2 *
H::limD fl@*+d+tu) — D*f(x —|—5)'
t—0 t

We therefore have (2) since || H||, < K [|6]|, by (1).

Conversely, suppose that (2) holds. We have the fol-
lowing Taylor expansion [Zeidler, 1995]:

D2f(s* +6) = D*f(z") + / DP f(a)(6) dt,
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where x; := 2*+t5. We also have from (2) and the def-
inition of the spectral norm that || D? f(z* + 6)[d]||, <
K ||ul|,, and hence

|D?f(z* +6) — D f(a¥)|,
_ ’ /01 D3 f()[5) dt
< K |4, -

2

This completes the proof. O

2 Proof of Theorem 5.1

The proof is based on the optimality conditions on
B for the original problem, and those on /3 for the
restricted problem. We first observe that 3, exists,
since the function « + ||z||; is coercive. Recall that
B, is assumed to be uniquely defined.

To achieve sparsistency, it suffices that Bn = f, and
supp B, = supp 8*. We derive sufficient conditions
for Bn = f, in Lemma 2.1, and make this sufficient
condition explicitly dependent on the problem param-
eters in Lemma 2.2. This lemma will require that
HBn - p* , S Ry for some R,, > 0. We will derive an
estimation error bound of the form ||3, — 8*||, < s

in Lemma 2.4. We will then conclude that Bn = Bn if
rn < R, and the assumptions in Lemma 2.2 are sat-
isfied, from which it will follow that sign § = sign 3*
provided that Bumin > 7.

The following lemma is proved via an extension of the
techniques of [Wainwright, 2009)].

Lemma 2.1. We have 3, = B if

IV L (Bn)] s

o < Tn (3)

Proof. Recall that L, is convex by assumption. Also
recall that £, is assumed to be uniquely defined, and
hence it is the only vector the satisfies the correspond-
ing optimality condition:

[VLn(/Bn)}S +Tnis =0 (4)
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for some Zg such that ||Zs||, < 1. Moreover, the fact
that (3) is satisfied means that there exists Zse such
that ||Zse[|,, < 1 and

where % := (Zs, Zsc). Therefore, 3, is a minimizer of
the original optimization problem in RP.

We now address the uniqueness of B . By a similar ar-
gument to Lemma 1 in [Ravikumar et al., 2010] (see
also Lemma 1(b) in [Wainwright, 2009]), any mini-
mizer B of the original optimization problem satisfies
BSC = 0. Thus, since § is the only optimal vector for
the restricted optimization problem, we conclude that

B =5, uniquely. O]

We now combine Lemma 2.1 with the assumptions of
Theorem 5.1 to obtain the following.

Lemma 2.2. Under assumptions 1, 2, 3 and 6 of The-
orem 5.1, we have B, = B if B € ./\/'g* N Bg,,, where
R, = {5 |8 —B*|ly < Rn,Bse =0,5 € RP} with

1 /ar,
R, =—=4/—. 5

Proof. Applying a Taylor expansion at %, and noting
that both §* and f3,, are supported on S, we obtain

[VL(Bn)] o = [VLn(B)]5e
+ [V2Lo(8)] o5 (Bn = B7) s
+ (en)sc ) (6)

where the remainder term is given by
1 ~ ~
= [ =D LB~ 5.3 - 57
0

with B8, := B* + t(f — B*) (see Section 4.5 of
[Zeidler, 1995]), and thus satisfies

oo -
(7)

lenlloe < sup {|[D*La(Be)[B — 5%, 5 — 5]
te[0,1]

Recall the optimality condition for £ in (4). Again
using a Taylor expansion, we can write this condition
as

[VLn(B*)]s + [VQLn(ﬁ*)}s,s (Bn - B*>s

+(en)s + Tnzs = 0. (8)

Recall that [V2Ln(5*)]s S
assumption of Theorem 5.1. Solving for (Bn - ﬂ*) sin

is invertible by the second

(8) and substituting the solution into (6), we obtain

[VLn(Bn)] s

= 7 [V2La(B) g5 [V L8] s 5
+[VL(B*)}SC
— [V2La(8)] e s [V2La(8)) 5 s [VELa(8)]s
+(€n)S“
~ [V2La(8) 5 5 [V2La(8)] 5 s (en)s:

Using the irrepresentability condition (assumption 3
of Theorem 5.1) and the triangle inequality, we have
|| [VLn(Bn)]SC . < Ty provided that

max {[[VLn (8] s llenllo} < 4

The first requirement ||V L, (8*)|,, < (o/4)7, is sim-
ply assumption 6 of Theorem 5.1, so it remains to de-
termine a sufficient condition for lenllo < (a/4)T,.
Since L,, satisfies the (8*, N3« )-LSSC with parameter
K, we have from (7) that

lenlloo < K

provided that 3 € Nj- (since N~ is convex by as-
sumption, this implies 3; € MNp«). Thus, to have
llenlloo < G 7n, it suffices that

aty,
8-l < b /2
and € Ng-. O

To bound the distance ||,6v’fﬁ*H2, we adopt
an approach from [Ravikumar et al., 2010,
Rothman et al., 2008]. We begin with an auxil-
iary lemma.

Lemma 2.3. Let g : RP — R be a convex function,
and let z € RP be such that g(z) < 0. Let B C RP be a
closed set, and let OB be its boundary. If g > 0 on OB
and g(b) <0 for some b € B\ 0B, then x € B.

Proof. We use a proof by contradiction. Suppose that
z ¢ B. We first note that there exists some t* € (0,1)
such that b+t*(z —b) € 9B; if such a t* did not exist,
then we would have z; :=b+t(z —b) = z as t — 1,
which is impossible since z ¢ B and B is closed.

We now use the convexity of g to write
g+ t*(x = b)) < (1 —1t")g(b) + t"g(x) <0,

which is a contradiction since g > 0 on 0B. O
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The following lemma presents the desired bound on
HBn — B*H2; note that this can be interpreted as the
estimation error in the n > p setting, considering 35
as the parameter to be estimated.

Lemma 2.4. Define the set
By, :={BeR”: |-, <rn,Bse =0},

where

a+4
Under assumptions 1, 2, 6 and 7 of Theorem 5.1, if
32
- $7 10
s 2(a+4)Ks (10)

then By, € B, .

Proof. Set s =|S|, and for g € R® let Z(5) = (5,0) €
RP be the zero-padding mapping, where (3, 0) denotes

the vector that equals to 8 on S and 0 on S¢. Then
we have
Bs = arg min {(Ly © Z)(5) + 7 1ll1} -
For § € R, define
9(0) = (Ln 0 Z)(Bs + 6) — (Ln © Z)(Bs)+
7 (/185 + 0lly = 185111 -

We trivially have g(0) = 0, and thus g(6*) < ¢g(0) =0,
where §* := s — B%. Now our goal is prove that g > 0
on the boundary of (B,,)s = {6 € R*: 6], < 7},
thus permitting the application of Lemma 2.3.

We proceed by deriving a lower bound on g(J). We
define ¢(t) := (L, 0Z)(B%+15), and write the following
Taylor expansion:
(Ln 0 Z)(Bs +6) —
=¢(1) — ¢(0)

/ 1 1/ 1 1"
=¢'(0) + §¢ (0) + 6¢ (t),

(Ln 0 Z)(B5)

for some £ € [0,1] (recall that L,, is three times differ-
entiable by assumption). We bound the term ¢’(0) as
follows:

/(0] = KIVLa(8")]s , 0)]
< Vs [IVEn(8)]sll o 161l

< QTn
— Vsl

where the first step is by Holder’s inequality and the
identity ||z]|2 < v/s||z]|1, and the second step uses as-
sumption 6 of Theorem 5.1. To bound the term ¢ (0),
we use the second assumption of Theorem 5.1 to write

¢(0) = 6" [V*Lo(5)] 5.5 5 = Aunin 9] -

We now turn to the term ¢”/(f). Again using the
fact that L,, satisfies the (5*, N+)-LSSC with param-
eter K, it immediately follows that (L, o Z) satis-
fies the (8%, (Ns+)g)-LSSC with parameter K, where
(Ng)s =1{Bs : B € Np-}. Hence, and also making use
of Holder’s inequality and the fact that || 2|1 < /s]|z]|2
(z € R?®), we have

|"(8)| = |D*(Ln 0 Z)(B5 +10)[6, 4, ]|
< [10lly [[D*(Ln 0 2)(B5 + 18)[3, 6],
< K5 ol
provided that 8% + 16 € (Nj3)g. Since B, C Np-

by assumption 7 of Theorem 5.1, the latter condition
holds provided that § € (B,,,)s.

Using the triangle inequality, we have

1185 + dlly = 185111 < llally < Vs é]l -

Hence, and combining the preceding bounds, we have

9(8) = f (lI0]]), where
K\f S

aTn m1n 2

Observe that if the inequality

3)\min
2K /5

holds, then we can bound the coefficient to 3 in terms
of that of 22 to obtain

flz) > )\Zian - (1 +

O<ax<

(11)

%) ez, (12)

By a direct calculation, this lower bound has roots at
0 and 7, (see (9)), and hence f(r,) > 0 provided that
x = r, satisfies (11). By a direct substitution, this
condition can be ensured by requiring that
32,

& ——min__ 13

™S Sat4)Ks (13)
Recalling that g(6) > f(||d]|,), we have proved that
g satisfies the conditions of Lemma 2.3 with z = §*,
b =0, and B = (B,,)s, and we thus have §* € (B;,)s;
or equivalently 3, € B,.,.

O

We now combine the preceding lemmas to obtain The-
orem 5.1. We require r,, < R,, so the assumption that
“Ilo < Ry in Lemma 2.2 is satisfied. From the
definitions in (5) and (9), this is equivalent to requiring

)\2

1M1

—Pmin_ %
T 4(a+4)° Ks’
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which is true by assumption 5 of the theorem. This
assumption also implies that (10) holds, since 4(;‘?4) <
% for any o > 0. Finally, by the conclusion of Lemma
2.4, we have successful sign pattern recovery if By >

Ty, thus recovering assumption 4 of the theorem.

3 Proofs of the Results in Section 6

3.1 Proof of Corollary 6.2

By a direct differentiation, we obtain for j € {1,...,p}
that

[VLn(8%)]; = — Z €i(zi)j,

where g; = n=! (Y; — EY}).

Fix j € {1,...,p}, and let X; := n~'(x;),;Yi. As
X1,...,X, are bounded, they can be characterized us-
ing Hoeffding’s inequality [Boucheron et al., 2013].

Theorem 3.1  (Hoeffding’s Inequality). Let
X1,..., X, be independent random wvariables such
that X; takes its value in [a;,b;] almost surely for all

ie{l,...,n}. Then
Zt}

|
< 2exp [z:?_l(?biz—m)J '

n

> (X —EX;)

i=1

In our case, we can set (b;—a;)* = n~?(x;)3, since Y; €

{0,1}. Since 37, [(25);]* < nfor all k by assumption,

we obtain
n

1
b; — a; 2< 14
RURTIES (14)
Thus, by Hoeffding’s inequality and the union bound,
we obtain

This decays to zero provided that 7,, > (n~!log p)'/2.

Substituting this scaling into the fifth condi-
tion of Theorem 5.1, we obtain the condition
5% (logp) vivy? < n. The required uniqueness of § can
be proved by showing that the composition L, o Z
(with Z being the zero-padding of a vector in R?®) is
strictly convex, given the second condition of Theo-
rem 5.1. One way to prove this is via self-concordant
like inequalities [Tran-Dinh et al., 2013]; we omit the
proof here for brevity.

3.2 Proof of Corollary 6.3

Let Yi,...,Y, be independent gamma random vari-
ables with shape parameter £ > 0 and scale parameter
0; respectively. We have, for ¢ € N,

D¢+ k)

E Y9 = —= g9
| ‘ F(k’) 1)

where I' denotes the gamma function.

To study the concentration of measure behav-
ior of VL,(B*), we wuse the following result
[Boucheron et al., 2013].

Theorem 3.2  (Bernstein’s Inequality). Let
X1,..., X, be independent real random wvariables.
Suppose that there exist v > 0 and ¢ > 0 such that
> EX2<w, and

Y EIXi" < 5'7](;(1*2

i=1

for all integers ¢ > 3. Then

P{ Zt}ggexp [

We proceed by evaluating the required moments for
our setting. By a direct differentiation, we obtain

n

> (X —EX))

=1

[VLW«(B*)]]' = Zgi (mz)j

for j € {1,...
Fix j € {1,...

Y EX? = Z(J:Q)?EYf
_ Z": (2:)5 T(k + 2)922.

,p}, where g; :==n"1 (Y; —EY;).
,p}, and let X; :=n~*(z;);Y;. We have

Recall that 6; = k=! (x;, 8*)"". Using the first dis-
played equation in Section 7.3, we have

91' S (kﬂn)_lv (15)
and thus
= 1 Dk+2) < (z)?
EX2 J
2B G FE®) 2 ol

1 T(k+2)
~ np2 k2T(k)

where we have applied the assumption Y, (xz)? <n.
Using the identity T'(k 4+ 2) = k(k + 1)I'(k), we obtain

zn: EX2< @
i=1 ok
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As for the moments of higher orders, we have
IS z .
i=1 i=1

E Yil*

T'(k+q)
I'(k)

With the upper bound (15) on 6;, we have

3 e

07

- (@)l -
Using the identity [|z]|, < [z[|, for ¢ > 2, and the
assumption Y7 (;)F < n, we obtain
- L(k+q)
ElX|7< —WTd
2Bl < G T ®)

For k € (0,1], we have W < ¢!, and hence by a
direct substitution it suffices to choose
k+1 1
= 5 = . ].6
v nu2 k2 ¢ k/npiy, (16)

For k € (1,00), we have by induction on ¢ that

1“?6(—5){1) < ¢'k?. Thus, for k € (1,00), it suffices that

2k 1
= — = —. 17
b ny’ ‘ Vg, a7)

Thus, applying Bernstein’s inequality and the union
bound, we obtain

Since L,, is self-concordant and [D2Ln(ﬁ*)] 5.5 18 pos-
itive definite by assumption, the composition L, o
Z with the padding operator Z is strictly convex
[Nesterov, 2004, Nesterov and Nemirovskii, 1994] and
thus 3, uniquely exists. Therefore, we can apply The-
orem 5.1. The scaling laws on 7, and (p,n,s) follow
via the same argument to that in the proof of Corol-
lary 6.2. Note that the final condition of Theorem 5.1
also imposes conditions on (p, n, s), but for this term
even the weaker condition s?(logp)v? < n suffices.

4 Proof of Corollary 6.4

By a direct differentiation, we obtain

VL, (0%) =%, —(0*) =%, -

We apply the following lemma from
[Ravikumar et al., 2011] to study the concentra-
tion behavior of VL, (0%).

Lemma 4.1. Let ¥ and ¥, be defined as in Section
6.4. We have
> t}

P {‘(zyb) N
%,J
nt?
128(1 +4c?)2k2. |7

)

<4dexp {—

for all t € (0,8kx+(1+ ¢)?).

Using the union bound, we have

P {IVL.(67)],. < "}

< 4p? ex i
=P T198(1 + 4o2)2k2.

)
_QaTn
4

provided that 7, — 0, and that n is large enough so
that the upper bound on ¢ in the lemma is satisfied.

Define
0, < argm@%n {L,(©) + 7,10, :
© >0,0s. =0,0 € RP*P}. (18)

Since Ly, is self-concordant and [D?L, (6*)] 5.5 15 pos-
itive definite by assumption, the compositfon L, o
Z with the padding operator Z is strictly convex
[Nesterov, 2004, Nesterov and Nemirovskii, 1994] and
thus ©,, uniquely exists. Therefore, we can apply The-
orem 5.1. The scaling laws on 7, and (p,n,s) follow

via the same arguments as the preceding examples.
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