
Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning

Mario Lucic Mesrob I. Ohannessian Amin Karbasi Andreas Krause
ETH Zürich University of California, San Diego Yale University ETH Zürich

Abstract

Faced with massive data, is it possible to trade
off (statistical) risk, and (computational) space
and time? This challenge lies at the heart of
large-scale machine learning. Using k-means
clustering as a prototypical unsupervised learn-
ing problem, we show how we can strategi-
cally summarize the data (control space) in or-
der to trade off risk and time when data is
generated by a probabilistic model. Our sum-
marization is based on coreset constructions
from computational geometry. We also de-
velop an algorithm, TRAM, to navigate the
space/time/data/risk tradeoff in practice. In par-
ticular, we show that for a fixed risk (or data
size), as the data size increases (resp. risk in-
creases) the running time of TRAM decreases.
Our extensive experiments on real data sets
demonstrate the existence and practical utility of
such tradeoffs, not only for k-means but also for
Gaussian Mixture Models.

1 INTRODUCTION
The computational and statistical performance of any
learning algorithm for a given data set can be described in
terms of three parameters: risk, running time, and space
usage. The massive growth in datasets, coupled with
limited resources in terms of time and space, raises new
challenging questions on the accuracy of learning that can
be achieved. At the heart of this challenge is to identify the
relationships between risk ε , and the resources we have
available, namely, time t, space s, and data n. Most of clas-
sical learning theory centers around the question of how
risk scales with dataset (or sample) size: How much data n
is needed in order to achieve a certain level of risk ε (i.e.,
what is the sample complexity of a given learning task)? In
contrast, and from a practical point of view, increasing the
data size is a source of computational complexity which

Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2015, San Diego,
CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the
authors.

typically translates into higher running time t. From this
perspective, large data is considered a nuisance rather than
a resource for achieving lower risk. As a result, most prac-
tical algorithms accumulate data until they exhaust either
the time or space constraints and drop the data afterwards.

Related Work. An alternative direction is to investigate
computational and statistical tradeoffs: using data as a
computational resource when available beyond the sample
complexity of the learning task. Pioneering this effort,
Decatur et al. [2000] and Servedio [1999] showed tradeoffs
in the realizable PAC learning model. Exploring these
tradeoffs has gained much recent attention due to emerging
problems in big data. For instance, Bottou and Bousquet
[2008], Shalev-Shwartz and Srebro [2008] and Birnbaum
and Shwartz [2012] showed the existence of such tradeoffs
for learning linear classifiers as the data size increases.
These tradeoffs are generally achieved by leveraging the
fact that as we accumulate more data, the desired risk ε
becomes easier to reach, thus computationally cheaper but
less accurate algorithms can be employed. This idea of
algorithmic weakening was explored more systematically
by Chandrasekaran and Jordan [2013] using convex
relaxations.

Our Contributions. Existing approaches in computa-
tional and statistical tradeoffs consider only three of the
four parameters: for a desired level of risk ε they iden-
tify tradeoffs between running time t and data size n. Our
primary goal in this paper is to study how summariza-
tion (i.e., controlling space) can help navigate the trade-
off between time, data size and risk. In other words, we
present a weakening mechanism, akin to Chandrasekaran
and Jordan [2013], albeit in a different direction. Instead
of weakening learning algorithms, we consider weakening
the data representation. As more data becomes available,
more representative elements can be extracted, without in-
curring much computational cost. Our approach is based
on novel computational geometric techniques, called core-
sets (Agarwal et al. [2005]), where a small amount of most
relevant data is extracted from the dataset, while perform-
ing the computation on this extracted data guarantees an
approximate solution to the original problem. To the best
of our knowledge, this paper is a first effort in introducing a
methodological data-summarization approach for studying
and navigating space/time/data/risk tradeoffs.

663

Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning

As a prototypical unsupervised learning problem, we focus
on k-means clustering, also known as vector quantization,
due to its simplicity and practical importance. In this prob-
lem, a set of k centers is sought to minimize the expected
(squared) distance between data points and the closest cen-
ter. Finding the optimal centers is NP-hard, but good ap-
proximation algorithms are known, e.g., Lloyd’s algorithm
(Lloyd [1982]). We show how coreset constructions for
k-means (Kanungo et al. [2002], Har-Peled and Mazumdar
[2004], Agarwal et al. [2005], Feldman et al. [2007, 2013])
can be used to strategically summarize the data: in order
to achieve a fixed precision, the running time can be made
to decrease as the data set grows, by carefully controlling
space usage. We also provide a practical algorithm TRAM
that uses existing algorithms for solving k-means (e.g.,
Lloyd’s algorithm, or k-means++) in order to realize this
tradeoff in practice. We demonstrate the effectiveness of
our summarization strategy on several synthetic and real
data sets. We should highlight that k-means clustering is
a non-convex problem, thus prior computational-statistical
tradeoff strategies that heavily relied on convexity cannot
be applied in this setting. While we focus on k-means,
coresets are available for many other unsupervised learn-
ing tasks (Feldman et al. [2013]), and we believe that
our approach can be applied much more generally. In
particular, we empirically demonstrate how such tradeoffs
can be achieved for Gaussian Mixture Models (GMMs).

2 THE STATISTICAL k-MEANS
PROBLEM

Typically, k-means is viewed as a (combinatorial) op-
timization problem. We focus instead on the statistical
variant. In particular, we assume that an underlying
distribution generates i.i.d. samples, and we seek centers
that generalize well. More formally, let P be an unknown
distribution on Rd where we assume that it is supported
on a ball of radius B at the origin, i.e., for X ∼ P we have
P(‖X ‖2≤ B) = 1 (this assumption can be relaxed under
other regularity conditions, see, for example Telgarsky
and Dasgupta [2013]). In k-means clustering, any data
point x ∈ Rd is associated with the closest among a set of
k centers c = {c1, · · · ,ck}, where ci ∈ Rd . We judge the
quality of this association by a risk defined as

R(c) = EX∼P[d2(c,X)]

between c and a sample X from P, where
d2(c,X) = mink

i=1 ||ci − X ||22. Let C be the set of all
k centers in the ball of radius B at the origin. The optimal
centers are those that minimize this risk:

c? = argmin
c∈C

R(c).

The solution to this minimization may not be unique, but
for the ease of presentation we assume it is. We further

make the realistic assumption that R := R(c?) > 0 which
is satisfied for any distribution supported on more than k
points. Since P is unknown, we seek centers for a dataset
of n samples X1, . . . ,Xn drawn i.i.d. from P. Any choice of
a sequence of functions c̃n, from Rd×n→ Rd×k is called a
k-means procedure. Out of all such choices, of particular
importance is the one that minimizes the empirical risk, to
obtain the empirically optimal centers:

Rn(c) =
1
n

n

∑
i=1

d2(c,Xi), ĉn = argmin
c∈C

Rn(c). (1)

The properties of the empirically optimal centers have
been extensively studied in the literature ([Kanungo et al.,
2002, Ben-David, 2007]). In particular, finding empirically
optimal centers is a daunting task and often approximate
procedures are used. Of particular interest to us is a
class of algorithms (Kanungo et al. [2002], Har-Peled and
Mazumdar [2004], Agarwal et al. [2005], Feldman et al.
[2007, 2013]) that solve the k-means problem by first
summarizing the data and then finding the centers on the
summarized data. This decoupling principle allows these
algorithms to invest most of their running time only on a
small set of points and, at the same time, to save space.

3 DATA SUMMARIZATION
Data summarization refers to a procedure that takes a data
set of size n and replaces it with a smaller set of size sproc,
which suffices for (approximately) solving the learning task
at hand. This summarization may simply be a truncation
without any consideration to the inherent structure of the
data (a simple method that is often practiced), or it may
be a combination of truncation and strategic sampling that
adapts to structure in the data. We denote the truncation
size by mproc. One of the main advantages of having sum-
marized data, apart from saving space, is the substantial
reduction in running time. For this reason, truncation must
be allowed, as otherwise the running time of any learning
algorithm would grow with the data size. We now formally
present these two strategies.

Uniform Subsampling This is the simplest form of data
summarization: start with a data set of size n, preserve
only the first ssubs ≤ n points, and then solve the learning
problem by minimizing the empirical risk. In the k-means
problem, this amounts to c̃subs = argminc∈C Rssubs(c)
where Rssubs(c) =

1
ssubs ∑

ssubs
i=1 d2(c,Xi). For the uniform

subsampler the summarization and truncation sizes are
identical, ssubs = msubs. Larger values of ssubs promote
lower statistical risk but are more expensive to compute.
Conversely, computation on a smaller set may be fast but
results in higher risk. The uniform subsampler may tune
ssubs to balance risk with running time.

Strategic Sampling Coresets are data summaries that
are constructed via adaptive sampling, in the spirit of
importance sampling. As with the uniform subsampler, we

664

Lucic, Ohannessian, Karbasi and Krause

start with data of size n, then truncate it to mcore points.
Now, instead of using the truncation as is, we perform
strategic sampling to propose a set of score representative
points (Yj) j=1,··· ,score , each associated with a non-negative
weight w j, and we solve the learning problem not on the
empirical risk, but on a weighted variant. In the k-means
problem, this amounts to c̃core = argminc∈C Rw

score(c) where
Rw

score(c) = ∑
score
j=1 w jd2(c,Yj). Coresets strive to be a more

faithful/concise representation of the data than uniform
samples. Naturally, their properties depend on how the
strategic sampling is performed. The hallmark property of
coresets is their ability to approximate the empirical risk,
defined in (1), optimized over the starting mcore data points.

Definition 1. A coreset construction is a (1 + η)-
approximation, with η a function of the coreset size
score, if the centers c̃core satisfy Rmcore(c̃core) ≤ (1 +
η(score))Rmcore(ĉmcore).

1

A coreset procedure could start out with a moderately
larger truncation mcore > msubs, and yet produce a represen-
tation that is significantly smaller score � ssubs, all while
maintaining a comparable risk. Note again that without
performing truncation, the running time of finding a core-
set of size score using the whole dataset grows with the data
size. A number of efficient (1+η)-coreset constructions
for k-means are known, as reviewed in Section 5.2. We
study a particularly practical variant in Section 7. Addition-
ally, it is worth noting that coresets have the advantage of
admitting streaming and parallel constructions (Har-Peled
and Mazumdar [2004], Balcan et al. [2013]), which makes
them particularly suited for massive datasets.

4 SPACE-TIME-DATA-RISK TRADEOFF

Our goal now is to give a precise definition of tradeoffs:
how data summarization may lead to trading off representa-
tion space, running time, data size, and statistical risk. Let
c̃proc(n,mproc,sproc), or c̃proc for short, denote a k-means
procedure based on data summarization, such as uniform
subsampling or coreset summarization. Recall that such a
procedure starts with n data points, truncates them to mproc

points, summarizes these to sproc (possibly weighted) rep-
resentative points, and optimizes the (possibly weighted)
empirical risk to obtain the set of centers c̃proc. The running
time, which we denote by tproc, may be further decomposed
into: summarization time tsumproc and the time tsolver for empir-
ical risk optimization. The former depends on the particular
procedure, but the latter can be a generic solver across
procedures. We assume that the act of truncation (for both
the uniform subsampler and the coreset procedure) has no
computational cost. The statistical risk of the procedure,
which we denote by Rproc, is the expected risk, where the

1Coresets conventionally require approximating the risk at all
c: for ε ∈ (0,1), ∀c ∈ C , |Rw

score(c)/Rm(c)−1| ≤ ε . This implies
a (1+η)-approximation with η = 2ε/(1− ε).

expectation is taken with respect to the sample. That is,
Rproc := E[R(c̃proc)]. We can decompose it as follows:

Rproc ≤ R(c?)︸ ︷︷ ︸
εmodel

+E[R(ĉmproc)]−R(c?)︸ ︷︷ ︸
εest

+ |E[R(c̃proc)]−E[R(ĉmproc)]|︸ ︷︷ ︸
εsum

, (2)

where εmodel, εest, and εsum are the modeling, estimation,
and summarization errors, respectively. The modeling
error is the best risk achieved by any k centers (limitation
of the model). The estimation error is incurred due to using
the empirically optimal centers (limitation of estimating
from data). Lastly, we have the error of approximate
data summarization. For coresets it depends on η (cf.
Proposition 4).

How to trade off The four dimensions space, time, data,
and risk put forth in this paper can now be represented
by the four parameters (sproc, tproc,mproc,Rproc). We can
obtain a variety of tradeoffs by constraining some dimen-
sions and optimizing others. Of course, not all (s, t,m,R)-
tuples are attainable: for instance, classical sample com-
plexity bounds constrain what risks are attainable at what
data sizes. We call a subset of the dimensions feasible for
a procedure, if there exist values of the others that lead
to attainable tuples. By exploring the feasible landscape,
one can harness various trends. For example, based on the
risk decomposition stated above, as we decrease sproc, the
risk Rproc increases due to the increase in εsum. In contrast,
solving the optimization becomes computationally cheaper
with smaller sproc. These interactions, illustrated schemat-
ically in Figure 1b give rise to various tradeoffs. Some of
these are listed in Figure 1a.

In this paper, we are mainly interested in (a) data-time
tradeoffs: for Rproc fixed below some εtotal, can tproc de-
crease as n increases? and (b) risk-time tradeoffs: for
some fixed n, can tproc decrease as Rproc increases? These
two tradeoffs are listed respectively in the first and sec-
ond rows of the table in Figure 1a. Data summarization
gives us a natural framework to answer those questions:
we could achieve such gains by optimizing summariza-
tion space sproc. This captures the weakening-through-data-
summarization mechanism that we advocate in this paper.
Formally, given a data size n and risk εtotal, the optimal
running time function is:

t?proc(n,εtotal) = minmproc,sproc tproc(n,mproc,sproc), (3)
s.t. Rproc(mproc,sproc)≤ εtotal,mproc ≤ n.

Observe that for fixed εtotal and as n varies, the optimal
running time t?proc is non-increasing in n by construction.
Similarly, for fixed n and as εtotal varies, the optimal run-
ning time t?proc is non-increasing in εtotal.

665

Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning

Tradeoff Space Time Data Risk

Data-Time Tune Objective Vary Fixed

Risk-Time Tune Objective Fixed Vary

Space-Risk Vary Tune Fixed Objective

Data-Risk Tune Fixed Vary Objective

Space-Time Vary Objective Tune Fixed

(a) Tradeoffs

Cost k↗ n↗ s↗

εmodelling ↘
εestimation ↗ ↘
εsummarization ↗ → ↘
t ↗ ↗ ↗

(b) Trends

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

R
u
n
n
in
g
T
im

e

Data size

Coreset

Uniform

(c) Data-Time

200 300 400 500

0

1

2

3

4

5

6

R
u
n
n
in
g
ti
m
e

Risk

Coreset

Uniform

(d) Risk-Time

Figure 1: (a) Examples of Space-Time-Data-Risk-Tradeoffs, each realized by trading off two parameters (green and gray), by con-
straining (red) and tuning (blue) the remaining ones. (b) Effect of increasing k, n and s on the various errors and running time t. (c)
Coreset (red) data-time tradeoffs versus subsampler (black). The plots represent best running time for fixed risk tolerance when varying
the data size, as predicted by our theory (Section 5). (d) Risk-time tradeoff, i.e., best achievable running time for fixed data size when
varying the allowed risk. [Time units normalized to the median subsampler time.]

Definition 2. We say that a k-means procedure offers a
(non-trivial) data-time tradeoff if, for a given desired to-
tal risk εtotal, the running time t?proc(·,εtotal) is decreasing
for some range of n. We say that the procedure offers a
(non-trivial) risk-time tradeoff if, for a given data size n,
t?proc(n, ·) is decreasing for some range of εtotal. In other
words, these tradeoffs correspond to (non-flat) Pareto opti-
mal frontiers of t?proc, as either of the arguments is fixed.
Tradeoffs divide the landscape into various operation
regimes. For data-time tradeoffs, before n reaches the
feasible range for εtotal, we are in a “data-bounded” regime
(cf., Shalev-Shwartz and Srebro [2008]). We cannot get
the desired risk εtotal, and have to invest all of the data
and computation to driving the risk as low as possible.
On the other extreme, very large data sizes are bound to
lead to a point where more data can safely be discarded
with no further impact on risk and computation time. This
is the “data-laden” regime. In our framework, it means
that in the data-laden regime t?proc(·,εtotal) flattens. Lastly,
there is an “intermediate regime” where all of the available
data is used, but there is maneuvering room to drive the
computation time down or in other words t?proc(·,εtotal)
decreases. A lot of the subtlety of the tradeoffs happens in
this regime. We see this phenomenon manifest itself both
analytically, in Section 5, and experimentally, in Section 7.

Extensions Our methodology is formalized for the k-
means problem, but the framework is much richer. For
example, spectral clustering methods that can be mapped
to k-means are bound to profit directly from our results. A
concrete extension consists of Gaussian Mixture Models,
by using the negative log-likelihood as the risk and coreset
construction by Feldman et al. [2011]. We do not formalize
this, but we demonstrate it experimentally in Section 7.

5 ANALYSIS
We have thus far motivated and laid out a clear paradigm
of tradeoffs via data summarization. But are such tradeoffs
even possible? In this section, we show that the answer is
yes. To keep our exposition concise, we focus in particu-
lar on showing that nontrivial data-time tradeoffs (Defini-
tion 2) do indeed exist. For this we need to characterize
t?proc(n,εtotal) as n varies, for a fixed desired risk level εtotal.

For the uniform subsampler the data-time tradeoff is neces-
sarily trivial. To see this, let nf(εtotal) be the smallest data
size n when εtotal becomes feasible. Then for all n≥ nf we
have εmodel + εest(n) ≤ εtotal but the uniform subsampler
has no incentive to use more than msubs = nf samples, since
otherwise its running time would be greater (for unneeded
risk reduction). This means that t?subs(·,εtotal) is undefined
for n < nf(εtotal), and is flat beyond that. In the language of
Section 4, the uniform subsampler switches abruptly from
the “data-bounded” to the “data-laden” regime.

The more interesting question is thus: Can coreset proce-
dures give non-trivial data-time tradeoffs that improve on
the uniform subsampler? In particular, can we observe
an “intermediate regime” where t?core(·,εtotal) curves down,
before reaching the data-laden regime? Our main result
answers these questions in the affirmative. Informally, we
have the following.

Main Result (Existence of Tradeoffs). Let the following
conditions hold for a coreset procedure:

(a) The summarization is time-efficient (its running time is
negligible relative to that of the solver).

(b) The summarization is sample-efficient (the approxima-
tion factor vs. summarization size decays faster than
the estimation error vs. sample size).

(c) The estimation error decays fast (∼ power law).

(d) The solver is slow (at least super-linear).

Then, for small enough risks, the procedure admits a non-
trivial data-time tradeoff, and its optimal running time
dominates (is less than) that of the uniform subsampler for
large enough data sizes. Moreover, existing bounds and
coreset constructions do satisfy these conditions.

In what follows, we proceed to formalize this result. In Sec-
tion 5.1 we give the sufficient conditions and in Section 5.2
we affirm that these conditions are satisfied in practice, by
giving existing risk bounds and coreset constructions. We
also provide some numerical illustrations of tradeoffs using
these bounds. In Section 7 we demonstrate these tradeoffs
experimentally.

666

Lucic, Ohannessian, Karbasi and Krause

5.1 Sufficient Conditions for Tradeoffs
Recall first some notation from Section 4. When a core-
set summarization procedure has a total risk (Rcore), it can
be decomposed into modeling (εmodel), estimation (εest),
and summarization errors (εsum). The latter depends on the
coreset approximation that results from a choice of a given
summarization size (η(score)) (Proposition 4 makes this
precise). The total running time of the procedure tproc can
be decomposed into summarization time (tsumproc) and empir-
ical risk minimization time (tsolver). The latter is attributed
to a generic solver, and it depends only on the size (sproc)
of its input. For the former, we add some further notation
due to “bicriteria”-type coreset constructions (Feldman and
Langberg [2011]), where the summarization stage itself is
decoupled into two: initialization, taking time t initcore(mcore)
that depends only on the (truncated) data size, followed by
adaptive sampling, with time tsamp

core (score) that depends only
on the coreset summarization size. We are now ready to
formally state our main result’s conditions.

Theorem 1. Let tsolver(·), t initcore(·), tsamp
core (·) be increasing,

and εest(·) and η(·) be decreasing functions of their argu-
ments. Let the setting of the coreset procedure be such that
the following are satisfied:

(a) t initcore(·) is linear and tsamp
core (x) = o(tsolver(x)),

(b) ∃a,b > 0 such that for large enough x, 2η(x) ≤
(1/εmodel−a)εest((1+b)x).

(c) ∀L(x)→ ∞, no matter how slowly, εest(xL(x))
εest(x) → 0, as

x→ ∞,
(d) tsolver(·) is bounded from below by a convex super-

linear function, i.e. tsolver(x)
x → ∞, as x→ ∞,

Then there exists a small enough risk ε0, such that for all
desired risks εtotal ≤ ε0, there exists a large enough sample
size n0, beyond which for all n> n0 we have t?core(n,εtotal)<
t?subs(n,εtotal).

Since the coreset procedure cannot be faster than the sub-
sampler at a sample size at the threshold of feasibility, the
theorem implies that for all εtotal ≤ ε0 the coreset proce-
dure achieves a non-trivial tradeoff with an “intermediate
regime”, eventually dominating the uniform subsampler for
large enough sample sizes.

Condition (a) asks for the solver’s running time to over-
shadow that of summarization (how could one benefit
from summarization otherwise?). Slower solvers can only
“help” satisfy this condition. Condition (b) is more subtle,
though it can be understood as follows: if larger summaries
do not drive the summarization error down as fast as larger
sample sizes drive the estimation error down, then summa-
rization loses its competitive advantage against truncation.
As for Conditions (c) and (d), they are primarily used in
a technical context, to balance asymptotic expressions. As
we outline in Section 5.2, these conditions are natural be-
haviors for the estimation error and solver respectively.

Proof sketch of Theorem 1. To prove this theorem, it suf-
fices to show that for a large enough sample size x we
can find a (possibly suboptimal) coreset size s such that
the resulting procedure has εtotal = εmodel + εest(x) while
its running time is less than tsolver(x). This is because x
and tsolver(x) represent respectively the feasibility threshold
and the optimal running time of the uniform subsampler
that achieves a risk of εtotal. To maintain a risk of εtotal,
the coreset procedure needs an appropriate truncation size
m slightly larger than x, thus allowing enough samples for
summarization, and the result would only hold for n≥ m.

We make a simple choice, s = t−1
solver((1−2δ)tsolver(x)) for

some δ > 0, ignoring rounding. This implies a perfor-
mance gap tsolver(x)− tsolver(s) of 2δ tsolver(x) within which
we can maneuver. Then Condition (a) implies that for large
enough x the sampling stage will occupy less than δ t(x) of
this gap. On the other hand, the initialization stage depends
linearly on the resulting m. Condition (b) then intervenes to
show that the impact of this stage remains also within an-
other δ t(x), thus establishing the theorem. This, however,
requires x to be large enough to align with the constants of
Condition (b), and for that we invoke Conditions (c) and
(d). The details can be found in the supplements.

5.2 Existence of Tradeoffs

We now affirm that the conditions of Theorem 1 are met by
existing constructions.
Proposition 1. Under known risk bounds (Propositions 2
and 3) and coreset constructions (Feldman and Langberg
[2011]), and when using a super-linear polynomial-time or
slower solver, the conditions of Theorem 1 are satisfied.

We can illustrate this result visually via simulations: we
perform numerical optimization using the risk, running
time, and summarization bounds given in this section. The
details can be found in the supplements. We plot a rep-
resentative data-time tradeoff of both the subsampler (in
black) and the coreset procedure (in red) in Figure 1c. Note
that the coreset procedure dominates. The same type of nu-
merical optimization can be done to obtain other tradeoffs:
we plot the risk-time tradeoff of the same problem in Figure
1d. As Theorem 1 predicts, the coreset dominates primarily
for smaller (thus more interesting) values of the risk. The
proof of Proposition 1, also in the supplments, is a direct
verification of the conditions of Theorem 1. We give here
an account of the invoked bounds and coreset construction.

Risk Bounds The following bounds characterize the
risks in terms of the parameters of the problem: the di-
mension d, radius B, and number of clusters k. Note that
the modeling error does not depend on the procedure, the
estimation error only depends on the procedure through the
truncation size mproc, and the summarization errors depend
more closely on the specifics of the summarization. The
following bound on the modeling error is minimax up to
constants (Graf and Luschgy [2000]).

667

Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning

Proposition 2 (Modeling Error). The modeling error sat-
isfies εmodel ≤ B2d

k2/d .

The estimation error has been extensively studied in statis-
tics. We have the following (Antos et al. [2005]):

Proposition 3 (Estimation Error). The estimation error
satisfies εest ≤ σB2

√
kd√mproc

, for some σ > 0. Furthermore,
we have a lower bound: there exists σ > 0 such that when-
ever k≥ 3, we may find P for which for large enough mproc

we have: εest ≥ σB2
√

k1−4/d
√mproc

.

The summarization error depends on the particular sum-
marization procedure. For uniform subsampling, since
c̃subs = ĉmsubs

, it is trivially zero (cf. Equation (2)). For a
coreset procedure, it depends on the coreset size or equiva-
lently the approximation factor η .

Proposition 4 (Summarization Error). Given a (1 + η)-
approximation coreset, when η(score) ≥ η0 > 0, then
εsum < 2(εmodel+ εest)η(score) for large enough m.

Propositions 2 and 3 are restatements. On the other hand,
Proposition 4 is new. The proof relies on uniform concen-
tration (Linder [2002]), and is detailed in the supplements.

Running Time Bounds Solving for the exact empiri-
cally optimal centers is NP-hard, with the running time of
known exact algorithms being tsolver(s) = Ω(skd) (cf., In-
aba et al. [1994]). There are various popular heuristics,
including Lloyd’s (“the k-means”) algorithm, and on typi-
cal inputs these have polynomial running times tsolver(s) =
Ω(poly(k)poly(d)poly(s)). Under further conditions they
can be exact (Meyerson et al. [2004]). Even these opti-
mistic polynomial running times are sufficient for us.

The uniform subsampler performs no summarization be-
yond truncation, ssubs = msubs. Thus tsumsubs = 0, and:

tsubs(n,msubs,ssubs) = tsolver(ssubs).

For coresets, we use the above-mentioned “bicriteria” con-
struction by Feldman and Langberg [2011]. We have:

tcore(n,mcore,score) =

tsolver(score)+ t initcore(mcore)+ tsamp
core (score). (4)

Like the risks, these initialization and sampling times de-
pend on the various parameters of the problem, and in par-
ticular the dimension d and the number of clusters k. In
many constructions, these are linear functions of their ar-
guments. In particular, the coreset construction of Feld-
man and Langberg [2011] is a (1+η)-approximation with
t initcore(mcore) = O(dkmcore) and tsamp

core (score) = O(score).

Coreset Approximation The last component of Propo-
sition 1, needed to fully characterize a coreset approxi-
mation, is the functional relationship between the approx-
imation factor η and the coreset size score. In partic-
ular, we note that Feldman and Langberg [2011] gives

a (1 + η)-approximation with a coreset of size score =
O(dk(2+η)2/η2) (see also footnote1). We may thus write
η(score) = O

(√
dk/(
√

score−
√

dk)
)

.

6 DATA-DRIVEN TRADEOFF
NAVIGATION

So far we demonstrated tradeoffs in k-means by consid-
ering analytical models. In practice, however, even if a
tradeoff exists, it is a priori unclear how to harness it:
one would seemingly need a “tuning oracle” to adjust the
procedure to yield an optimal tradeoff, by selecting optimal
truncation and summarization sizes. An exhaustive search
for such an adjustment is useful for illustration, but it
defeats the purpose of the endeavor, which is to yield a
practical algorithm whose running time decreases with
more data. In this section, we address this challenge by
proposing a TRadeoff nAvigation algorithM (TRAM). It
uses a limited amount of additional validation data to
explore the summarization landscape, and leads to a sum-
marization that exhibits acceptable loss in risk εtotal, time
t?, and space s?, thus effectively approximating a tuning
oracle. We focus specifically on data-time tradeoffs via
coreset data-summarization schemes, though the approach
is potentially extensible to other tradeoffs and procedures.

Theoretical Setting We design and study our algorithm
under the following assumptions.

(A) The running time of the coreset procedure is known,
up to scaling. In particular, we use a polynomial time
solver and take tcore = αm+ sβ for known α,β > 1.

(B) Evaluating the empirical risk using a data set of size a
takes a running time of ka.

(C) Let m? and s? be the solutions of Equation (3) real-
izing the optimal time t? = t?core(n,εtotal). We have
R(c̃(m,s)) ≤ εtotal for all m ≥ m?, s ≥ s?, with proba-
bility at least 1−λ .

(D) We have access to additional samples from the distri-
bution P, beyond the data size n.

Assumption (A) maps to the framework of Section 5.2:
t initcore(m) is linear in m, tsamp

core is absorbed into tsolver, tsolver
is polynomial, and both are normalized to maintain only
a single constant. Assumption (B) is trivial, except for
absorbing the dimension and leading constants into k. (C)
is a monotonicity assumption, requiring that with some
probability 1−λ not just the optimal coreset size but also
all larger summaries are below the base risk εtotal. The
algorithm does not use λ , it is there only for performance
analysis. Lastly, Assumption (D) uses separate data to vali-
date in order to both use independence from the data itself,
and allow to derive sample complexities for validation us-
ing basic concentration inequalities. Theorem 2 shows that
only a small number of such points are needed. In practice,
the data itself is partitioned to provide these points.

668

Lucic, Ohannessian, Karbasi and Krause

A TRadeoff nAvigation algorithM (TRAM) The idea
of TRAM is as follows: search for a good summariza-
tion by starting small then growing until the desired risk
is achieved. The challenge is that the risk cannot be known
exactly and needs to be tested using data. We therefore
have a compromise: if we stop too early we miss the target,
and if we stop too late we spend too much on computation.
The analysis shows that the algorithm achieves a certain
balance.

Algorithm TRadeoff nAvigation algorithM (TRAM)

1: Input: Data of size n; risk level εtotal; validation data
of size a; accuracy parameter δ > 0.

2: Initialization: Start with a truncation of size m[0]< n
and a coreset size of s[0].

3: repeat
4: Iteration step i: Summarize the m[i]-truncation to

a coreset of size s[i], and solve for the centers c̃[i].
Increment m[i] to m[i+ 1], and s[i] to s[i+ 1]. Use
a portion a[i] of the validation data to evaluate the
empirical risk of c̃[i].

5: until Ra[i](c̃[i])≤ τ.
6: Output: The last set of centers c̃[i].

The validation data is a growing sequence drawn from the
points described in Assumption (D). More specifically,
4b log(1/δ)/εtotal2 additional points are used at each iter-
ation, where b = 2B2, and thus a[i] = 4ib log(1/δ)/εtotal2.
The size increments happen multiplicatively: m[i+ 1]←
γmm[i] ∧ n and s[i + 1] ← γss[i]. In particular, we take
γm = 2 and γs = 21/β . Lastly, the threshold (in step 5) is
τ = 3εtotal/2.

Theorem 2. Let T and J denote the running time and num-
ber of iterations of TRAM respectively. Under assumptions
(A) to (D), given data of size n, a base risk εtotal, and pa-
rameter δ < 1

5 , with probability at least (1− λ)(1− 5δ),
TRAM:
. runs for time T ≤ 4t?2 + 8bk

εtotal2
log 1

δ log2
2 t?,

. uses a[J]≤ 8b
εtotal2

log 1
δ log2 t? validation points,

. and produces centers c̃ with risk R(c̃)≤ 2εtotal.

Proof sketch. Using the validation test at every step, grow-
ing the set to compensate for dependencies, we control
the errors of stopping too far before and too far after the
optimal truncation and coreset sizes. The threshold that
is slightly larger than the base risk gives us a detection
margin. If these errors are not too large, the polynomial
structure of the running time of the coreset procedure com-
pounds with the geometric incrementing scheme, to lead to
a computational overhead that remains reasonably close to
the optimal.

Note that the search does come with a penalty (the run-
ning time is squared). However, the analysis is very con-
servative and none of the constants depend on the data size

n. Thus TRAM does indeed reproduce the qualitative be-
havior of the tradeoff, i.e. the running time decays as the
data size increases, while the guaranteed risk remains ef-
fectively constant.

7 EXPERIMENTAL RESULTS
We now empirically establish the existence of tradeoffs and
evaluate the performance of TRAM.

Setup Given a dataset X ⊆ Rd and some εtotal, we wish
to find the minimum computational cost of obtaining a
k-means solution with risk less than or equal to εtotal. We
interpret P as the uniform distribution over X , hence we
can compute the risk exactly. We simulate various dataset
sizes by restricting individual experiments to a random
subset of X . For each pair of data size ni ∈ N and
summary size s j ∈ S we sample ni instances i.i.d. from
X and summarize the sample with a summary of size s j
and solve the problem on the summary. We repeat the latter
50 times and report the average time and risk obtained.
For the uniform subsampler, s j refers to the subsample
size, and for the coresets it refers to the size of the coreset.
We denote the cumulative running time of summarizing
and solving the problem on the summary by t(ni,s j) and
the obtained risk by R(ni,s j). For each procedure, let
Λproc = {(n, t(n,s),R(n,s)) | n ∈N ,s ∈S }.
We can now leverage Λproc to characterize various trade-
offs. For example, to capture the data-time tradeoff for a
particular size n we find the minimum running time t ′ such
that ∃(m, t ′,R) ∈ Λproc, with m < n and R ≤ εtotal. Search-
ing Λproc yields Pareto-optimal boundaries of two ora-
cles: coreset-based (ORACLE-C) and uniform-sampling-
based (ORACLE-U). To show that one can navigate the
space/time/data/risk tradeoffs in practice using TRAM, we
showcase it alongside the oracles in Figure 2. Finding the
oracles is computationally prohibitive as it entails a full
grid search over N and S . Nevertheless, the reported
times assume the oracles simply know what the best sum-
marization is.

Datasets SYNTHETIC — We generate synthetic data of
100,000 points in R100 from a mixture of Gaussians. We
choose k = 100 centers in [0,100]100 and set them as means
for the k spherical Gaussian distributions with Σ = 5I. The
relative magnitudes of the clusters are sampled from an ex-
changeable Dirichlet distribution with parameter 1/20.

KDD2004BIO — The dataset of the Protein Homology Pre-
diction Task in KDD Cup 2004, with 145,751 instances
and 74 attributes that describe the match between two pro-
teins. We fit k-means with k = 150.

CSN — The Community Seismic Network (CSN) uses
smart phones with accelerometers as inexpensive seis-
mometers for earthquake detection. Faulkner et al. [2011]
compiled 7 GB of acceleration data and computed 17-
dimensional feature vectors. We fit k-means with k = 200.

669

Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning

214 215 216 217

Dataset Size

0

2

4

6
R

un
ni

ng
Ti

m
e

[s
]

TRAM

ORACLE-U

ORACLE-C

R=800.86

213 214 215 216 217

Dataset Size

0
1
2
3
4
5
6
7
8

R
un

ni
ng

Ti
m

e
[s

]

TRAM

ORACLE-C

ORACLE-U

R=1.27e+06

214 215 216 217

Dataset Size

0

1

2

R
un

ni
ng

Ti
m

e
[s

]

TRAM
ORACLE-C

ORACLE-U

R=5.23

213 215 217 219 221 223 225

Dataset Size

10

15

20

25

30

R
un

ni
ng

tim
e

[s
]

ORACLE-C
TRAM

ORACLE-U
LL=-10.58917

785 795 805 815 825
Risk

0

2

4

6

8

R
un

ni
ng

Ti
m

e
[s

]

ORACLE-C

TRAM

ORACLE-U
N=100000

1.20 1.21 1.22 1.23 1.24 1.25
Risk ×106

0

2

4

6

8

R
un

ni
ng

Ti
m

e
[s

]

ORACLE-C

ORACLE-U

TRAM

N=140000

4.5 5.0 5.5 6.0 6.5
Risk

0

1

2

R
un

ni
ng

Ti
m

e
[s

]

ORACLE-C

TRAM

ORACLE-U

N=120000

−10.3−10.4−10.5−10.6
Risk

10

15

20

25

R
un

ni
ng

Ti
m

e
[s

]

ORACLE-C

TRAM

ORACLE-U

N=44000000

Figure 2: Results for SYNTHETIC, KDD2004BIO, CSN and WEBSCOPE datasets, per column from left to right. Figures in the first row
show data-time tradeoffs: best running time for fixed risk tolerance and varying data sizes (cf. Figure 1c). Tradeoffs exist: running time
decreases with increasing data size. Furthermore, the coreset procedure dominates uniform subsampling, and TRAM tracks the coreset
tradeoff closely, with limited overhead. Figures in the second row show risk-time tradeoffs: best running time for fixed data size and
varying risk tolerance (cf. Figure 1d).

YAHOO! WEBSCOPE R6A — 45,811,883 instances in R6

that represent the user click log displayed on the Yahoo!
Front Page. We fit a GMM with k = 200 components. The
risk here is the negative log likelihood on the hold-out data.

Parameters For the k-means clustering problem we use
the coreset construction from Feldman and Langberg
[2011], and a weighted variant of the k-means++ algo-
rithm to solve the problem on the subsample. In the case
of GMMs, we use the coreset construction from Feldman
et al. [2011] and a weighted EM for GMMs. We con-
sider summarization sizes between 100 and 20,000. For
TRAM, we start with summarization size and truncation
size inversely proportional to the risk required. At every
iteration, we double the truncation size and take 1.5-fold
(β = − log2 1.5) of the summarization size. 1/5th of the
data is assigned to validation, with a δ of 0.1.

Observations The plots in the first row in Figure 2 show
the Pareto-optimal boundary for a fixed risk as data size
varies. There is a data-time tradeoff as predicted from the-
ory. Furthermore, TRAM traces the solutions achieved by
the coreset oracle, implying that we can navigate tradeoff
curves without oracles. Remarkably, TRAM remains better
than the uniform subsampler oracle, eventhough either
oracle takes orders of magnitude more time to obtain by
exhaustive search. The second row illustrates the existence
of a risk-time tradeoffs also: for fixed data size, the time to
guarantee a desired risk decreases as the risk increases. An-
other perspective to these results is as follows. A potential
practitioner is faced with three options: solving the prob-
lem on the whole dataset or doing so after summarizing,
either by truncating to a portion deemed adequate or by
strategically summarizing the data with a somewhat larger
portion. The former is often out of the question (in the case

of GMMs, it may take weeks). Summarization slashes this
time down (minutes instead of weeks). However, because
the coreset procedure can achieve a faster time even as it
accesses a larger portion, it will be more likely to guarantee
a desired risk, as compared to the uniform subsampler, at
least for interesting (small) risk levels.

8 CONCLUSIONS
We explored space/time/data/risk tradeoffs achievable via
coreset-based data-summarization. Our theory predicts
and our empirical results demonstrate the existence and
utility of such tradeoffs. We further showed how such
tradeoffs can be practically realized via a novel algorithm,
TRAM. While our analysis focused on k-means, our
insights are more generally applicable. In particular, we
empirically demonstrated tradeoffs in learning Gaussian
Mixture Models. Approaches that optimize cost functions
related to the quantization error, such as small-variance
limits of non-parametric Bayesian models Jiang et al.
[2012], may also immediately benefit from our results.
We thus strongly believe that our results present an
important step towards understanding tradeoffs in large-
scale unsupervised learning. Lastly, given promising
summarization-style techniques Pavlov et al. [2000], Bakir
et al. [2004], Tsang et al. [2005], similar results may also
be possible in supervised learning.

Acknowledgements

This work was supported in part by ERC StG 307036, an
ETH Fellowship, a Microsoft Research Faculty Fellowship,
and the Zurich Information Security Center. It was carried
out when the second author was an MSR-Inria postdoc-
toral researcher and an ERCIM "Alain Bensoussan" fellow,
funded in part by EU FP7/2007-2013 Grant 246016.

670

Lucic, Ohannessian, Karbasi and Krause

References

Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R
Varadarajan. Geometric approximation via coresets.
Combinatorial and computational geometry, 52:1–30,
2005.

András Antos, László Györfi, and András György. Indi-
vidual convergence rates in empirical vector quantizer
design. Information Theory, IEEE Transactions on, 51
(11):4013–4022, 2005.

Gökhan H. Bakir, Léon Bottou, and Jason Weston. Break-
ing SVM Complexity with Cross-Training. In NIPS,
2004.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang.
Distributed k-means and k-median clustering on general
topologies. In NIPS, pages 1995–2003, 2013.

Shai Ben-David. A framework for statistical cluster-
ing with constant time approximation algorithms for k-
median and k-means clustering. Machine Learning, 66
(2-3):243–257, 2007.

Aharon Birnbaum and Shai S Shwartz. Learning halfspaces
with the zero-one loss: time-accuracy tradeoffs. In NIPS,
pages 935–943, 2012.

Léon Bottou and Olivier Bousquet. The Tradeoffs of Large-
Scale Learning. In NIPS, volume 20, pages 161–168.
NIPS Foundation, 2008.

Venkat Chandrasekaran and Michael I Jordan. Compu-
tational and statistical tradeoffs via convex relaxation.
PNAS U.S.A., 110(13):E1181–90, March 2013.

Scott E Decatur, Oded Goldreich, and Dana Ron. Compu-
tational sample complexity. SIAM Journal on Comput-
ing, 29(3):854–879, 2000.

Matthew Faulkner, Michael Olson, Rishi Chandy, Jonathan
Krause, K Mani Chandy, and Andreas Krause. The next
big one: Detecting earthquakes and other rare events
from community-based sensors. In IPSN, pages 13–24,
2011.

Dan Feldman and Michael Langberg. A Unified Frame-
work for Approximating and Clustering Data. In STOC,
pages 569–578. ACM, 2011.

Dan Feldman, Morteza Monemizadeh, and Christian
Sohler. A PTAS for k-means clustering based on weak
coresets. In Proceedings of the 23rd Annual Symposium
on Computational Geometry, pages 11–18. ACM, 2007.

Dan Feldman, Andreas Krause, and Matthew Faulkner.
Scalable training of mixture models via coresets. In
NIPS, pages 2142–2150, 2011.

Dan Feldman, Melanie Schmidt, and Christian Sohler.
Turning big data into tiny data: Constant-size coresets
for k-means, PCA and projective clustering. In SODA,
2013.

Siegfried Graf and Harald Luschgy. Foundations of Quan-
tization for Probability Distributions. Springer, 2000.

Sariel Har-Peled and Soham Mazumdar. On coresets for
k-means and k-median clustering. In STOC, pages 291–
300. ACM, 2004.

Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applica-
tions of weighted Voronoi diagrams and randomization
to variance-based k-clustering. In ACM SoCG, pages
332–339. ACM, 1994.

Ke Jiang, Brian Kulis, and Michael I Jordan. Small-
variance asymptotics for exponential family Dirichlet
process mixture models. In NIPS, pages 3167–3175,
2012.

Tapas Kanungo, David M Mount, Nathan S Netanyahu,
Christine D Piatko, Ruth Silverman, and Angela Y Wu.
An efficient k-means clustering algorithm: Analysis and
implementation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 24(7):881–892, 2002.

Tamás Linder. Learning-theoretic methods in vector quan-
tization. In Principles of nonparametric learning, pages
163–210. Springer, 2002.

Stuart Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137,
1982.

Adam Meyerson, Liadan O’Callaghan, and Serge Plotkin.
A k-Median algorithm with running time independent of
data size. Machine Learning, 2004. ISSN 0885-6125.

Dmitry Pavlov, Darya Chudova, and Padhraic Smyth. To-
wards scalable support vector machines using squashing.
In KDD, pages 295–299, 2000.

David Pollard. Strong consistency of k-means clustering.
Ann. of Statistics, 9(1):135–140, 1981.

Rocco A Servedio. Computational sample complexity and
attribute-efficient learning. In STOC, pages 701–710.
ACM, 1999.

Shai Shalev-Shwartz and Nathan Srebro. SVM optimiza-
tion: inverse dependence on training set size. In ICML,
pages 928–935, 2008.

Matus Telgarsky and Sanjoy Dasgupta. Moment-based
Uniform Deviation Bounds for k-means and Friends.
CoRR, 2013.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung.
Core vector machines: fast SVM training on very large
data sets. JMLR, 6:363–392, 2005.

671

