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A More on Tensor Algebra

In this section, we provide more discussion on the basic tensor operations used in the paper.
Recall that if we let X

m1,...,mN

∈ RIm1
×···×ImN , Y

q1,...,qL,r1,...,rM
∈ RIq1×···×IqL×Ir1×···×IrM then the tensor

multiplication is defined as:

Z
p1,...,pK ,r1,...,rM

= X
p1,...,pK ,q1,...,qL

×q1,...,qL Y
q1,...,qL,r1,...,rM

where Z
p1,...,pK ,r1,...,rM

∈ RIp1×···×IpK×Ir1×···×IrM . Observe that in the above we can flatten the tensors

X and Y in multiple different ways as long as the matrix multiplication remains valid. For example, we
could assign the multiplication modes in both tensors to columns, in this case the matrix product becomes
Z = XYT . Alternatively, the tensor Y could be matrisized with the multiplication modes corresponding to
rows, resulting in the product Z = XY.

In a series of tensor multiplications the order is irrelevant as long as the multiplication is performed along
the matching modes:

X
sp
×s
(
Y
tr
×r Z

rs

)
=

(
X
sp
×s Z

rs

)
×r Y

tr

If we let the matrisized tensors to be X ∈ RIp×Is , Y ∈ RIt×Ir and Z ∈ RIr×Is , then the above can be verified
to be true since

X (YZ) =
(
XZT

)
YT

Note that in many places we will drop the multiplication subscripts. The implied modes of multiplication
can then be inferred from the subscripts of the tensors. Specifically, when two tensors are multiplied, we first
check their modes and then multiply along the modes which are common to both of them. For example, in
the product X

pqr
× Y
qsr

the implied multiplication is performed along the common modes, i.e., q and r.

Tensor inverse X−1 is defined with respect to a certain subset of modes:

X
p1,...,pK ,q1,...,qL

×q1,...,qL X−1

p1,...,pK ,q1,...,qL
= I
p1,...,pK ,p1,...,pK

where the inversion is performed with respect to the modes q1, . . . , qL. Observe that in the above, tensor
I

p1,...,pK ,p1,...,pK
has duplicate modes and denotes an identity tensor, whose elements are everywhere zero,

except at I(i1, . . . , iK , i1, . . . , iK) = 1. In general, if a tensor has duplicate modes, the corresponding sub-
tensor can be interpreted as a hyper-diagonal. For example, if for a tensor X

pq
we construct a tensor X

pppq
,

which has its mode p duplicated three times, then for a fixed index i, the sub-tensor X(:, :, :, i) is a hypercube
with elements X(:, i) on the diagonal.
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Figure 1: Conditional independence in HSMM. The figure depicts two sets of relationships: OLt and ORt

are independent conditioned on xt−1dt−1, similarly, OLt−1 and ORt−1 are conditionally independent given
xt−1dt−2. We defined OLt

= {. . . , ot−2, ot−1} and ORt
= {ot+1, ot+2, . . .}.

Mode duplication enables us to multiply several tensors along the same mode. For example, if we need
to multiply tensors X

sp
, Y
pr

and Z
tp

along the mode p, then a simple product of the form

X
sp
×p Y

pr
×p Z

tp

cannot be done since any product of two tensors along the mode p would eliminate it, preventing any further
multiplications. In general, if there are N multiplications along the specific mode, then there are must be
cumulatively 2N modes in the participating tensors. In our example, we might duplicate the mode p in, say,
tensor Z to have

X
sp
×p
(
Y
pr
×p Z

tpp

)

To reduce clutter, in some places we do not explicitly show the duplicated variables in the subscripts;
the implied mode numerosity will be evident from the context or explicitly stated in cases when there is a
confusion. For example, the notation for the identity tensor becomes I

p1,...,pK
.

B Estimation of Observable Tensors

In the main paper we expressed the joint probability of the observed variables in the form:

P
o1,...,oT

=
∏

t

D̃
ORt−1

ORt

×ORt

(
X̃

ORtotORt

×ot Õ
otot

)
(B.1)

and derived the observable form for tensor D̃
ORt−1

ORt

:

D̃
ORt−1

ORt

= M−1

OLt−1
ORt−1

×OLt−1
M

OLt−1
ORt

(B.2)

In this Section, we present the omitted derivations for X̃
ORtotORt

and Õ
otot

.
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B.1 Computation of Tensor X̃
ORtotORt

The form of this tensor was established to be:

X̃
ORtotORt

= F−1

ORt |xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1

×xt
F
ot|xt

)
×xtdt−1

F
ORt |xtdt−1

(B.3)

Consider the following conditional independence relationship (see Figure 1):

M
OLtORt

= F
OLt |xt−1dt−1

×xt−1dt−1
F

ORt |xt−1dt−1

×xt−1dt−1
K

xt−1dt−1

, (B.4)

where K
xt−1dt−1

= K
xt−1dt−1xt−1dt−1

and we omitted the duplicated modes.

Express the inverse of tensor F
ORt |xt−1dt−1

from the above equation

F−1

ORt |xt−1dt−1

= M−1

OLtORt

×OLt
F

OLt |xt−1dt−1

×xt−1dt−1
K

xt−1dt−1

where tensor F
ORt |xt−1dt−1

is inverted with respect to mode ORt
, while M

OLtORt

is inverted with respect to mode

OLt
. Substituting back to (B.3), we get

X̃
ORtotORt

= M−1

OLtORt

×OLt
F

OLt |xt−1dt−1

×xt−1dt−1
K

xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1

×xt
F
ot|xt

)
×xtdt−1

F
ORt |xtdt−1

Multiplying together the last five factors, we obtain

M
OLtORtot

= F
OLt |xt−1dt−1

×xt−1dt−1
K

xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1

×xt
F
ot|xt

)
×xtdt−1

F
ORt |xtdt−1

Finally, (B.3) can now be written as

X̃
ORtotORt

= M−1

OLtORt

×OLt
M

OLtORtot
(B.5)

where the right hand side can now be estimated directly from data, without the need of the model parameters.

B.2 Computation of Tensor Õ
otot

Finally, we consider the tensor

Õ
otot

= F−1

ot|xt

×xt O
ot|xt

(B.6)

The conditional independence relationship can take the form

M
otot+1

= F
ot|xt

×xt F
ot+1|xt

×xt
K
xtxt

(B.7)

Expressing the inverse of F
ot|xt

F−1

ot|xt

= M−1

otot+1

×ot+1
F

ot+1|xt

×xt
K
xtxt

and substituting in (B.6), we get

Õ
otot

= M−1

otot+1

×ot+1
F

ot+1|xt

×xt
K
xt

×xt
O
ot|xt

= M−1

otot+1

×ot+1
M

otot+1

(B.8)
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Figure 2: Graphical representation of the HSMM spectral algorithm for inference in Algorithm 1. The cliques
and separators are now defined in terms of the tensors, which are defined with respect to the observed data.
The expressions in the parenthesis show the observable representation of the corresponding tensors.

Algorithm 1 Basic Spectral Algorithm for HSMM inference

Input: Training sequences: Si = {oi1, . . . , oiTi
}, i = 1, . . . , N .

Testing sequence: Stest = {otest1 , . . . , otestT }.
Output: p(Stest)

Training phase:
for all t do

Estimate D̃
ORt−1

ORt

, X̃
ORtotORt

and Õ
otot

from data {S1, . . . ,SN} using equations (B.2), (B.5) and (B.8).

end for

Testing phase:
p(Stest) = 1
for t = T down to t = 1 do

p(Stest) = p(Stest)× D̃
ORt−1

ORt

×ORt

(
X̃

ORtotORt

×ot Õ
otot

∣∣∣
ot=otestt

)

end for

C Spectral Algorithm

In this Section we present additional details for the derived spectral algorithm in its basic form as well as
the form, which improves the algorithm’s accuracy and reduces its complexity.

C.1 Basic Version

Using (B.2), (B.5) and (B.8) in (B.1) we can obtain the spectral algorithm to compute P
o1,...,oT

entirely using

the observed variables and Algorithm 1 shows its basic version. Figure 2 shows the graphical representation
of this algorithm in terms of the transformed junction tree.

The notation Õ
otot

∣∣∣
ot=otestt

means that based on the value of the tth symbol in testing sequence, we slice

the tensor Õ
otot

along the element otestt in the dimension ot. For example, if Õ
otot
∈ R10×10 and otestt = 3 then

Õ
otot

∣∣∣
ot=otestt

∈ R10×1, a third column in the original matrix.

Analyzing (B.2), (B.5) and (B.8), we see that the computational complexity of the training phase of
the algorithm is determined by the tensor inverses and multiplications. For example, if in (B.2) we denote

|OR| = |OL| = `, then M
OLt−1

ORt−1

∈ Rn`
o×n`

o and M
OLt−1

ORt

∈ Rn`
o×n`

o . The computational complexity of the
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multiplications and inversions would then be O(n3`
o ). Performing this computations for all t and assuming

that the length of training and testing sequences is T , would result in O
(
n3`
o T
)
. Additionally, there will be

a cost of O (`NT ) to estimate the sample moments M, which is based on counting the co-occurrences of
certain observable symbols. Here N is the number of training sequences.

In the testing phase of the algorithm, we perform a series of tensor multiplications with the cost of
O(n3`

o T ). Thus, the overall cost of Algorithm 1 is then O
(
(n3`
o + `N)T

)
.

In the following section we show how to improve the accuracy and efficiency of the basic spectral Algorithm
1. The idea is to estimate only three tensors X̃, D̃ and Õ in the batch, by averaging across all t.

C.2 Efficient Version

We show the details for computing the tensors D̃ in the batch form. The derivations for other tensors X̃ and
Õ can be computed in a similar manner. Recall from (B.2) the form of D̃

ORt−1
ORt

, and consider the following

structure:
(∑

t

M
OLt−1

ORt−1

)−1

×OL

(∑

t

M
OLt−1

ORt

)
(C.1)

where OL denotes a generic mode of the averaged tensor M, corresponding to OLt−1
for all t. Note that in

practice, instead of summation, we use averaging to avoid numerical overflow problems. It is equivalent to
the considered expression, since the term 1

T then cancels out.
Since

M
OLt−1

ORt−1

= F
OLt−1

|xt−1dt−2

×xt−1dt−2
F

ORt−1
|xt−1dt−2

×xt−1dt−2
K

xt−1dt−2

(C.2)

the first term inside brackets can be rewritten as:
∑

t

F
OLt−1

|xt−1dt−2

×xt−1dt−2 F
ORt−1

|xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

=
∑

t

F
ORt−1

|xt−1dt−2

×xt−1dt−2
F

OLt−1
xt−1dt−2

= F
OR2
|x2d1

×
(∑

t

F
OLt−1

xt−1dt−2

)
(C.3)

where in the second line we combined the two factors, i.e., F
OLt−1

xt−1dt−2

= F
OLt−1

|xt−1dt−2

×xt−1dt−2 K
xt−1dt−2xt−1dt−2

and in the third line we used the homogeneity property of HSMM, i.e., the fact that F
ORt−1

|xt−1dt−2

does not

depend on time stamp t, and extracted one of the common factors. Note that the term F
OLt−1

xt−1dt−2

, on the

other hand, does depend on t since the factor K
xt−1dt−2

changes as the time stamp t changes.

Similarly, since

M
OLt−1

ORt

= F
OLt−1

|xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

(C.4)

rewrite the second term in (C.1) as

∑

t

F
OLt−1

|xt−1dt−2

×xt−1dt−2
K

xt−1dt−2

×xt−1dt−2
D

dt−1|xt−1xt−1dt−2

×xt−1dt−1
F

ORt |xt−1dt−1

=
∑

t

F
OLt−1

xt−1dt−2

×xt−1dt−2
D

dt−1|xt−1xt−1dt−2

×xt−1dt−1
F

ORt |xt−1dt−1

=

(∑

t

F
OLt−1

xt−1dt−2

)
× D
d2|x2x2d1

×x2d2 F
OR3
|x2d2

(C.5)
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Algorithm 2 Efficient Spectral Algorithm for HSMM inference

Input: Training sequences: Si = {oi1, . . . , oiTi
}, i = 1, . . . , N .

Testing sequence: Stest = {otest1 , . . . , otestT }.
Output: p(Stest)

Training phase:
Estimate D̃, X̃ and Õ from data {S1, . . . ,SN} using equations (C.8), (C.9) and (C.10).

Testing phase:
p(Stest) = 1
for i = T down to i = 1 do
p(Stest) = p(Stest)× D̃×

(
X̃× Õ|o=otesti

)

end for

where we used the transformations similar as in (C.3). Now if we multiply the inverse of (C.3) with (C.5),
we get

F−1

OR2
|x2d1

×
(∑

t

F
OLt−1

xt−1dt−2

)−1

×
(∑

t

F
OLt−1

xt−1dt−2

)
× D
d2|x2x2d1

× F
OR3
|x2d2

(C.6)

= F−1

OR2
|x2d1

×x2d1 D
d2|x2x2d1

×x2d2 F
OR3
|x2d2

= D̃
OR2

OR3

= D̃
ORt−1

ORt

(C.7)

where in (C.6) we used the fact that the order in which tensors are multiplied is irrelevant and also the fact
that the terms in parenthesis are invertible. This is due to the fact that the set of observations OLt−1 for all
t was selected so as to make each of the summand invertible; the selection of OLt−1

was discussed in Section
6 in the main paper and we will provide mode details in this supplement in Section D. Moreover, in (C.7)
we used the definition of D̃

ORt−1
ORt

D̃
ORt−1

ORt

= F−1

ORt−1
|xt−1dt−2

× D
dt−1|xt−1dt−2

× F
ORt |xt−1dt−1

together with the homogeneity property of HSMM.
Therefore, we can conclude that the batch form of the tensor takes the form:

D̃ =

(∑

t

M
OLt−1

ORt−1

)−1

×OL

(∑

t

M
OLt−1

ORt

)
. (C.8)

Similar derivations can be carried out to obtain the rest of the tensors in the batch form:

X̃ =

(∑

t

M
OLtORt

)−1

×OL

(∑

t

M
OLtORtot

)
(C.9)

Õ =

(∑

t

M
otot+1

)−1

×o
(∑

t

M
otot+1

)
. (C.10)

where in the last expression the mode o corresponds to the mode ott+1 after averaging of tensor M
otot+1

for

all t.
Analyzing (C.8), (C.9) and (C.10), we see that the computational complexity of the training phase of the

algorithm is O
(
(n2`
o + `N)T

)
, mainly determined by the tensor additions and the estimation of the sample

moments M. The number of inverses and multiplications is now fixed and independent of sequence length
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T . The computational complexity of the testing phase is O(n3`
o T ), which is the same as for Algorithm 1.

Thus, the overall cost of Algorithm 2 is O
(
(n3`
o + `N)T

)
.

Note that although not proved, we observed in practice that such a batch tensor computation significantly
improves the accuracy of the resulting spectral algorithm. In part, this is due to the fact that we now use
more data to estimate the tensors as compared to the original form (B.1). The estimates obtained in this
form have lower variance, which in turn ensures that the inverses we compute in (C.8), (C.9) and (C.10) are
more stable and accurate.

D Proof of Theorem 5.1

In this Section we prove the main result of the main paper, i.e., Theorem 5.1., stated below for references:

Theorem D.1 Let the number of observations be |ORt−1 | = ` and define the set of indices
S =

{
max

[
t, t+(nd−1)− (nix−1)

]
| i = 0, . . . , `− 1

}
, such that ORt−1

= {ok|k ∈ S} then the rank of
tensor F

ORxt−1
|xt−1dt−2

is min[n`x, nxnd].

In the following, we will study the rank structure of tensor F
ORt+1

|xtdt
instead. This specific choice was

only done to ensure the compactness in our notations, however the HSMM homogeneity property enables us
to transfer this result for tensors for any t.

Also note that

F
ORt+1

|xtdt
= F

ORt−1
|xt−2dt−2

= F
ORt−1

|xt−1dt−2

×xt−1dt−2
X

xt−1dt−2|xt−2dt−2

where the first equality is due to the homogeneity property of the model and in the second equality we
embedded the HSMM transition matrix into tensor X

xt−1dt−2|xt−2dt−2

with mode dt−2 duplicated. It can be

shown that the matricized tensor X
xt−1dt−2|xt−1dt−2

∈ Rnxnd×nxnd has rank nxnd. Therefore, the rank structure

of F
ORt+1

|xtdt
will determine the rank structure of F

ORt−1
|xt−1dt−2

, so they are equivalent in this case.

For references, we also repeat below the assumptions we made in the main paper about HSMM parame-
ters:

Assumptions D.2
1. X is full rank and has non-zero probability of visiting any state from any other state.
2. D has a non-zero probability of any duration in any state.
3. O is full column rank and, as a consequence, nx ≤ no.

D.1 Rank Structure of Tensor F
ORt+1

|xtdt

Define by XRt+1
= {xt+2, xt+3, . . .}, the sequence of hidden states corresponding to ORt+1

= {ot+2, ot+3, . . .}.
Then using conditional independence property of HSMM in Figure 3, namely, that the variables ORt+1 and
xtdt are independent given XRt+1 , we can write:

F
ORt+1

|xtdt
= Q

ORt+1
|XRt+1

×XRt+1
T

XRt+1
|xtdt

(D.1)

for some tensors Q and T, representing the appropriate probability distributions.
Denoting ` = |ORt+1 | = |XRt+1 |, it can be verified, that the matrisized form of Q in (D.1) can be written

as Q = ⊗`O ∈ Rn`
o×n`

x , a Kronecker product of the observation matrix O with itself ` times. According to
statement 3 in Assumptions D.2, rank(O) = nx and nx ≤ no, and using the rank property of the Kronecker
product, we infer that rank(Q) = n`x.

Combining the above conclusion with the fact that the matrisized form of the other two tensors in (D.1)

is F ∈ Rn`
o×nxnd and T ∈ Rn`

x×nxnd , to ensure invertibility of F, we need to select a set of variables XRt+1
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xt

ot

dtdt−1

xt−1

ot−1ot−2

xt−2

dt−2

Figure 3: Hidden semi-Markov Model (HSMM).

so that rank
(

T
XRt+1

|xtdt

)
= nxnd with the condition that n`x ≥ nxnd. Thus, the problem of the analysis of

the rank structure of tensor F
ORt+1

|xtdt
was translated to the problem of rank structure of matrix T

XRt+1
|xtdt

.

In what follows, we assume that XRt+1
= {xt+2, . . . , xt+`} are sequential and so we would be interested in

determining ` which makes rank
(

T
XRt+1

|xtdt

)
= nxnd. Later, the sequential assumption will be removed and

we show how to select such variables in a more efficient, non-sequential way.

D.1.1 Computation of Factor T

In order to study the rank structure of T
XRt+1

|xtdt
we will have to understand the mechanism how this matrix

is constructed and how the rank changes as the size of XRt+1 increases. We start by considering the following
conditional independence relationships from the model in Figure 3:

p(xt+3, xt+2|xt+1, dt+1) =
∑

dt+2

p(xt+3|xt+2, dt+2) p(dt+2|xt+2, dt+1)p(xt+2|xt+1, dt+1) (D.2)

p(xt+3, xt+2, xt+1|xt, dt) =
∑

dt+1

p(xt+3, xt+2|xt+1, dt+1) p(dt+1|xt+1, dt)p(xt+1|xt, dt) . (D.3)

Using the model’s homogeneity property, we see that the quantity underlined in (D.2) is the same as
the one in (D.3). Moreover, equation (D.2) can then be thought of as transforming p(xt+1|xt, dt) into
p(xt+2, xt+1|xt, dt), while the expression in (D.3) is, in effect, transforms p(xt+2, xt+1|xt, dt) into
p(xt+3, xt+2, xt+1|xt, dt). Thus (D.2) and (D.3) encode the following chain of transformations:

p(xt+1|xt, dt)→ p(xt+2, xt+1|xt, dt)→ p(xt+3, xt+2, xt+1|xt, dt).

Based on the above considerations, we can rewrite (D.2) and (D.3) in the tensor form as follows:

T
xt+3,xt+2|xt+1,dt+1

= T
xt+3,xt+2|xt+2,dt+2

×xt+2dt+2
V

xt+2,dt+2|xt+1dt+1

(D.4)

T
xt+3,xt+2,xt+1|xt,dt

= T
xt+3,xt+2,xt+1|xt+1,dt+1

×xt+1dd+1
V

xt+1,dt+1|xtdt
, (D.5)

where V
xt+2,dt+2|xt+1,dt+1

= V
xt+1,dt+1|xt,dt

= D
xt+1,dt+1|xt+1,dt

×xt+1dt X
xt+1,dt|xt,dt

. The homogeneity property

allows us to rewrite the above as

T
xt+2,xt+1|xt,dt

= T
xt+1,xt|xt,dt

×V (D.6)

T
xt+3,xt+2,xt+1,xt+1|xt,dt

= T
xt+2,xt+1|xt,dt

×V. (D.7)
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Our next step is to represent the above tensor equations in the matrix form. First, consider tensor V, its
matricized form can be written as:

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

(D.8)

where D
xt+1,dt+1|xt+1,dt

∈ Rnxnd×nxnd and X
xt+1,dt|xt,dt

∈ Rnxnd×nxnd . Next, consider the equations (D.6) and

(D.7), its matrix version is of the form:

T
xt+2,xt+1|xt,dt

= T
xt+1,xt|xt,dt

V (D.9)

T
xt+3,xt+2,xt+1|xt,dt

= T
xt+2,xt+1,xt|xt,dt

V, (D.10)

here T
xt+1,xt|xt,dt

∈ Rn2
x×nxnd , T

xt+2,xt+1|xt,dt
∈ Rn2

x×nxnd , and similarly T
xt+2,xt+1,xt|xt,dt

∈ Rn3
x×nxnd , and

matrix T
xt+3,xt+2,xt|xt,dt

∈ Rn3
x×nxnd .

Summarizing the above derivations, we can describe the following algorithmic approach for analyzing
T

XRt+1
|xtdt

as XRt+1 increases. We begin with T
xt+1|xt,dt

= [X I · · · I] ∈ Rnx×nxnd , where the first block

X ∈ Rnx×nx corresponds to dt = 1, and the subsequent (nd − 1) blocks of I ∈ Rnx×nx correspond to dt > 1
for which xt+1 = xt. We then use (D.9) to get T

xt+2,xt+1|xt,dt
. However, notice that in (D.9) the matrix

T
xt+1,xt|xt,dt

has a duplicated mode xt, therefore, we need to restructure T
xt+1|xt,dt

, which can be accomplished

with:

T′
xt+1,xt|xt,dt

= T
xt+1|xt,dt

� E,

where E = [I · · · I] ∈ Rnx×nxnd and � denotes a Khatri-Rao product (row-wise Kronecker product)1.
Then, we use (D.10) to transform T

xt+2,xt+1|xt,dt
into T

xt+3,xt+2,xt+1|xt,dt
where, again a preliminary step is to

restructure the matrix as follows:

T′
xt+2,xt+1,xt|xt,dt

= T
xt+2,xt+1|xt,dt

� E.

Algorithm 3 summarizes the above constructions for a general case.
In the next section, we will provide analysis of the Algorithm 3 and specifically study the rank structure of
matrix T. To understand the analysis, it is important to know how the structure of matrix T evolves across
iterations. For this, we present in Figure 4 a schematic description of a few steps of the algorithm.

D.1.2 Analysis of Algorithm 3

In this Section our goal is to analyze the Algorithm 3 and study how the rank of matrix T
XRt+1

|xtdt
evolves

across iterations. First, we state the main result of this analysis:

Theorem D.3 The rank of the output matrix T
XRt+1

|xtdt
in Algorithm 3 is min(`nx, nxnd).

Applying now Theorem D.3 to equation (D.1) in matrix form

F
ORt+1

|xtdt
= Q

ORt+1
|XRt+1

× T
XRt+1

|xtdt

where rank(Q) = n`x we can now conclude the following result:

1 Let P =


p1

p2

...
pn

 ∈ Rm×n and Q ∈ Rk×n then P�Q =


p1 ⊗Q
p2 ⊗Q

...
pn ⊗Q

 ∈ Rmk×n, where ⊗ is a Kronecker product.
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Algorithm 3 Computation of T
XRt+1

|xtdt

Input: p(dt|xt, dt−1) and p(xt|xt−1, dt−1) - duration and transition distributions, ` - number of steps
Initialization:

p(xt+1|xt, dt)→ T
xt+1|xt,dt

p(dt+1|xt+1, dt)→ D
xt+1,dt+1|xt+1,dt

p(xt+1|xt, dt)→ X
xt+1,dt|xt,dt

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

, E = [I · · · I]

for i = 1 to `− 1 do

T′
xt+i, ... ,xt+1,xt|xt,dt

= T
xt+i, ... ,xt+1|xt,dt

� E (D.11)

T
xt+i+1, ... ,xt+2,xt+1|xt,dt

= T′
xt+i, ... ,xt+1,xt|xt,dt

V (D.12)

end for

Corollary D.4 To achieve the full column rank for F
ORt+1

|xtdt
∈ Rn`

o×nxnd , i.e. to ensure that the rank of

tensor F
ORt+1

|xtdt
is nxnd, the number of observations ` in ORt+1

= {ot+2, ot+3, . . . , ot+`} must be equal to

the maximum state persistence i.e., ` = nd.

Before we prove Theorem D.3, we will establish certain auxiliary results.

Lemma D.5 Let A ∈ Rm×n be a matrix with no all-zero columns then rank (I�A) = rank (A� I) = n,
where � denotes Khatri-Rao product and I ∈ Rn×n.

Proof Let K = (I�A) ∈ Rmn×n. By definition of Khatri-Rao product, K(:, j) = ej ⊗ A(:, j), for j =
1, . . . , n, which consists of zeros, except for rows (j − 1)m + 1, . . . , (j − 1)m + m, containing the column
A(:, j). Here ⊗ denotes Kronecker product and ej is everywehre zero except for position j which is 1. As
long as there is no all-zero columns in A, each column of K is independent of each other and therefore the
rank is n. Moreover, since the matrix A�I is a row-permuted version of A�I, their ranks are the same.

Lemma D.6 Define a block-row matrix M = [A1 A2 · · · Ak] ∈ Rm×kn, where each Ai ∈ Rm×n. Define
by rj , j = 1, . . . , n the rank of matrix [A1(:, j) · · · Ak(:, j)] composed of jth columns of A’s, and let E =
[I I · · · I] ∈ Rn×kn, where I ∈ Rn×n. Then the rank of matrix W = M � E ∈ Rmn×kn, obtained using a
Khatri-Rao product, is min(mn,

∑
j rj).

Proof First note that M � E and E �M are row permuted version of each other, so they have the same
rank. Therefore, consider W′ = E �M = [I�A1 · · · I�Ak]. Also, note that ej ⊗ [A1(:, j) · · · Ak(:, j)],
j = 1, . . . , n is a matrix which consists of zeros except for rows (j − 1)m + 1, . . . , (j − 1)m + m where it
contains the columns [A1(:, j) · · · Ak(:, j)]. The rank of these columns is rj and all other columns in W are
independent of them due to the structure of the Khatri-Rao product. Therefore, each set of such columns
adds rj to the total rank. Since the overall rank of W cannot exceed either the number of rows or columns,
we conclude that rank(W) = min(mn,

∑
j rj).

Lemma D.7 Let V = {v1, . . . ,vn} be a set of independent vectors. Define u =
∑n
i=1 civi, where coefficients

ci 6= 0, i = 1, . . . , n. Define U to be a strict subset of V , i.e., U ⊂ V , then a set of vectors u∪U is independent.

10
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Figure 4: Schematic representation of Algorithm 3. This example illustrates the HSMM with nx = 5 and
nd = 10. The non-zero matrix elements are displayed as dots.

Proof Define {1, . . . , n} = α∪ ᾱ, where α denotes a subset of indices for vectors corresponding to U . Then
we can write u =

∑
i:i∈α civi +

∑
j:j∈ᾱ cjvj .

Assuming the opposite, i.e., u ∪ U are dependent, we can write k0u +
∑
i:i∈α kivi = 0 where k0 6= 0 and

some of ki, i ∈ α are also must be non-zero. Substituting the definition of u and rearranging the terms, we
get:

k0

∑

i:i∈α
(ci + ki)vi + k0

∑

j:j∈ᾱ
cjvj = 0

Since cj 6= 0, j ∈ ᾱ, the above equation claims the linear dependence of vectors in V , which is a contradiction
of our assumption and so u ∪ U are independent.

We now ready to analyze Algorithm 3. It can be verified that (D.8) is of the form:

V =


Ψ

I
. . .

I
0 · · · 0


 ∈ Rnxnd × nxnd where Ψ =




diag [D(1, :)]X
diag [D(2, :)]X

...
diag [D(nd, :)]X


 ∈ Rnxnd × nx (D.13)

where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write
Ψ = (D � I)X . Observe that the rank of V is nxnd because the nx(nd − 1) × nx(nd − 1) block diagonal
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matrix delineated in (D.13) and the last nx × nx block matrix diag [D(nd, :)]X in Ψ together comprising
nxnd independent columns of V. Note that diag [D(nd, :)]X has rank nx because X is full rank and D(nd, :)
is non-zero, which follows from statements 1 and 2 in Assumptions D.2). As a side note observe that
the requirement to have D(nd, :) non-zero implies that there is a non-zero probability of maximum state
persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (D.11) and (D.12)
as

T
xt+i, ... ,xt+1|xt,dt

= [A
(i)
1 · · · A(i)

nd
]

T′
xt+i, ... ,xt+1,xt|xt,dt

= [B
(i)
1 · · · B(i)

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [C
(i)
1 · · · C(i)

nd
].

Moreover, utilizing the structure of matrix V from (D.13), the operations involved in step (D.12) are as
follows:

[
C

(i)
1 C

(i)
2 C

(i)
3 · · · C(i)

nd

]
=
[
[B

(i)
1 · · · B(i)

nd
]Ψ B

(i)
1 B

(i)
2 · · · B

(i)
nd−1

]
. (D.14)

With the above information we can now present the proof of Theorem D.3:

Proof At the start of the algorithm, we have T
xt+1|xt,dt

= [X I · · · I] = [A
(1)
1 · · ·A

(1)
nd ], which has rank nx.

The rank of matrix
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

for l = 1, . . . , nx is rl = 2 since among all the columns only

two of them are independent. Therefore, according to Lemma D.6, the result of operations in (D.11), has

rank
∑
l rl = 2nx. Moreover, we note that since [B

(1)
1 B

(1)
2 · · · B

(1)
nd ] = [X � I I� I · · · I� I], it can

be seen that its 2nx independent vectors can be formed by the columns [B
(1)
1 B

(1)
2 ], so that the rank of[

B
(1)
1 (:, l) · · ·B(1)

nd (:, l)
]

for l = 1, . . . , nx is 2.

Next, since the rank of V is nxnd, the operations in (D.12) produce matrix [C
(1)
1 C

(1)
2 · · · C(1)

nd ] with

the rank still being 2nx. Moreover, the columns of C
(1)
1 are linearly dependent on the rest of the columns,

[C
(1)
2 · · · C(1)

nd ], due to (D.14). However, the rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

is now rl = 3 for l = 1, . . . , nx .

To understand this, note that

[B
(1)
1 B

(1)
2 · · · B1

nd
] = [X�I I�I · · · I�I]

[C
(1)
1 C

(1)
2 C

(1)
3 · · · C(1)

nd
] = [C

(1)
1 X�I I�I · · · I�I],

where, according to (D.14), C
(1)
1 = [B

(1)
1 · · ·B

(1)
nd ]Ψ. As we established before, the rank of

[
C

(1)
2 (:, l) · · ·C(1)

nd (:, l)
]

=
[
B

(1)
1 (:, l) · · ·B(1)

nd−1(:, l)
]

is rl = 2. Moreover, it can also be checked that C
(1)
1 (:, l) is independent of

[
C

(1)
2 (:, l) · · ·C(1)

nd (:, l)
]

due to Lemma D.7. Clearly, then the cumulative rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

is 3 for l = 1, . . . , nx.

To generalize, if at the iteration i the rank of
[
A

(i)
1 · · ·A

(i)
nd

]
is inx while the rank of

[
A

(i)
1 (:, l) · · ·A(i)

nd(:, l)
]

is (i + 1), then the operations in step (D.11) produce
[
B

(i)
1 · · ·B

(i)
nd

]
having rank (i + 1)nx due to Lemma

D.6. The step in (D.12) keeps the rank of
[
C

(i)
1 · · ·C

(i)
nd

]
at (i + 1)nx due to the full rank structure of V.

At the same time, this step increases the rank of
[
C

(i)
1 (:, l) · · ·C(i)

nd(:, l)
]

to (i + 2) due to Lemma D.7, i.e.,

independence of C
(i)
1 (:, l) from

[
C

(i)
2 (:, l) · · ·C(i)

nd(:, l)
]

with the latter having the rank (i+ 1).

Therefore, each iteration increases the rank of matrix T by nx and so after 2 ≤ ` ≤ nd steps the rank of
the resulting matrix T

XRt+1
|xtdt

is `nx.
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Algorithm 4 Efficient computation of T
XRt+1

|xtdt

Input: p(dt|xt, dt−1) and p(xt|xt−1, dt−1) - duration and transition distributions, ` - number of steps
Initialization:

p(xt+1|xt, dt)→ T
xt+1|xt,dt

p(dt+1|xt+1, dt)→ D
xt+1,dt+1|xt+1,dt

p(xt+1|xt, dt)→ X
xt+1,dt|xt,dt

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

, E = [I · · · I]

c = 1
for i = 1 to `− 1 do

T = T V (D.15)

if i == (nx)c − 1 or i == `− 1 do

T = T� E (D.16)

c = c+ 1
end if

end for

Note that if ` = 1 then the Algorithm 3 is not executed and returns the trivial T
xt+1|xt,dt

with rank nx.

On the other hand, if ` > nd then the rank of T
XRt+1

|xtdt
is nxnd since this is the number of columns in that

matrix and so is the maximum achievable rank.

D.2 Efficient Computation of Factor T

In Corollary D.4 we established that the required number of observations in ORt+1 = {ot+2, ot+3, . . . , ot+`}
is ` = nd. Therefore, the sizes of the estimated quantities D̃ ∈ Rn

nd
o ×nnd

o and X̃ ∈ Rn
nd
o ×nnd

o ×no in
the Algorithm 2 will have exponential dependency on nd. When maximum state persistence is large, the
estimation of such quantity becomes impractical. Fortunately, we can modify Algorithm 3 to significantly
reduce the number of observations. The idea is to apply the step (D.12) multiple times in-between the
applications of step (D.11). Recall that in the previous construction we established that we needed ` = nd
consecutive observations, e.g., ORt+1

= {ot+2, . . . , ot+`}. In contrast, in the proposed approach, every time
we add an observation, say ot+τ , we skip certain number δ of time steps before adding another observation
ot+τ+δ, so that the observations are non-consecutive. As we illustrate next, the span of these non-consecutive
observations is still nd but the number of them is only logarithmic in nd. The proposed approach still achieves
the full rank structure of F

ORt+1
|xtdt

but with smaller number of data points. The Algorithm 4, which is a

simple modification of the Algorithm 3, summarizes the above procedure.
The following result establishes the rank structure of the matrix T

XRt+1
|xtdt

in the output of the Algorithm 4.

Theorem D.8 The rank of the output matrix T
XRt+1

|xtdt
in Algorithm 4 is min(n`x, nxnd).

Note that based on the above theorem, Algorithm 4 increases the rank at every step exponentially rather than
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linearly. In order for T
XRt+1

|xtdt
to achieve the rank nxnd we will now require ` = d1 + lognd

lognx
e observations,

since we need to ensure n`x = nxnd. Observe that the span of the selected observations is still nd, while
the number of the observations is only logarithmic in nd. The following Corollary summarizes the above
conclusions.

Corollary D.9 To achieve the full column rank for F
ORt+1

|xtdt
∈ Rn`

o×nxnd , i.e. to ensure that the rank of

tensor F
ORt+1

|xtdt
is nxnd, the number of observations ` in ORt+1

must be equal to ` = d1 + lognd

lognx
e, since we

need to ensure n`x = nxnd.

Before we prove Theorem D.8, it is instructive to visualize the progress of Algorithm 4. Figure 5 shows a
schematic description of a few steps of the algorithm.
We are now ready to present the proof of Theorem D.8.

Proof For the proof, we refer back to Algorithm 3 and the proof of Theorem D.3. Recall, that at it-

eration i = 1, the result of step (D.11) is a matrix [B
(1)
1 · · ·B

(1)
nd ] ∈ Rn2

x×nxnd , whose rank is 2nx, since[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

= [X I · · · I] ∈ Rnx×nxnd for l = 1, . . . , nx had two independent columns. Then, the

transformations in step (D.12) produced
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

for l = 1, . . . , nx with rank 3nx.

Note that if nx > 2 then
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

potentially can have a rank up to nx, while in Algorithm

3 we only have it equal to 2. It turns out that if we apply step (D.12) multiple times and use Lemma D.7,

we can increase the rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

for l = 1, . . . , nx to nx.

Specifically, consider the step (D.15). Then at iteration i = 1 we have [A
(1)
1 · · ·A

(1)
nd ] = [B

(1)
1 · · ·B

(1)
nd ] and

for l = 1, . . . , nx the two independent columns are
[
B

(1)
1 (:, l) B

(1)
2 (:, l)

]
= [X (:, l) I(:, l)]. The result of step

(D.15) gives us then three independent columns
[
C

(1)
1 (:, l) C

(1)
2 (:, l) C

(1)
3 (:, l)

]
=
[
C

(1)
1 (:, l) X (:, l) I(:, l)

]

where C
(1)
1 = [X I · · · I]Ψ. The independence follows from Lemma D.7. The repeated application of step

(D.15) one more time gives four independent columns
[
C

(2)
1 (:, l) C

(2)
2 (:, l) C

(2)
3 (:, l) C

(2)
4 (:, l)

]
=
[
C

(2)
1 (:, l) C

(1)
1 (:, l) X (:, l) I(:, l)

]

where C
(2)
1 = [C

(1)
1 · · ·C

(1)
nd ]Ψ. Observe that since the number of rows is nx, we can increase the rank at most

up to nx. Therefore, if in the beginning we had two independent columns and we want to get nx independent

columns, we will need to apply the step (D.15) nx − 2 times, so we will have [C
(nx−2)
1 (:, l) · · · C(nx−2)

nd (:, l)]
with rank nx.

If we now apply step (D.16) it will give us [A
(1)
1 · · · A(1)

nd ] ∈ Rn2
x×nxnd with rank n2

x due to Lemma D.6.
Continuing in this manner, we can again repeatedly apply the step (D.15) to create a matrix with a rank
at most n2

x, since there are n2
x rows and assuming that nxnd ≥ n2

x. The number of times we need to apply
(D.15) is now n2

x − nx since we need to go from nx to n2
x independent columns.

In general, the step (D.15) needs to be applied ncx − nc−1
x , in order to obtain ncx independent columns.

The application of step (D.16) then creates T with rank nc+1
x . Note, that since T has nxnd columns, the

maximum achievable rank is nxnd.

Observe that the above proof also provided the method for selecting the non-sequential observations
XRt+1 . Specifically, since the set of observations XRt+1 = {ot+2, . . .} must start from observation ot+2 and
|XRt+1

| = `, we denote s = t + 2. Then, ith added observation is os+(nd−1)−(ni
x−1) for i = 0, . . . , ` − 2 and

the `th observation is os = ot+2. For tensor F
ORt+1

|xtdt
to achieve rank nxnd we need to add ` = d1 + lognd

lognx
e

observations.
Theorem D.8 together with Corollary D.9 now proves the main result of the paper (Theorem 5.1).
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E Initial and Final Parts of HSMM

In this Section we present the derivations for the initial and final steps of HSMM, which were omitted from
the main text. Specifically, this amounts to computing the factor X for two parts of the model, corresponding
to Xroot and XT in Figs. 6 and 7. The derivations for all other parts of HSMM were presented in the main
text and this supplement.

To begin, recall the expression for the joint likelihood of the observed sequence:

P
o1,...,oT

=
∏

t

D
dt−1|xt−1dt−2

×xt−1dt−1

(
X

xt|xt−1dt−1

×xt
O
ot|xt

)

and rewrite the above expression by keeping only the initial and final factors:

P
o1,...,oT

=

(
O

o1|x1

×x1

(
X

x2x2|x1d1
×x2

O
o2|x2

))
×x2d1 D

d2|x2x2d1
× · · ·

· · · × D
dT−1|xT−1xT−1dT−2

×xT−1dT−1

(
X

xT |xT−1dT−1

×xT
O

oT |xT

)
(E.1)

Introduce the identity tensors into (E.1), regroup the terms and extract the factors X:

X̃
ωx1ωx2ωx2d1

= F
ωx1 |x1

×x1

(
X

x2x2|x1d1
×x2

F
ωx2 |x2

)
×x2d1 F

ωx2d1
|x2d1

(E.2)

X̃
ωxT−1dT−1

ωxT

= F−1

ωxT−1dT−1
|xT−1dT−1

×xT−1dT−1

(
X

xT |xT−1dT−1

×xT
F

ωxT
|xT

)
(E.3)

Defining the observable sets ωx1
= o1, ωx2

= o2 and ωx2d1 = OR3
we can rewrite (E.2) as follows:

X̃
o1o2OR3

= F
o1|x1

×x1

(
X

x2x2|x1d1
×x2

F
o2|x2

)
×x2d1 F

OR3
|x2d1

(E.4)

Note that since all the factors participating in (E.4) are valid probability distributions, the resulting
factor, i.e., X̃

o1o2OR3

is also a valid probability distribution, so it can be estimated directly from data. This

is in contrast to the derivations we made for other parts of the model, where we had to perform additional
transformations such as, for example in (B.2), in order to bring to the form, which could be estimated from
the data samples.

In order to estimate (E.3), we compare it to the similar factor we considered in the main paper:

X̃
ωxt−1dt−1

ωxtωxtdt−1

= F−1

ωxt−1dt−1
|xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1xt−1dt−1

×xt
F

ωxt |xt

)
×xtdt−1

F
ωxtdt−1

|xtdt−1

(E.5)

Observe that the last factor F
ωxtdt−1

|xtdt−1

in (E.5) is a conditional probability distribution, which has the

following marginalization property

F
ωxtdt−1

|xtdt−1

×ωxtdt−1
1

ωxtdt−1

= 1
xtdt−1

(E.6)

where 1 is the tensor, which has all elements equal to 1. The above can also be written in the scalar
notations,

∑
ωxtdt−1

p(ωxtdt−1
|xtdt−1) = 1 for each value of xtdt−1. Therefore, if we apply (E.6) to (E.5), we

get X̃
ωxt−1dt−1

ωxt

, which is the time-shifted version of X̃
ωxT−1dT−1

ωxT

. Therefore, to compute (E.3), we estimate

the tensor in (B.5), i.e.,

X̃
ORtotORt

= M−1

OLtORt

×OLt
M

OLtORtot

15



and marginalize out the right set of modes, corresponding to ORt . Alternatively, we can use the batch
estimate

X̃ =

(∑

t

M
OLtORt

)−1

×OL

(∑

t

M
OLtORtot

)

and similarly perform the marginalization.
This concludes our derivations.
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
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V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
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V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.
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statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.

16

0 10 20 30 40 50

0

5

10

15

20

25

nz = 130
0 10 20 30 40 50

0

5

10

15

20

25

nz = 250

0 10 20 30 40 50

0

5

10

15

20

25

nz = 250

T
xt+3|xt,dt

0 10 20 30 40 50

0

5

10

15

20

25

nz = 370

0 10 20 30 40 50

0

5

10

15

20

25

nz = 370
0 10 20 30 40 50

0

5

10

15

20

25

nz = 490

0 10 20 30 40 50

0

5

10

15

20

25

nz = 490
0 10 20 30 40 50

0

5

10

15

20

25

nz = 610

0 10 20 30 40 50

0

5

10

15

20

25

nz = 610
0 10 20 30 40 50

0

5

10

15

20

25

nz = 730

0 10 20 30 40 50

0

5

10

15

20

25

nz = 730

10 20 30 40 50

0

20

40

60

80

100

120

nz = 730

0 10 20 30 40 50

0

5

nz = 50

T
xt+4|xt,dt

T
xt+4|xt,dt

T
xt+4,xt|xt,dt

T
xt+4,xt|xt,dt

T
xt+5,xt+1|xt,dt

T
xt+5,xt+1|xt,dt

T
xt+6,xt+2|xt,dt

T
xt+6,xt+2|xt,dt

T
xt+7,xt+3|xt,dt

T
xt+7,xt+3|xt,dt

T
xt+8,xt+4|xt,dt

T
xt+8,xt+4|xt,dt

T
xt+9,xt+5|xt,dt

T
xt+9,xt+5|xt,dt

T
xt+9,xt+5,xt|xt,dt

eq. (D.15)

eq. (D.15)

eq. (D.15)

eq. (D.16)

eq. (D.15)

eq. (D.15)

eq. (D.15)

eq. (D.15)

eq. (D.15)

eq. (D.16)

Figure 5: Schematic representation of Algorithm 4. This example illustrates the HSMM with nx = 5 and
nd = 10. The non-zero matrix elements are displayed as dots.
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Figure 6: Part of HSMM corresponding to the initial time stamps and the related part of junction tree.

oToT−1oT−2

xTxT−1xT−2

dT−1dT−2

xT oT

dT−1xT−1xT

xT

dT−2dT−1xT−1dT−2xT−2xT−1

xT−1

xT−1oT−1

dT−1xT−1dT−2xT−1

oToT−1oT−2

xTxT−1xT−2

dT−1dT−2

xT oT

dT−1xT−1xT

xT

dT−2dT−1xT−1dT−2xT−2xT−1

xT−1

xT−1oT−1

dT−1xT−1dT−2xT−1

XT−1 XT

OTOT−1

DT

Figure 7: Part of HSMM corresponding to the final time stamps and the related part of junction tree.
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