
Supplementary Material

E�cient Training of Structured SVMs via Soft Constraints

A Dual of Soft Problem

In this section we show that the problems Eq. (5) and Eq. (6) are Lagrange duals. We start from a formulation
equivalent to Eq. (6):

min
w,⇠,�

�

2
kwk2 + ⇢

2

X

m

k�(m)k2 +
X

m

X

↵

⇠(m)

↵

s.t. ⇠
(m)

i � 1

M

✓
(m)

i (yi;w) +
X

c:i2c

�
(m)

ci (yi)

!
for all m, i, yi

⇠(m)

c � 1

M

✓(m)

c (yc;w)�
X

i:i2c

�
(m)

ci (yi)

!
for all m, c, yc

The Lagrangian is:

L(w, ⇠, �, µ � 0) =
�

2
kwk2 + ⇢

2

X

m

k�(m)k2 +
X

m

X

↵

⇠(m)

↵

�
X

m

X

i

X

yi

µ
(m)

i (yi)

⇠
(m)

i � 1

M
✓
(m)

i (yi;w)�
1

M

X

c:i2c

�
(m)

ci (yi)

!

�
X

m

X

c

X

yc

µ(m)

c (yc)

⇠(m)

c � 1

M
✓(m)

c (yc;w) +
1

M

X

i:i2c

�
(m)

ci (yi)

!

The optimality conditions entail:

w =
1

�M

X

m

X

↵

X

y↵

µ(m)

↵ (y↵)
⇣
�↵(x

(m), y(m)

↵)� �↵(x
(m), y↵)

⌘
= µ

X

y↵

µ↵(y↵) = 1 for all m,↵ = {c, i}

�
(m)

ci (yi) =
1

⇢M

⇣
µ(m)

c (yi)� µ
(m)

i (yi)
⌘

for all m, c, i 2 c, yi) � = Aµ

Using those in the Lagrangian yields the dual problem of Eq. (5).

B Proof of Theorem 4.1

In this section we prove Theorem 4.1, which is restated here for convenience.

Theorem 4.1 Let g⇤⇢ be the optimal value of G⇢, and let g⇤ be the optimal value of G. Then g⇤⇢ �
⇢
2

h  g⇤  g⇤⇢,
where h = M(8Y

max

q(BR+ L))2.

Proof. Denote by (w⇤, �⇤) an optimal solution to g, and by (w⇤
⇢, �

⇤
⇢) an optimal solution to g⇢.

Ofer Meshi, Nathan Srebro, Tamir Hazan

For the first direction, we have:

g⇤ = min
w,�

g(w, �)

 g(w⇤
⇢, �

⇤
⇢)

 g(w⇤
⇢, �

⇤
⇢) +

⇢

2
k�⇤⇢k2

= g⇤⇢

Using the bound k�⇤k2  h, we can prove the other direction:

g⇤⇢ = min
w,�

⇣
g(w, �) +

⇢

2
k�k2

⌘

 g(w⇤, �⇤) +
⇢

2
k�⇤k2

= g⇤ +
⇢

2
k�⇤k2

 g⇤ +
⇢

2
h

To conclude the proof, we next show that k�⇤k2  h by bounding k�(m)

⇤k  8Y
max

q(BR+ L).

B.1 Bounding k�k2

In this section we prove the bound11 k�⇤k2  h(✓), where h(✓) = (4Y
max

qk✓k1)2. Since k✓k1  2BR + L,
this concludes the proof of Theorem 4.1. The proof here is the zero-temperature limit of the proof in Meshi et
al. (2012) [see Lemma 1.2 in the appendix therein].

We actually prove this bound for any � such that �(�)  �(0) ⌘ (✓), where �(�) =P
i maxyi

�
✓i(yi;w) +

P
c:i2c �ci(yi)

�
+
P

c maxyc

�
✓c(yc;w)�

P
i:i2c �ci(yi)

�
. This obviously holds at the op-

timum �⇤. Our goal is to bound k�k2 under this constraint. Since shifting �ci(·) by a constant does not change
the value of the solution, but changes the norm arbitrarily, we need to add some constraints.
In particular, we require that: X

yi

�ci(yi) = 0 for all c, i

We will actually find:

max
�
k�k

1

s.t. �(�)  (✓), and
X

yi

�ci(yi) = 0 8c, i (7)

Since k�k
2

 k�k
1

this implies a bound on k�k2
2

.

We begin by formulating an equivalent optimization problem to Eq. (7):

max
�,¯�

1

2

X

c

X

i:i2c

X

yi

uci(yi)�ci(yi) +
1

2

X

c

X

i:i2c

X

yi

uci(yi)�̄ci(yi)

s.t. �(�, �̄)  (✓)
X

yi

�̄ci(yi) = 0 8c, i

� = �̄ (8)

maximizing externally over uci(yi) 2 {�1,+1}, and where:

�(�, �̄) =
X

c

max
yc

✓c(yc)�

X

i:i2c

�ci(yi)

!
+
X

i

max
yi

✓i(yi) +

X

c:i2c

�̄ci(yi)

!

11To simplify notation we drop the sample index m and the dependence on w.

E�cient Training of Structured SVMs via Soft Constraints

We will upper bound the dual of this problem.

The Lagrangian is:

L(�, �̄, ⌧, ⌘,�) =
1

2

X

c

X

i:i2c

X

yi

uci(yi)�ci(yi) +
1

2

X

c

X

i:i2c

X

yi

uci(yi)�̄ci(yi)

+ ⌧(✓)� ⌧
X

i

max
yi

✓i(yi) +

X

c:i2c

�̄ci(yi)

!
� ⌧

X

c

max
yc

✓c(yc)�

X

i:i2c

�ci(yi)

!

+
X

c

X

i:i2c

X

yi

⌘ci(yi)(�ci(yi)� �̄ci(yi))

+
X

c

X

i:i2c

�ci

X

yi

�̄ci(yi)

with ⌧ � 0.

Rearranging terms we obtain:

= � ⌧
X

i

max
yi

0

@✓i(yi) +
X

c:i2c

0

@�̄ci(yi)�
X

y0
i

1

⌧
�̄ci(y

0
i)

✓
1

2
uci(y

0
i)� ⌘ci(y

0
i) + �ci

◆1

A

1

A

� ⌧
X

c

max
yc

0

@✓c(yc)�
X

i:i2c

0

@�ci(yi)�
X

y0
i

1

⌧
�ci(y

0
i)

✓
1

2
uci(y

0
i) + ⌘ci(y

0
i)

◆1

A

1

A

+ ⌧(✓)

The Lagrangian dual is therefore:

= min
⌧�0,⌘,�

� ⌧
X

i

min
¯�·i(·)

max
yi

0

@✓i(yi) +
X

c:i2c

0

@�̄ci(yi)�
X

y0
i

1

⌧
�̄ci(y

0
i)

✓
1

2
uci(y

0
i)� ⌘ci(y

0
i) + �ci

◆1

A

1

A

� ⌧
X

c

min
�c·(·)

max
yc

0

@✓c(yc)�
X

i:i2c

0

@�ci(yi)�
X

y0
i

1

⌧
�ci(y

0
i)

✓
1

2
uci(y

0
i) + ⌘ci(y

0
i)

◆1

A

1

A

+ ⌧(✓) (9)

We next replace the local singleton/factor problems with their dual problems. This yields the dual problem of
(8):

min
⌧�0,⌘,�

⌧

(✓)�

X

i

max
µi

X

yi

µi(yi)✓i(yi)�
X

c

max
µc

X

yc

µc(yc)✓c(yc)

!

s.t µi � 0, µc � 0,
X

yi

µi(yi) = 1,
X

yc

µc(yc) = 1

µi(yi) =
1

2

uci(yi)� ⌘ci(yi) + �ci

⌧
for all i, c : i 2 c, yi

µc(yi) = �
1

2

uci(yi) + ⌘ci(yi)

⌧
for all c, i : i 2 c, yi (10)

Next, consider the objective in Eq. (10):

f(⌧, ⌘,�) = ⌧

(✓) +

X

i

min
µi

X

yi

µi(yi)(�✓i(yi)) +
X

c

min
µc

X

yc

µc(yc)(�✓c(yc))
!

For feasible µ (satisfies the constraints in Eq. (10)), it holds that:

f(⌧, ⌘,�)  ⌧

(✓) +

X

i

max
yi

|✓i(yi)|+
X

c

max
yc

|✓c(yc)|
!

Ofer Meshi, Nathan Srebro, Tamir Hazan

(of course, this is true for the optimal µ as well).

Therefore, for all � satisfying the constraints of Eq. (7), if we can find ⌧ � 0, ⌘,� such that the constraints of
Eq. (10) are satisfied, then by weak duality we have:

k�k
1

 max
u

X

c

X

i:i2c

X

yi

uci(yi)�ci(yi)

 f(⌧, ⌘,�)

 ⌧

(✓) +

X

i

max
yi

|✓i(yi)|+
X

c

max
yc

|✓c(yc)|
!

(11)

So now we need to find ⌧ � 0, ⌘ and � such that µ is feasible.
Notice that in order to tighten the bound we want ⌧ to be as small as possible.

Finally, choosing:

⌧ = 2max
i

|Yi|

⌘ci(yi) =
1

2
uci(yi)�

1

|Yi|
X

y0
i

uci(y
0
i)�

⌧

|Yi|

�ci = �
1

|Yi|
X

yi

uci(yi)

yields:

µi(yi) =
1

|Yi|

So the singletons are uniform (and feasible!).
As for the factor variables:

µc(yi) =
1

|Yi|
P

y0
i
uci(y0i)� uci(yi)

2maxi0 |Yi0 |
+

1

|Yi|

Notice that if we sum this over yi we get 1, as required. Also notice that since �1  uci(yi)  1 then:

µc(yi) �
�1� 1

2maxi0 |Yi0 |
+

1

|Yi|
� � 1

|Yi|
+

1

|Yi|
= 0

as required.
So if we set:

µ̂i(yi) =
1

|Yi|
P

y0
i
uci(y0i)� uci(yi)

2maxi0 |Yi0 |
+

1

|Yi|
µc(xc) =

Y

i:i2c

µ̂i(yi)

we obtain the desired (feasible!) factor marginals.
To conclude, we can use ⌧ = 2maxi |Yi| in the bound of Eq. (11) to get:

k�k
2

 k�k
1

 2max
i

|Yi|

(✓) +

X

i

max
yi

|✓i(yi)|+
X

c

max
yc

|✓c(yc)|
!

= 2max
i

|Yi|

�(0) +

X

i

max
yi

|✓i(yi)|+
X

c

max
yc

|✓c(yc)|
!

 4max
i

|Yi|

X

i

max
yi

|✓i(yi)|+
X

c

max
yc

|✓c(yc)|
!

 4Y
max

qk✓k1 ⌘
p
h(✓)

E�cient Training of Structured SVMs via Soft Constraints

C Proof of Theorem 4.2

In this section we prove Theorem 4.2. For simplicity, we denote w✏
⇢ = w(µ✏

⇢) and �✏⇢ = �(µ✏
⇢).

✏ � g⇢(w
✏
⇢, �

✏
⇢)� f⇢(µ

✏
⇢) [duality gap bound]

� g⇢(w
✏
⇢, �

✏
⇢)� g⇤⇢ [f⇢(µ⇢)  g⇤⇢ 8µ⇢]

� g(w✏
⇢, �

✏
⇢)� g⇤⇢ [g⇢(w, �) � g(w, �) 8w, �]

� g(w✏
⇢, �

✏
⇢)� g⇤ � ⇢

2
h [Theorem 4.1]

D E�cient Implementation

In this section we provide details on the implementation of Algorithm 1. Specifically, the update in line 15 of
Algorithm 1 maintains primal quantities: w = µ and � = Aµ. In order to do this e�ciently, we exploit the

fact that at each iteration only a single µ
(m)

↵ block is changed. This means that only w↵ and �(m) variables that

depend on µ
(m)

↵ need to be updated. In particular, for the weights we obtain:

w↵ w↵ + � m,↵(s↵ � µ(m)

↵) ,

where µ
(m)

↵ is the value before applying the update. Notice that only parameters pertaining to factor ↵ are
changed, so the cost is often much smaller than the full dimension d. As mentioned in Section 5, the algorithm
can be implemented in terms of primal quantities. This requires storing a weight vector for each sample and

factor wm,↵ = m,↵µ
(m)

↵ . Again, only weights related to the specific factor ↵ need to be stored, so the required

space is often smaller than d. We can then carry out the update above in terms of wm,↵ instead of m,↵µ
(m)

↵ .

Similarly, for the agreement variables � we have the update:

Factor c updated: �
(m)

ci �
(m)

ci +
�

⇢M
Aci

⇣
sc � µ(m)

c

⌘
8i : i 2 c

Variable i updated: �
(m)

ci �
(m)

ci +
�

⇢M

⇣
si � µ

(m)

i

⌘
8c : i 2 c

where, as before, µ(m)

↵ is the value before updating. Notice that the computational cost of this update depends
on the degree of the factor graph. When a factor c contains many variables in its scope, storing the marginal

distribution µc may be prohibitive. In that case we can store instead only the marginals µ(m)

ci = Aciµ
(m)

c , which
only requires |Yi| space (this has the same dimension as �ci, so we never have to store higher dimensional variables

than the ones already stored). As before, the updates can then be implemented in terms of the compact µ
(m)

ci

and µ
(m)

i values.

Finally, notice that we can compute the optimal step size � in Algorithm 1 using only the auxiliary variables

wm,↵, µ
(m)

ci and µ
(m)

i .

E Computing the Curvature Constant

To complete the convergence rate analysis in Section 5.1 we need to compute the curvature constant C⌦
f⇢
. It is

shown in Lacoste-Julien et al. (2013) that for product domains the global curvature constant is a sum of the

block-wise curvature constants: C⌦
f⇢

=
P

m,↵ C
(m,↵)
f⇢

. Furthermore, the curvature constant of a single block is
bounded in terms of the Hessian as follows:

C
(m,↵)
f⇢

 sup
µ,µ02S,

(µ0�µ)2S(m)
↵ ,

z2[µ,µ0
]✓S

(µ0 � µ)>r2f(z)(µ0 � µ) ,

Ofer Meshi, Nathan Srebro, Tamir Hazan

To use this bound, we compute the Hessian for our problem12 Eq. (5): r2

µ = � > + ⇢A>A, which is constant
in µ. Using arguments similar to Lemma A.2 in Lacoste-Julien et al. (2013), we obtain:

C
(m,↵)
f⇢

 sup
µ,µ02S,

(µ0�µ)2S(m)
↵

(µ0 � µ)>
�
� > + ⇢A>A

�
(µ0 � µ)

 � sup
µ,µ02S,

(µ0�µ)2S(m)
↵

k (µ0 � µ)k2
2

+ ⇢ sup
µ,µ02S,

(µ0�µ)2S(m)
↵

kA(µ0 � µ)k2
2

 4� sup
u2 S(m)

↵

kuk2
2

+ 4⇢ sup
v2AS(m)

↵

kvk2
2

 16R2

�M2

+
4R̂2

⇢M2

where maxm,↵,y↵ k�↵(x(m), y↵) � �↵(x(m), y
(m)

↵)k
2

 2R is the maximal feature di↵erence, and R̂2 = 1 +

maxm,↵,y↵

|Yc|
|Yi| is the maximal number of marginalized assignments.

Finally, we have:

C⌦
f⇢

=
X

m,↵

C
(m,↵)
f⇢

 4Mq

4R2

�M2

+
R̂2

⇢M2

!
= O

✓
q

M

✓
1

�
+

1

⇢

◆◆

References

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe optimization for
structural SVMs. In ICML, pages 53–61, 2013.

O. Meshi, T. Jaakkola and A. Globerson. Convergence rate analysis of MAP coordinate minimization algorithms.
In Advances in Neural Information Processing Systems. 2012.

12Here we actually use the negative of Eq. (5) and treat this as a minimization problem.

