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E�cient Training of Structured SVMs via Soft Constraints

A Dual of Soft Problem

In this section we show that the problems Eq. (5) and Eq. (6) are Lagrange duals. We start from a formulation
equivalent to Eq. (6):

min
w,⇠,�

�

2
kwk2 + ⇢

2

X

m

k�(m)k2 +
X

m

X

↵

⇠(m)

↵

s.t. ⇠
(m)

i � 1

M

 
✓
(m)

i (yi;w) +
X

c:i2c

�
(m)

ci (yi)

!
for all m, i, yi

⇠(m)

c � 1

M

 
✓(m)

c (yc;w)�
X

i:i2c

�
(m)

ci (yi)

!
for all m, c, yc

The Lagrangian is:

L(w, ⇠, �, µ � 0) =
�

2
kwk2 + ⇢

2

X

m

k�(m)k2 +
X

m

X

↵

⇠(m)

↵

�
X

m

X

i

X

yi

µ
(m)

i (yi)

 
⇠
(m)

i � 1

M
✓
(m)

i (yi;w)�
1

M

X

c:i2c

�
(m)

ci (yi)

!

�
X

m

X

c

X

yc

µ(m)

c (yc)

 
⇠(m)

c � 1

M
✓(m)

c (yc;w) +
1

M

X

i:i2c

�
(m)

ci (yi)

!

The optimality conditions entail:
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Using those in the Lagrangian yields the dual problem of Eq. (5).

B Proof of Theorem 4.1

In this section we prove Theorem 4.1, which is restated here for convenience.

Theorem 4.1 Let g⇤⇢ be the optimal value of G⇢, and let g⇤ be the optimal value of G. Then g⇤⇢ �
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Proof. Denote by (w⇤, �⇤) an optimal solution to g, and by (w⇤
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For the first direction, we have:
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Using the bound k�⇤k2  h, we can prove the other direction:
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To conclude the proof, we next show that k�⇤k2  h by bounding k�(m)
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B.1 Bounding k�k2

In this section we prove the bound11 k�⇤k2  h(✓), where h(✓) = (4Y
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qk✓k1)2. Since k✓k1  2BR + L,
this concludes the proof of Theorem 4.1. The proof here is the zero-temperature limit of the proof in Meshi et
al. (2012) [see Lemma 1.2 in the appendix therein].
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We begin by formulating an equivalent optimization problem to Eq. (7):
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11To simplify notation we drop the sample index m and the dependence on w.
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We will upper bound the dual of this problem.

The Lagrangian is:
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Rearranging terms we obtain:
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The Lagrangian dual is therefore:
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We next replace the local singleton/factor problems with their dual problems. This yields the dual problem of
(8):
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(of course, this is true for the optimal µ as well).

Therefore, for all � satisfying the constraints of Eq. (7), if we can find ⌧ � 0, ⌘,� such that the constraints of
Eq. (10) are satisfied, then by weak duality we have:
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So now we need to find ⌧ � 0, ⌘ and � such that µ is feasible.
Notice that in order to tighten the bound we want ⌧ to be as small as possible.
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C Proof of Theorem 4.2

In this section we prove Theorem 4.2. For simplicity, we denote w✏
⇢ = w(µ✏

⇢) and �✏⇢ = �(µ✏
⇢).
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D E�cient Implementation

In this section we provide details on the implementation of Algorithm 1. Specifically, the update in line 15 of
Algorithm 1 maintains primal quantities: w =  µ and � = Aµ. In order to do this e�ciently, we exploit the

fact that at each iteration only a single µ
(m)
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changed, so the cost is often much smaller than the full dimension d. As mentioned in Section 5, the algorithm
can be implemented in terms of primal quantities. This requires storing a weight vector for each sample and
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↵ . Again, only weights related to the specific factor ↵ need to be stored, so the required
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↵ is the value before updating. Notice that the computational cost of this update depends
on the degree of the factor graph. When a factor c contains many variables in its scope, storing the marginal
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E Computing the Curvature Constant

To complete the convergence rate analysis in Section 5.1 we need to compute the curvature constant C⌦
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. It is

shown in Lacoste-Julien et al. (2013) that for product domains the global curvature constant is a sum of the
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To use this bound, we compute the Hessian for our problem12 Eq. (5): r2
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in µ. Using arguments similar to Lemma A.2 in Lacoste-Julien et al. (2013), we obtain:
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