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Input: VT = [v1,v2, ...vd] ∈ R`×d with vi ∈ R`
and r > `.
Output: Matrices S ∈ Rd×r,D ∈ Rr×r.
1. Initialize A0 = 0`×`, S = 0d×r,D = 0r×r.
2. Set constants δL = 1 and

δU =
(

1 +
√
`/r
)
/
(

1−
√
`/r
)

.

3. for τ = 0 to r − 1 do

• Let Lτ = τ −
√
r`;Uτ = δU

(
τ +
√
`r
)

.

• Pick index i ∈ {1, 2, ..d} and number tτ > 0,
such that

U (vi, δU ,Aτ , Uτ ) ≤ L (vi, δL,Aτ , Lτ ) .

• Let t−1τ =
1
2 (U (vi, δU ,Aτ , Uτ ) + L (vi, δL,Aτ , Lτ ))

• Update Aτ+1 = Aτ + tτviv
T
i ; set

Siτ ,τ+1 = 1 and Dτ+1,τ+1 = 1/
√
tτ .

4. end for
5. Multiply all the weights in D by√
r−1

(
1−

√
(`/r)

)
.

6. Return S and D.

Algorithm 1: Single-set Spectral Sparsification

Lemma 3. BSS (Batson et al. (2009)): Given V ∈
Rd×` satisfying VTV = I` and r > `, we can deter-
ministically construct sampling and rescaling matrices
S ∈ Rd×r and D ∈ Rr×r with R = SD, such that,

for all y ∈ R` :
(

1−
√
`/r
)2
‖Vy‖22 ≤

∥∥∥VTRy
∥∥∥2
2
≤(

1 +
√
`/r
)2
‖Vy‖22 .

We now present a slightly modified version of Lemma 3
for our theorems.

Lemma 4. Given V ∈ Rd×` satisfying VTV = I` and
r > `, we can deterministically construct sampling and
rescaling matrices S ∈ Rd×r and D ∈ Rr×r such that

for R = SD,
∥∥∥VTV −VTRRTV

∥∥∥
2
≤ 3
√
`/r

Proof. From Lemma 3, it follows, σ`

(
VTRRTV

)
≥(

1−
√
`/r
)2
, σ1

(
VTRRTV

)
≤

(
1 +

√
`/r
)2
.

Thus, λmax

(
VTV −VTRRTV

)
≤(

1−
(

1−
√
`/r
)2)

≤ 2
√
`/r. Similarly,

λmin

(
VTV −VTRRTV

)
≥
(

1−
(

1 +
√
`/r
)2)

≥

3
√
`/r. Combining these two results, we have∥∥∥VTV −VTRRTV

∥∥∥
2
≤ 3
√
`/r.

7.1 Proof That the Data Radius is preserved
by Unsupervised BSS-Feature Selection.

Theorem 3. Let r2 = O
(
n/ε2

)
, where ε > 0 is an

accuracy parameter, n is the number of training points
and r2 is the number of features selected. Let B be
the radius of the minimum ball enclosing all points in
the full-dimensional space, and let B̃ be the radius of
the ball enclosing all points in the sampled subspace
obtained by using BSS in an unsupervised manner. For
R as in Lemma 4, B̃2 ≤ (1 + ε)B2.

Proof. We consider the matrix XB ∈ R(n+1)×d whose
first n rows are the rows of Xtr and whose last row
is the vector xTB ; here xB denotes the center of the
minimum radius ball enclosing all n points. Then, the
SVD of XB is equal to XB = UBΣBVT

B , where UB ∈
R(n+1)×ρB , ΣB ∈ RρB×ρB , and V ∈ Rd×ρB . Here ρB
is the rank of the matrix XB and clearly ρB ≤ ρ + 1.
(Recall that ρ is the rank of the matrix Xtr.) Let B
be the radius of the minimal radius ball enclosing all n
points in the original space. Then, for any i = 1, . . . , n,

B2 ≥ ‖xi − xB‖22 =
∥∥∥(ei − en+1)

T
XB

∥∥∥2
2
. (14)

Now consider the matrix XBR and notice that∣∣∣∣ ∥∥∥(ei − en+1)
T

XB

∥∥∥2
2
−
∥∥∥(ei − en+1)

T
XBR

∥∥∥2
2

∣∣∣∣
=

∣∣∣(ei − en+1)
T
(
XBXT

B −XBRRTXT
B

)
(ei − en+1)

∣∣∣
=

∣∣∣(ei − en+1)
T

UBΣBEBΣBUT
B (ei − en+1)

∣∣∣
≤ ‖EB‖2

∥∥∥(ei − en+1)
T

UBΣB

∥∥∥2
2

= ‖EB‖2
∥∥∥(ei − en+1)

T
XB

∥∥∥2
2
.

In the above, we let EB ∈ RρB×ρB be the matrix
that satisfies VT

BVB = VT
BRRTVB + EB , and

we also used VT
BVB = I. Now consider the ball

whose center is the (n + 1)-th row of the matrix
XBR (essentially, the center of the minimal radius
enclosing ball for the original points in the sampled

space). Let ĩ = arg maxi=1...n

∥∥∥(ei − en+1)
T

XBR
∥∥∥2
2
;

then, using the above bound and

eqn. (14), we get
∥∥∥(eĩ − en+1)

T
XBR

∥∥∥2
2

≤

(1 + ‖EB‖2)
∥∥∥(eĩ − en+1)

T
XB

∥∥∥2
2
≤ (1 + ‖EB‖2)B2.

Thus, there exists a ball centered at eTn+1XBR (the
projected center of the minimal radius ball in the
original space) with radius at most

√
1 + ‖EB‖2B
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that encloses all the points in the sampled space.
Recall that B̃ is defined as the radius of the minimal
radius ball that encloses all points in sampled sub-
space; clearly, B̃2 ≤ (1 + ‖EB‖2)B2. We can now use
Lemma 4 on VB to conclude that (using ρB ≤ ρ+ 1)
‖EB‖2 ≤ ε.

Theorem 4. Given ε ∈ (0, 1), run supervised
Leverage-score sampling based feature selection on Xsv

with r1 = Õ(p/ε2), to obtain the feature sampling and
rescaling matrix R. Let γ∗ and γ̃∗ be the margins ob-
tained by solving the SVM dual (2) with (Xsv,Ysv)
and (XsvR,Ysv) respectively. Then with probability at
least 0.99, γ̃∗2 ≥ (1− ε) γ∗2.
Theorem 5. Given ε ∈ (0, 1), run unsupervised
Leverage-score feature selection on the full data Xtr

with r2 = Õ
(
ρ/ε2

)
, where ρ = rank(Xtr), to obtain

the feature sampling and rescaling matrix R. Let γ∗

and γ̃∗ be the margins obtained by solving the SVM
dual (2) with (Xtr,Ytr) and (XtrR,Ytr) respectively;
and, let B and B̃ be the radii for the data matrices Xtr

and XtrR respectively. Then with probability at least
0.99,

B̃2

γ̃∗2
≤ (1 + ε)

(1− ε)
B2

γ∗2
= (1 +O(ε))

B2

γ∗2
.

Proofs of Theorems 4 and 5 follow directly from The-
orems 1 and 2. In Theorems 1 and 2, we make use
of Lemma 1. For Theorems 4 and 5, we make use of
Lemma 2 to obtain the proof.

Proof of Lemma 2 can be found in Rudelson and Ver-
shynin (2007).

7.2 Other Feature Selection Methods

In this section, we describe other feature-selection
methods with which we compare BSS.

Rank-Revealing QR Factorization (RRQR):
Within the numerical linear algebra community, subset
selection algorithms use the so-called Rank Revealing
QR (RRQR) factorization. Let A be a n × d matrix
with (n < d) and an integer k (k < d) and assume par-
tial QR factorizations of the form

AP = Q

(
R11 R12

0 R22

)
,

where Q ∈ Rn×n is an orthogonal matrix, P ∈
Rd×d is a permutation matrix, R11 ∈ Rk×k,R12 ∈
Rk×(d−k),R22 ∈ R(d−k)×(d−k) The above factoriza-
tion is called a RRQR factorization if σmin (R11) ≥
σk (A) /p(k, d), σmax (R22) ≤ σmin(A)p(k, d), where
p(k, d) is a function bounded by a low-degree polyno-
mial in k and d. The important columns are given

by A1 = Q

(
R11

0

)
and σi (A1) = σi (R11) with

1 ≤ i ≤ k. We perform feature selection using RRQR
by picking the important columns which preserve the
rank of the matrix.

Random Feature Selection: We select features uni-
formly at random without replacement which serves as
a baseline method. To get around the randomness, we
repeat the sampling process five times.

Recursive Feature Elimination: Recursive Feature
Elimination (RFE), Guyon et al. (2002) tries to find
the best subset of features which leads to the largest
margin of class separation using SVM. At each itera-
tion, the algorithm greedily removes the feature that
decreases the margin the least, until the required num-
ber of features remain. At each step, it computes the
weight vector and removes the feature with smallest
weight. RFE is computationally expensive for high-
dimensional datasets. Therefore, at each iteration,
multiple features are removed to avoid the computa-
tional bottleneck.

LPSVM: The feature selection problem for SVM can
be formulated in the form of a linear program. LPSVM
Fung and Mangasarian (2004) uses a fast Newton
method to solve this problem and obtains a sparse so-
lution of the weight vector, which is used to select the
features.

Input: Support vector matrix X ∈ Rp×d, t, r.
Output: Matrices S ∈ Rd×r,D ∈ Rr×r.

1. Generate a random Gaussian matrix,
G ∈ Rt×p.

2. Compute X̂ = GX.

3. Compute right singular vectors V of X̂
using SVD.

4. Run Algorithm 1 using V and r as inputs
and get matrices S and D as outputs.

5. Return S and D.

Algorithm 2: Approximate BSS
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Supervised Feature Selection
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Figure 2: Plots of out-of-sample error of Supervised and
Unsupervised BSS and leverage-score compared with other
methods for 49 TechTC-300 documents averaged over ten
ten-fold cross validation experiments. Vertical bars repre-
sent standard deviation.


