
On Theoretical Properties of Sum-Product Networks:
Supplementary Material

Robert Peharz Sebastian Tschiatschek Franz Pernkopf Pedro Domingos
BEE-PRI BioTechMed-Graz

iDN, Inst. of Physiology
Medical University of Graz

Dept. of Computer Science
ETH Zurich

SPSC Lab
Graz University
of Technology

Dept. of Computer Science
and Engineering

University of Washington

1 Examples

1.1 Example for partial evidence (Section 1)

Let X = {X1, X2, X3} with val(X1) = [0, 1],
val(X2) = {1, 2, 3} and val(X3) = R. The partial evi-
dence X = [0, 0.25]∪[0.75, 1]×{1, 2, 3}×{π} ∈ HX rep-
resents evidence that X1 assumes a value smaller 0.25
or larger 0.75, X2 assumes any of its possible states,
and X3 is set to the irrational number π.

1.2 Example for Algorithm 2

An example showing the mechanism of Algorithm 2 is
shown in Figure 1. See the caption text for details.

1.3 Example for Algorithm 2 applied to a
Sum-Product Tree

An example of applying Algorithm 2 to an SPT is
shown in Figure 2, illustrating Proposition 3. See the
caption text for details.

2 Proofs

Proposition 1. Let P be a product node and Y be its
shared RVs. P is consistent iff for each Y ∈ Y there
exists a unique y∗ ∈ val(Y) with λY=y∗ ∈ desc(P).

Proof. Direction “⇐”, i.e. suppose for each Y ∈ Y
there exists a unique y∗ ∈ val(Y) with λY=y∗ ∈
desc(P). Consider arbitrary two distinct children
C′,C′′ ∈ ch(P) and let Y′ = sc(C′) ∩ sc(C′′), where
from Definition 8 (shared RVs) it follows that Y′ ⊆ Y.
First, let X ∈ sc(C′)\Y′ arbitrary. Since X /∈ sc(C′′),
we have

λX=x ∈ desc(C′)⇒ ∀x′ : λX=x′ /∈ desc(C′′), (1)

and in particular

λX=x ∈ desc(C′)⇒ ∀x′ 6= x : λX=x′ /∈ desc(C′′).
(2)

Now let X ∈ Y′ arbitrary. Since X ∈ Y, there is
a unique y∗ ∈ val(Y) with λY=y∗ ∈ desc(C′) and
λY=y∗ ∈ desc(C′′), and again (2) holds. Since C′, C′′

and X are arbitrary, P is consistent.

Direction “⇒”, i.e. suppose P is consistent. If Y is
empty, i.e. P is decomposable, then the claimed prop-
erty holds trivially for all Y. Otherwise let Y ∈ Y
arbitrary and let C′ and C′′ be arbitrary two chil-
dren having Y in their scope. There are at least two
such children by Definition 8 (shared RVs). There
must be a unique y∗ with λY=y∗ ∈ desc(C′) and
λY=y∗ ∈ desc(C′′). To see this, note that there must
be at least one y′ ∈ val(Y) with λY=y′ ∈ desc(C′)
and at least one y′′ ∈ val(Y) with λY=y′′ ∈ desc(C′′),
since Y is in the scope of both C′ and C′′. However,
there can be at most one such y′ and y′′. Assume there
were y′1 and y′2, y′1 6= y′2. Then either for y′ = y′1 or for
y′ = y′2 we had a contradiction to

λY=y′ ∈ desc(C′)⇒ ∀y′′ 6= y′ : λY=y′ /∈ desc(C′′).
(3)

i.e. P would not be consistent. By symmetry, there is
also at most one y′′, and (3) can only hold when y′ =
y′′ =: y∗. Therefore, since Y , C′ and C′′ are arbitrary,
there must be a unique y∗ with y∗ ∈ desc(C), ∀C ∈
ch(P) : Y ∈ sc(C). Therefore, this y∗ is also the unique
value with y∗ ∈ desc(P).

Lemma 1. Let N be a node in some complete and
consistent SPN over X, X ∈ sc(N) and x ∈ val(X).
When λX=x /∈ desc(N), then ∀x ∈ val(X) with
x[X] = x we have N(x) = 0.

Proof. When N = λX=x′ , for some x′ ∈ val(X), the
lemma clearly holds, since x′ 6= x.

When N is a product or a sum, let N = {N′ ∈
desc(N) : X ∈ sc(N′)}. Let K = |N| and let
N1, . . . ,NK be a topologically ordered list of N,
i.e. Nk /∈ desc(Nl) when k > l. We can as-
sume that for some I, N1, . . . ,NI are IVs of X,
NI+1, . . . ,NK are sum and product nodes, where

On Theoretical Properties of SPNs: Supplementary Material

︸ ︷︷ ︸
λY =y1

λY =y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(a)

︸ ︷︷ ︸
λY =y1

λY =y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(b)

︸ ︷︷ ︸
λY =y1

λY =y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(c)

︸ ︷︷ ︸
λY =y1

λY =y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(d)

Figure 1: Illustration of Algorithm 2, transforming a complete and consistent SPN into a complete and decom-
posable one. (a): Excerpt of an SPN containing a single consistent, non-decomposable product P with shared
RVs Y = {Y }, since λY=y1 is reached via both Po1 and Po2. Dotted edges denote a continuation of the SPN
outside this excerpt. The blank circles at the bottom symbolize sub-SPNs over RV sets X and Z, where we
assume that X ∩ Z = ∅. P’s children Po1 and Po2 have both a sum node as co-parent. Po1 has additionally a
product Pr as co-parent in some remote part of the SPN. (b): Introducing links, depicted as grey product nodes,
according to steps 2–7 of Algorithm 2. (c): Steps 15–20. Here, the set No is given as No = {P,Po1,Po2}. All
parents of No \ {P} which are not descendants of P, i.e. the two links and Pr, are connected with the IVs of the
respective part of the shared RVs Y, here always λY=y1 . (d): Rendering P decomposable, steps 21–24. IV λY=y1

is disconnected from Po1,P
o
2 in steps 21–23, cutting Y from Po1, Po2 and P. Step 24: IV λY=y1 is re-connected to

P, which computes the same distribution as before, but is decomposable now. Po1 and Po2 could be short-wired
and removed, since they are left with only one child. However, this does not necessarily happen and does not
improve the theoretical bound of additionally required multiplications.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

P

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY =y1

λY =y2

(a)

P

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY =y1

λY =y2

(b)

P

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY =y1

λY =y2

(c)

Figure 2: Illustration of Algorithm 2, transforming a complete and consistent, but not decomposable SPT into
a complete and decomposable one. This demonstrates that using non-decomposable products is wasteful in
SPTs (cf. Proposition 3), since after performing Algorithm 2, the SPT computes the same distribution, but
requires fewer multiplications. (a): Complete and consistent SPT over two binary RVs X,Y , containing a non-
decomposable product P. (b): Effect of steps 21–23 of Algorithm 2, saving 3 multiplications. (c): Effect of steps
24 of Algorithm 2, reconnecting λX=x1

to P, re-introducing 1 multiplication.

NK = N. For any x ∈ val(X) with x[X] = x, we
have N1(x) = N2(x) = · · · = NI(x) = 0, since λX=x /∈
desc(N).

When all N1(x) = N2(x) = · · · = Nk(x) = 0 for some
k ≥ I, then also Nk+1(x) = 0. When Nk+1 is a sum
node, due to completeness, all children of Nk+1 must
have X in their scope. This means that all children are
in {N1, . . . ,Nk}. Therefore Nk+1(x) = 0. When Nk+1

is a product, at least on child has to be in {N1, . . . ,Nk}.
Therefore Nk+1(x) = 0. Thus, by induction, for all
N′ ∈ N we have N′(x) = 0. In particular this is true
for NK = N.

Lemma 2. Let P be a probability mass function
(PMF) over X and Y ⊆ X, Z = X\Y such that there
exists a y∗ ∈ val(Y) with P (z,y) = 0 when y 6= y∗.
Then we have P (z,y) = 1(y = y∗)P (z).

Proof. Since P (z,y) = 0 for y 6= y∗, P (z) =∑
y∈val(Y) P (z,y) = P (z,y∗). Thus

P (z,y) =

{
0 if y 6= y∗

P (z) if y = y∗
= 1(y = y∗)P (z). (4)

Theorem 1. Let S be a complete and consistent SPN
and P be a non-decomposable product in S, Y be the
shared RVs of P and y∗ the consistent state of Y. For
N ∈ desc(P) define YN := Y ∩ sc(N) and XN :=
sc(N) \ YN. Then for all N ∈ desc(P), and all x ∈

val(sc(N)):

PN(x) = 1
(
x[YN] = y∗[YN]

)
PN

(
x[XN]

)
, (5)

where 1 is the indicator function.

Proof. From Proposition 1 we know that ∀Y ∈
Y : λY=y∗[Y] ∈ desc(P) and ∀y 6= y∗[Y] : λY=y /∈
desc(P). Consequently, for any N ∈ desc(P) we
have for all Y ∈ YN that λY=y∗[Y] ∈ desc(N) and
∀y 6= y∗[Y] : λY=y /∈ desc(N). With Lemma 1 it
follows that for all x ∈ val(sc(N)) with x[YN] 6=
y∗[YN], we have PN(x) = 0. Theorem 1 follows with
Lemma 2.

Corollary 1. Let P, Y, y∗ be as in Theorem 1. For
C ∈ ch(P), let XC := sc(C) \Y, i.e. the part of sc(C)
which belongs exclusively to C. Then

PP(x) = 1(x[Y] = y∗)
∏

C∈ch(P)

C
(
x[XC]

)
. (6)

Theorem 2. For each complete and consistent SPN
S ′ = (G′,w′), there exists a complete, consistent and
locally normalized SPN S = (G,w) with G′ = G, such
that ∀N ∈ G : SN ≡ PS′N .

Proof. Algorithm 1 finds locally normalized weights
without changing the distribution of any node. For
deriving the algorithm, we introduce a correction fac-
tor αP for each product node P, initialized to αP = 1.
We redefine the product node P as P(λ) := αPP(λ).
At the end of the algorithm, all αP will be 1 again.

On Theoretical Properties of SPNs: Supplementary Material

Algorithm 1 Locally Normalize SPN

1: Let N1, . . . ,NK be a topologically ordered list of
all sum and product nodes

2: For all product nodes P initialize αP ← 1
3: for k = 1 : K do
4: if Nk is a sum node then
5: α←

∑
C∈ch(Nk)

wNk,C

6: ∀C ∈ ch(Nk) : wNk,C ←
wNk,C

α
7: end if
8: if Nk is a product node then
9: α← αNk

10: αNk
← 1

11: end if
12: for F ∈ pa(Nk) do
13: if F is a sum node then
14: wF,Nk

← αwF,Nk

15: end if
16: if F is a product node then
17: αF ← ααF

18: end if
19: end for
20: end for

Let N′1, . . . ,N
′
K be a topologically ordered list of all

nodes in the unnormalized S ′, i.e. N′k /∈ desc(N′l) if k >
l. Let N1, . . . ,NK be the corresponding list of S, which
will be the normalized version after the algorithm has
terminated. We have the following loop invariant for
the main loop. Given that at the kth entrance of the
main loop

1. PN′l
= SNl

, for 1 ≤ l < k

2. S ′N′m = SNm
, for k ≤ m ≤ K

the same will hold for k + 1 at the end of the loop.

The first point holds since we normalize Nk during the
main loop: All nodes prior in the topological order,
and therefore all children of Nk are already normal-
ized. If Nk is a sum, then it represents a mixture
distribution after step 6. If Nk is a product, then it
will be normalized after step 10 since we set αNk

= 1.

The second point holds since the modification of Nk
can change any Nm, m > k, only via pa(Nk). The
change of Nk is compensated for all its parents either
in step 14 or step 17, depending on whether the parent
is a sum or a product node.

From this loop invariance it follows by induction that
all N1, . . . ,NK compute the normalized distributions
of N′1, . . . ,N

′
K after the Kth iteration.

Proposition 2. A complete and decomposable SPN
computes the NP of some unnormalized distribution.

Proof. Assume some topological ordering of the SPN
nodes. We show by induction over this order, from
bottom to top, that each sub-SPN SN computes an
NP over sc(N). The induction basis are the IVs λX=x

which compute

λX=x =
∑

x′∈val(X)

1(x′ = x)λX=x′ , (7)

which is an NP over X.

A complete sum node S computes

S(λ) =
∑

C∈ch(S)

wS,C C(λ) (8)

=
∑

C∈ch(S)

wS,C

∑
x∈val(sc(S))

ΦC(x)
∏

X∈sc(S)

λX=x[X]

(9)

=
∑

x∈val(sc(S))

ΦS(x)
∏

X∈sc(S)

λX=x[X], (10)

where ΦC is the unnormalized distributions of the NP
of C, and ΦS(x) :=

∑
C∈ch(S) wS,C ΦC(x). In (9) we

apply the induction hypothesis and the fact that for
complete sum nodes the scopes of the node and all its
children are the same. We see that (10) has the form
of an NP, i.e. the induction step holds for complete
sum nodes.

Now consider some decomposable product node P with
children ch(P) = {C1, . . . ,CK}. The product node P
computes

P(λ) =

K∏
k=1

Ck(λ) (11)

=

K∏
k=1

∑
xk∈val(sc(Ck))

ΦCk
(xk)

∏
X∈sc(Ck)

λX=xk[X]

(12)

=
∑
x1

· · ·
∑
xK

K∏
k=1

ΦCk
(xk)

∏
X∈sc(Ck)

λX=xk[X]

(13)

=
∑

x∈val(sc(P))

ΦP(x)
∏

X∈sc(P)

λX=x[X], (14)

where ΦCk
is the distributions of the NP of Ck, and

ΦP(x) :=
∏K
k=1 ΦCk

(x[sc(Ck)]). In (12) we use the in-
duction hypothesis, in (13) we apply the distributive
law, and in (14) we use the fact that the scope of a de-
composable product node is partitioned by the scopes
of its children. We see that (14) has the form of an
NP, i.e. the induction step holds for complete product
nodes.

Consequently, each sub-SPN and therefore also the
overall SPN computes an NP of some unnormalized
distribution.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

Theorem 3. Every complete and consistent SPN S =
((V,E),w) over X can be transformed into a com-
plete and decomposable SPN S ′ = ((V ′, E′),w′) over
X such that PS ≡ PS′ , and where |V ′| ∈ O(|V |2),
AS′ = AS and MS′ ∈ O(MS |X|).

Algorithm 2 Transform to decomposable SPN

1: Let N = N1, . . . ,NK be a topologically ordered list
of all sums and products

2: for all sum nodes S and all C ∈ ch(S) do
3: if pa(C) > 1 then
4: Generate a new product node PS,C

5: Interconnect PS,C between S and C
6: end if
7: end for
8: while exist non-decomposable products in N do
9: P← Nmin{k′ | Nk′ is a non-decomposable product}

10: Y ← shared RVs of P
11: y∗ ← consistent state of Y
12: if sc(P) = Y then
13: Replace P by

∏
Y ∈Y λY=y∗[Y]

14: else
15: Nd ← sums and products in desc(P)
16: No ← {N ∈ Nd : sc(N) 6⊆ Y, sc(N)∩Y 6= ∅}
17: for N ∈ No \ {P} do
18: F← pa(N) \Nd

19: ∀Y ∈ Y ∩ sc(N) :
connect λY=y∗[Y] as child of all F

20: end for
21: for Po ∈ No do
22: Disconnect C ∈ ch(Po) if sc(C) ⊆ Y
23: end for
24: ∀Y ∈ Y : connect λY=y∗[Y] as child of P
25: end if
26: end while
27: Delete all unreachable sums and products

Proof. Due to Theorem 2 we assume w.l.o.g. that S ′
is locally normalized, and thus PS ≡ S. Algorithm 2
transforms S into a complete and decomposable SPN,
representing the same distribution. First it finds a
topologically ordered list N1, . . . ,NK of all sum and
product nodes, i.e. k > l ⇒ Nk /∈ desc(Nl). Then, in
steps 2–7, it considers all sum nodes S and all children
C ∈ ch(S); if the child C has further parents except
S, a newly generated product node PS,C is intercon-
nected between S and C, i.e. PS,C is connected as child
of S with weight wS,C, C is disconnected from S and
connected as child of PS,C. To PS,C we refer as link
between S and C. Note that the link has only S as
parent, i.e. the link represents a private copy of child
C for sum node S. Clearly, after step 7, the SPN still
computes the same function.

In each iteration of the main loop 8–26, the algorithm

finds the lowest non-decomposable product node Nk =
P w.r.t. the topological ordering. We distinguish two
cases: sc(P) = Y and sc(P) 6= Y ⇔ Y ⊂ sc(P).

In the first case, we know from Corollary 1 that
P(y) = 1(y = y∗), which is equivalent to the decom-
posable product

∏
Y ∈Y λY=y∗[Y] replacing P, i.e. this

new product is connected as child of all parents of P,
and P itself is deleted. Deletion of P might render
some nodes unreachable; however, these unreachable
nodes do not “influence” the root node and will be
safely deleted in step 27.

In the second case, when Y ⊂ sc(P), the algorithm
first finds the set Nd of all sum and product descen-
dants of P. It also finds the subset No of Nd, contain-
ing all nodes whose scope overlaps with Y, but is no
subset of Y. Clearly, P is contained in No. The basic
strategy is to “cut” Y from the scope of P, i.e. that Y
is marginalized, rendering P decomposable. Then, by
re-connecting all indicators λY=y∗[Y] to P in step 24, P
computes the same distribution as before due to Corol-
lary 1, but is rendered decomposable now. Steps 21–23
cut Y from all nodes in No, in particular from P, but
leave all sub-SPNs rooted at any node in Nd \No un-
changed. To see this, note that Nd \No contains two
types of nodes:

• nodes Ns whose scope is a subset of Y, i.e. Ns =
{N ∈ Nd | sc(N) ⊆ Y}, and

• nodes Nn whose scope does not contain any Y,
i.e. Nn = {N ∈ Nd | sc(N) ∩Y = ∅}.

Clearly, sub-SPNs rooted at any node in Ns or Nn

do not contain any No. Steps 21–23 only delete some
outgoing edges of some Po ∈ No; thus all sub-SPNs
rooted at nodes in Ns or Nn remain unchanged, and
do not change the output of the overall SPN via nodes
outside of Nd. Now consider a topologically ordered
list No1, . . . ,N

o
L of the nodes in No, i.e. k > l ⇒ Nok /∈

desc(Nol). No1 must be a product. If it was a sum, all
its children would have the same scope as No1, due to
completeness. Therefore, all its children would be con-
tained in No, contradicting that No1 is the first node in
the topological order. Thus No1 is a product. No1 can
have three types of children: nodes in Ns, nodes in
Nn and IVs. Nodes in Ns and IVs corresponding to
some Y ∈ Y are disconnected from product No1 in steps
21–23. These children make up the deterministic term
1(·) in Theorem 1. By disconnecting them, sc(No1)∩Y
is “cut” from No1, which now computes the marginal
distribution over sc(No1)\Y. This is the induction ba-
sis. Now assume that after steps 21–23 all No1, . . . ,N

o
l ,

l < L, compute the marginal, Y being marginalized.
Then also Nol+1 computes such a marginal. If Nol+1

is a sum and thus a mixture distribution, this clearly

On Theoretical Properties of SPNs: Supplementary Material

holds, since mixture sums and marginalization sums
can be swapped, i.e. “the mixture of marginals is the
marginal of the mixture”. If Nol+1 is a product, it can
have four types of children: nodes in No, nodes in Ns,
nodes in Nn and IVs. By induction hypothesis Y is al-
ready cut from all children in No. Nodes in Ns and IVs
corresponding to some Y ∈ Y are disconnected from
product Nol+1. These nodes make up the deterministic
term 1(·) in Theorem 1; a subset of Y might already
have been removed, since Y has been removed from
all children in No. By disconnecting children in Ns

and IVs corresponding to Y, this deterministic term
is fully removed. Thus, by induction, after steps 21–23
all nodes in No compute the marginal distribution, Y
being marginalized.

Although we achieve our primary goal to render P de-
composable, steps 21–23 also cut Y from any other
node in N ∈ No, which would modify the SPN output
via N’s parents outside of Nd, i.e. via F = pa(N) \Nd.
Note that all nodes in F must be products. To see this,
assume that F contains a sum S. This would imply
that N is a link, which can reached from P only via its
single parent S. This implies S ∈ Nd, a contradiction.
By Theorem 1, the distribution of N is deterministic
w.r.t. sc(N) ∩ Y. Steps 21–23 cut Y from N, which
would change the distribution of the nodes in F. Thus,
in step 19 the IVs corresponding to Y∩sc(N) are con-
nected to all F, such that they still “see” the same
distribution after steps 21–23. It is easy to see that if
some F ∈ F was decomposable beforehand, it will also
be decomposable after step 23, i.e. steps 15–24 do not
render other products non-decomposable.

Since the only new introduced nodes are the links be-
tween sum nodes and their children, and the number
of sum-edges is in O(|V |2), we have |V ′| ∈ O(|V |2).
The number of summations is the same in S and S ′,
i.e. AS′ = AS . Furthermore, introducing the links
can not introduce more than double the number of
multiplications, since we already require one multi-
plication per sum-edge. Thus, after step 7 we have
MS′ ∈ O(MS). Since the while-loop in Algorithm 2
can not connect more than one IV per X ∈ X to each
product node, we have MS′ ∈ O(MS |X|).

Proposition 3. Every complete and consistent, but
non-decomposable SPT S = ((V,E),w) over X can
be transformed into a complete and decomposable SPT
S ′ = ((V ′, E′),w′) over X such that PS ≡ PS′ , and
where |V ′| ≤ |V |, AS′ ≤ AS and MS′ < MS .

Proof. For SPTs, no links are introduced in steps 2–7
of Algorithm 2. Consider a non-decomposable product
P in the SPT, and let Y be the shared RVs. If sc(P) =
Y, the whole sub-SPN rooted at P will be replaced
by
∏
Y ∈Y λY=y∗[Y] in step 13. The deleted sub-SPN

computes
∏
Y ∈Y(λY=y∗[Y])

kY , where kY are integers
with kY ≥ 1, and at least one kY > 1, since otherwise
P would be decomposable. Thus, replacing this sub-
SPN by the decomposable product in step 13 saves at
least one multiplication.

Similarly, when sc(P) 6= Y, steps 21–23 prune nodes
from the sub-SPN rooted at P, corresponding to the
computation of

∏
Y ∈Y(λY=y∗[Y])

kY with kY ≥ 1, and
at least one kY > 1. This requires at least one multi-
plication more than directly connecting λY=y∗[Y] to P
in step 24. Clearly, steps 17–20 are never performed
in SPTs, since no N ∈ desc(P)\{P} can have a parent
outside the descendants of P.

Thus, for every non-decomposable product, Algo-
rithm 2 saves at least one multiplication.

Proposition 4. Let Sg be a gated SPN. For any X ∈
X and k ∈ {1, . . . , |DX |}, let XD = sc(DX,k) and
XR = X \XD. It holds that Sg(X, ZX = k,Z \ZX) =
DX,k(XD)Sg(XR, ZX = k,Z \ ZX).

Proof. Consider all sum and product nodes N in Sg
which have X in their scope. We can split N into two
sets N′,N′′, where

N′ = {N ∈ N | DX,k ∈ desc(N)}
= {N ∈ N | λZ=X,k ∈ desc(N)}

(15)

and N′′ = N \ N′. When we set ZX = k, we get by
Lemma 1 that all N ∈ N′′ output 0.

We now show by induction that all N ∈ N′ have the
form

DX,k(XD)N(XR′ , ZX = k,Z′ \ {ZX}), (16)

where XR′ = XR ∩ sc(N) and Z′ = Z ∩ sc(N).
Let N1, . . . ,NK be a topologically ordered list of N′,
i.e. Nk /∈ desc(Nl) when k > l, where N1 is the in-
troduced product when constructing the gated SPN,
having DX,k and λZX=k as children, and NK is the
root node. Eq. (16) clearly holds for N1, since
N1(XD, ZX = k) = DX,k(XD)λZX=k(ZX = k). This
is the induction basis. For the induction step assume
that (16) holds for N1, . . . ,Nk. When Nk+1 is a sum

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

S, it computes∑
C∈ch(S)

wS,C C(X, ZX = k,Z′ \ {ZX}) (17)

=
∑

C∈ch(S)∩N′
wS,C C(X, ZX = k,Z′ \ {ZX})

+
∑

C∈ch(S)∩N′′
wS,C C(X, ZX = k,Z′ \ {ZX})︸ ︷︷ ︸

=0

(18)

= DX,k(XD)
∑

C∈ch(S)∩N′
wS,C C(XR′ , ZX = k,Z′ \ {ZX}),

(19)

i.e. (16) holds for sum nodes. When Nk+1 is a product
P, it must have a single child C in N′, since P itself is
contained in N′. All other children are neither in N′

nor N′′, due to decomposability. It is immediate, that
when (16) holds for C, it also holds for P. Thus, (16)
holds for all N′, in particular for the root NK , and the
proposition follows.

