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Abstract

We propose a non-parametric anomaly de-
tection algorithm for high dimensional data.
We score each datapoint by its average K-
NN distance, and rank them accordingly. We
then train limited complexity models to im-
itate these scores based on the max-margin
learning-to-rank framework. A test-point is
declared as an anomaly at α-false alarm level
if the predicted score is in the α-percentile.
The resulting anomaly detector is shown to
be asymptotically optimal in that for any
false alarm rate α, its decision region con-
verges to the α-percentile minimum volume
level set of the unknown underlying density.
In addition, we test both the statistical per-
formance and computational efficiency of our
algorithm on a number of synthetic and real-
data experiments. Our results demonstrate
the superiority of our algorithm over existing
K-NN based anomaly detection algorithms,
with significant computational savings.

1 Introduction

Anomaly detection is the problem of identifying sta-
tistically significant deviations in data from expected
normal behavior. It has found wide applications in
many areas such as credit card fraud detection, intru-
sion detection for cyber security, sensor networks and
video surveillance [Chandola et al., 2009, Hodge and
Austin, 2004].

In classical parametric methods [Basseville et al., 1993]
for anomaly detection, we assume the existence of a
family of functions characterizing the nominal den-
sity (the test data consists of examples belonging to
two classes–nominal and anomalous). Parameters are
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then estimated from training data by minimizing a loss
function. While these methods provide a statistically
justifiable solution when the assumptions hold true,
they are likely to suffer from model mismatch, and
lead to poor performance.

We focus on the non-parametric approach, with a view
towards minimum volume (MV) set estimation. Given
α ∈ (0, 1), the MV approach attempts to find the set of
minimum volume which has probability mass at least
1−α with respect to the unknown sample probability
distribution. Then given a new test point, it is de-
clared to be consistent with the data if it lies in this
MV set.

Approaches to the MV set estimation problem include
estimating density level sets [Nunez-Garcia et al.,
2003, Cuevas and Rodriguez-Casal, 2003] or estimating
the boundary of the MV set [Scott and Nowak, 2006,
Park et al., 2010]. However, these approaches suffer
from high sample complexity, and therefore are sta-
tistically unstable using high dimensional data. The
authors of [Zhao and Saligrama, 2009] score each test
point using the K-NN distance. Scores turn out to
yield empirical estimates of the volume of minimum
volume level sets containing the test point, and avoids
computing any high dimensional quantities. The pa-
pers [Hero, 2006, Sricharan and Hero, 2011] also take
a K-NN based approach to MV set anomaly detec-
tion. The second paper [Sricharan and Hero, 2011] im-
proves upon the computational performance of [Hero,
2006]. However, the test stage runtime of [Sricha-
ran and Hero, 2011] is of order O(dn), d being the
ambient dimension and n the sample size. The test
stage runtime of [Zhao and Saligrama, 2009] is of or-
der O(dn2 + n2 log(n)).

Computational inefficiencies of these K-NN based
anomaly detection methods suggests that a different
approach based on distance-based (DB) outlier meth-
ods (see [Orair et al., 2010] and references therein)
could possibly be leveraged in this context. DB meth-
ods primarily focus on the computational issue of iden-
tifying a pre-specified number of L points (outliers)
with largest K-NN distances in a database. Outliers
are identified by pruning examples with small K-NN
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distance. This works particularly well for small L.

In contrast, for anomaly detection, we not only need an
efficient scheme but also one that takes training data
(containing no anomalies) and generalizes well in terms
of AUC criterion on test-data where the number of
anomalies is unknown. We need schemes that predict
“anomalousness” for test-instances in order to adapt to
any false-alarm-level and to characterize AUCs. One
possible way to leverage DB methods is to estimate
anomaly scores based only on the L identified outliers
but this scheme generally has poor AUC performance
if there are a sizable fraction of anomalies. In this
context [Liu et al., 2008, Ting et al., 2010, Sricharan
and Hero, 2011] propose to utilize ORCA [Bay and
Schwabacher, 2003]. ORCA is a well-known ranking
DB method that provides intermediate estimates for
every instance in addition to the L outliers. They show
that while for small LORCA is highly efficient its AUC
performance is poor. For large L ORCA produces low
but somewhat meaningful AUCs but can be computa-
tionally inefficient. A basic reason for this AUC gap
is that although such rank-based DB techniques pro-
vide intermediate KNN estimates & outlier scores that
can possibly be leveraged, these estimates/scores are
often too unreliable for anomaly detection purposes.
Recently, [Wang et al., 2011] have considered strate-
gies based on LSH to further speed up rank based
DB methods. Our perspective is that this direction
is somewhat complementary. Indeed, we could also
employ Kernel-LSH [Kulis and Grauman, 2009] in our
setting to further speed up our computation.

In this paper, we propose a ranking based algorithm
which retains the statistical complexity of existing K-
NN work, but with far superior computational perfor-
mance. Using scores based on average KNN distance,
we learn a functional predictor through the pair-wise
learning-to-rank framework, to predict p-value scores.
This predictor is then used to generalize over unseen
examples. The test time of our algorithm is of order
O(ds), where s is the complexity of our model.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the problem setting and the moti-
vation. Detailed algorithms are described in Section 3
and 4. The asymptotic and finite-sample analyses are
provided in Section 5. Synthetic and real experiments
are reported in Section 6.

2 Problem Setting & Motivation

Let x = {x1, x2, ..., xn} be a given set of nominal d-
dimensional data points. We assume x to be sampled
i.i.d from an unknown density f0 with compact sup-
port in Rd. The problem is to assume a new data
point, η ∈ Rd, is given, and test whether η follows the

distribution of x. If f denotes the density of this new
(random) data point, then the set-up is summarized
in the following hypothesis test:

H0 : f = f0 vs. H1 : f 6= f0.

We look for a functional D : Rd → R such that D(η) >
0 =⇒ η nominal. Given such a D, we define its
corresponding acceptance region by A = {x : D(x) >
0}. We will see below that D can be defined by the
p-value.

Given a prescribed significance level (false alarm level)
α ∈ (0, 1), we require the probability that η does not
deviate from the nominal (η ∈ A), given H0, to be
bounded below by 1− α. We denote this distribution
by P (sometimes written P (not H1|H0)):

P (A) =

∫
A

f0(x) dx ≥ 1− α.

Said another way, the probability that η does deviate
from the nominal, given H0, should fall under the spec-
ified significance level α (i.e. 1−P (A) = P (H1|H0) ≤
α). At the same time, the false negative,

∫
A
f(x) dx,

must be minimized. Note that the false negative is the
probability of the event η ∈ A, given H1. We assume
f to be bounded above by a constant C, in which case∫
A
f(x) dx ≤ C ·λ(A), where λ is Lebesgue measure on

Rd. The problem of finding the most suitable accep-
tance region, A, can therefore be formulated as finding
the following minimum volume set:

U1−α := arg min
A

{
λ(A) :

∫
A

f0(x) dx ≥ 1− α
}
. (1)

In words, we seek a set A which captures at least a
fraction 1 − α of the probability mass, of minimum
volume.

3 Score Functions Based on K-NNG

In this section, we briefly review an algorithm us-
ing score functions based on nearest neighbor graphs
for determining minimum volume sets [Zhao and
Saligrama, 2009, Qian and Saligrama, 2012]. Given
a test point η ∼ f , define the p-value of η by

p(η) := P (x : f0(x) ≤ f0(η)) =

∫
{x:f0(x)≤f0(η)}

f0(x) dx.

Then, assuming technical conditions on the density f0

[Zhao and Saligrama, 2009], it can be shown that p
defines the minimum volume set:

U1−α = {x : p(x) ≥ α}.

Thus if we know p, we know the minimum volume
set, and we can declare anomaly simply by checking
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whether or not p(η) < α. However, p is based on
information from the unknown density f0, hence we
must estimate p.

Set d(x, y) to be the Euclidean metric on Rd. Given a
point x ∈ Rd, we form its associated K nearest neigh-
bor graph (K-NNG), relative to x, by connecting it to
the K closest points in x\{x}. Let D(i)(x) denote the
distance from x to its ith nearest neighbor in x \ {x}.
Set

Gx(x) =
1

K

K∑
j=1

D(j)(x). (2)

Now define the following score function:

Rn(η) :=
1

n

n∑
i=1

1{Gx(η)<Gx(xi)} (3)

This function measures the relative concentration of
point η compared to the training set. In [Qian and
Saligrama, 2012], given a pre-defined significance level
α (e.g. 0.05), they declare η to be anomalous if
Rn(η) ≤ α. This choice is motivated by its close con-
nection to multivariate p-values. Indeed, it is shown in
[Qian and Saligrama, 2012] that this score function is
an asymptotically consistent estimator of the p-value:

lim
n→∞

Rn(η) = p(η) a.s.

This result is attractive from a statistical viewpoint,
however the test-time complexity of the K-NN dis-
tance statistic grows as O(dn). This can be prohibitive
for real-time applications. Thus we are compelled to
learn a score function respecting the K-NN distance
statistic, but with significant computational savings.
This is achieved by mapping the data set x into a re-
producing kernel Hilbert space (RKHS), H, with ker-
nel k and inner product 〈·, ·〉. We denote by Φ the
mapping Rd → H, defined by Φ(xi) = k(xi, ·). We
then optimally learn a ranker g ∈ H based on the or-
dered pair-wise ranking information,

{(i, j) : Gx(xi) > Gx(xj)}

and construct the scoring function as

R̂n(η) :=
1

n

n∑
i=1

1{〈g,Φ(η)〉<〈g,Φ(xi)〉}. (4)

It turns out that R̂ is an asymptotic estimator of the
p-value (see Section 5) and thus we will say a test point
η is anomalous if R̂(η) ≤ α.

4 Anomaly Detection Algorithm

In this section we describe our rank-based anomaly
detection algorithm (RankAD), and discuss several of
its properties and advantages.

Algorithm 1: RankAD Algorithm

1. Input: Nominal training data x = {x1, x2, ..., xn},
desired false alarm level α, and test point η.

2. Training Stage:

(a) Calculate Kth nearest neighbor distances Gx(xi),
and calculate Rn(xi) for each nominal sample xi, using
Eq.(2) and Eq.(3).

(b) Quantize {Rn(xi), i = 1, 2, ..., n} uniformly into
m levels: rq(xi) ∈ {1, 2, ...,m}. Generate preference
pairs (i, j) whenever their quantized levels are differ-
ent: rq(xi) > rq(xj).

(c) Set P = {(i, j) : rq(xi) > rq(xj)}. Solve:

min
g,ξij

:
1

2
||g||2 + C

∑
(i,j)∈P

ξij (5)

s.t. 〈g, Φ(xi)− Φ(xj)〉 ≥ 1− ξij , ∀(i, j) ∈ P
ξij ≥ 0

(d) Let ĝ denote the minimizer. Compute and sort:
ĝ(·) = 〈ĝ,Φ(·)〉 on x = {x1, x2, ..., xn}.

3. Testing Stage:

(a) Evaluate ĝ(η) for test point η.

(b) Compute the score: R̂n(η) = 1
n

∑n
i=1 1{ĝ(η)<ĝ(xi)}.

This can be done through a binary search over sorted
{ĝ(xi), i = 1, ..., n}.

(c) Declare η as anomalous if R̂n(η) ≤ α.

Remark 1: The standard learning-to-rank setup
[Joachims, 2002] is to assume non-noisy input pairs.
Our algorithm is based on noisy inputs, where
the noise is characterized by an unknown, high-
dimensional distribution. Yet we are still able to show
the asymptotic consistency of the obtained ranker in
Sec.5.

Remark 2: For the learning-to-rank step Eq.(5), we
equip the RKHS H with the RBF kernel k(x, x′) =

exp

(
−‖x− x

′‖2

σ2

)
. The algorithm parameter C and

RBF kernel bandwidth σ can be selected through cross
validation, since this step is a supervised learning pro-
cedure based on input pairs. We use cross valida-
tion and adopt the weighted pairwise disagreement loss
(WPDL) from [Lan et al., 2012] for this purpose.

Remark 3: The number of quantization levels, m,
impacts training complexity as well as performance.
When m = n, all

(
n
2

)
preference pairs are generated.
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This scenario has the highest training complexity. Fur-
thermore, large m tends to more closely follow rank-
ings obtained from K-NN distances, which may or may
not be desirable. K-NN distances can be noisy for
small training data sizes. While this raises the ques-
tion of choosing m, we observe that setting m to be
3 ∼ 5 works fairly well in practice. We fix m = 3
in all of our experiments in Sec.6. m = 2 is insuffi-
cient to allow flexible false alarm control, as will be
demonstrated next.

Remark 4: Let us mention the connection with
ranking SVM. Ranking SVM is an algorithm for the
learning-to-rank problem, whose goal is to rank un-
seen objects based on given training data and their
corresponding orderings. Our novelty lies in building
a connection between learning-to-rank and anomaly
detection:
(1) While there is no such natural “input ordering”
in anomaly detection, we create this order on training
samples through their K-NN scores.
(2) When we apply our detector on an unseen object
it produces a score that approximates the unseen ob-
ject’s p-value. We theoretically justify this linkage,
namely, our predictions fall in the right quantile (The-
orem 3). We also empirically show test-stage compu-
tational benefits.

4.1 False alarm control

In this section we illustrate through a toy example how
our learning method approximates minimum volume
sets. We consider how different levels of quantization
impact level sets. We will show that for appropriately
chosen quantization levels our algorithm is able to si-
multaneously approximate multiple level sets. In Sec-
tion 5 we show that the normalized score Eq.(4), takes
values in [0, 1], and converges to the p-value function.
Therefore we get a handle on the false alarm rate. So
null hypothesis can be rejected at different levels sim-
ply by thresholding R̂n(η).

Toy Example:
We present a simple example in Fig. 1 to demon-
strate this point. The nominal density f ∼
0.5N ([4; 1] , 0.5I) + 0.5N ([4;−1] , 0.5I). We first con-
sider single-bit quantization (m = 2) using RBF ker-
nels (σ = 1.5) trained with pairwise preferences be-
tween p-values above and below 3%. This yields a
decision function ĝ2(·). The standard way is to claim
anomaly when ĝ2(x) < 0, corresponding to the out-
most orange curve in (a). We then plot different level
curves by varying c > 0 for ĝ2(x) = c, which appear
to be scaled versions of the orange curve. While this
quantization appears to work reasonably for α-level
sets with α = 3%, for a different desired α-level, the
algorithm would have to retrain with new preference

pairs. On the other hand, we also train rankAD with
m = 3 (uniform quantization) and obtain the ranker
ĝ3(·). We then vary c for ĝ3(x) = c to obtain vari-
ous level curves shown in (b), all of which surprisingly
approximate the corresponding density level sets well.
We notice a significant difference between the level sets
generated with 3 quantization levels in comparison to
those generated for two-level quantization. In the ap-
pendix we show that ĝ(x) asymptotically preserves the
ordering of the density, and from this conclude that
our score function R̂n(x) approximates multiple den-
sity level sets (p-values). Also see Section 5 for a dis-
cussion of this. However in our experiments it turns
out that we just need m = 3 quantization levels in-
stead of m = n (

(
n
2

)
pairs) to achieve flexible false

alarm control and do not need any re-training.

4.2 Time Complexity

For training, the rank computation step requires com-
puting all pair-wise distances among nominal points
O(dn2), followed by sorting for each point O(n2 log n).
So the training stage has the total time complexity
O(n2(d+ log n) +T ), where T denotes the time of the
pair-wise learning-to-rank algorithm. At test stage,
our algorithm only evaluates ĝ(η) on η and does a bi-
nary search among ĝ(x1), . . . , ĝ(xn). The complexity is
O(ds+log n), where s is the number of support vectors.
This has some similarities with one-class SVM where
the complexity scales with the number of support vec-
tors [Schölkopf et al., 2001]. Note that in contrast
nearest neighbor-based algorithms, K-LPE, aK-LPE
or BP-K-NNG [Zhao and Saligrama, 2009, Qian and
Saligrama, 2012, Sricharan and Hero, 2011], require
O(nd) for testing one point. It is worth noting that
s ≤ n comes from the “support pairs” within the in-
put preference pair set. Practically we observe that for
most data sets s is much smaller than n in the experi-
ment section, leading to significantly reduced test time
compared to aK-LPE, as shown in Table.1. It is worth
mentioning that distributed techniques for speeding up
computation of K-NN distances [Bhaduri et al., 2011]
can be adopted to further reduce test stage time.

5 Analysis

In this section we present the theoretical analysis of
our ranking-based anomaly detection approach.

5.1 Asymptotic Consistency

As mentioned earlier in the paper, it is shown in [Qian
and Saligrama, 2012] that the average K-NN distance
statistic converges to the p-value function:

Theorem 1. With K = O(n0.5), we have
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Figure 1: Level curves of rankAD for different quantization levels. 1000 i.i.d. samples are drawn from a 2-component
Gaussian mixture density. Left figure(a) depicts performance with single-bit quantization (m = 2). To learn rankAD
we quantized preference pairs at 3% and σ = 1.5 in our RBF kernel. Right figure(b) shows rankAD with 3-levels of
quantization and σ = 1.5. (a) shows level curves obtained by varying the offset c for ĝ2(x) = c. Only the outmost curve
(c = 0) approximates the oracle density level set well while the inner curves (c > 0) appear to be scaled versions of
outermost curve. (b) shows level curves obtained by varying c for ĝ3(x) = c. Interestingly we observe that the inner most
curve approximates peaks of the mixture density.

limn→∞Rn(η) = p(η).

The goal of our rankAD algorithm is to learn the order-
ing of the p-value. This theorem therefore guarantees
that asymptotically, the preference pairs generated as
input to the rankAD algorithm are reliable. Note that
the definition of G in [Qian and Saligrama, 2012] is
slightly different than the one given in equation (2).
However, for our purposes this difference is not worth
detailing.

What we claim in this paper, and prove in the ap-
pendix, is the following consistency result of our
rankAD algorithm. Note that the use of quantiza-
tion (c.f. Section 4) does not affect the conclusion of
this theorem, hence we assume there is none. Indeed,
quantization is a computational tool. From a statisti-
cal asymptotic consistency perspective quantization is
not an issue.

Theorem 2. With K = O(n0.5), as n→∞, R̂n(η)→
p(η).

The difficulty in this theorem arises from the fact that
the score, R̂n(η), is based on the ranker, ĝ, which is
learned from data with high-dimensional noise. More-
over, the noise is distributed according to an unknown
probability measure. For the proof of this theorem,
we begin with the law of large numbers. Suppose
for any n ≥ 1, a function G is found such that
f(xi) < f(xj) =⇒ G(xi) < G(xj). Note that in

Section 3 we use K-NN distance surrogates which re-
verses the order but the effect is the same and should
not cause any confusion. Then it can be shown that

1

n

n∑
i=1

1{G(xi)<G(η)} → p(η).

Thus we wish to prove that the output of our rankAD
algorithm is such a function.

The first step in our proof is to show that the solution
to our rankAD algorithm, ĝ, is consistent [Steinwart,
2001]. Fix an RKHS H on the input space X ⊂ Rd
with RBF kernel k. We denote by L the hinge loss. We
may write ĝ as the solution to the following regularized
minimization problem,

ĝ = arg min
f∈H
RL,T (f) + λn‖f‖2H ,

where RL,T (f) = 1
n2

∑
i,j L(f(xi)− f(xj)). T denotes

the pairs from the sample x = {x1, . . . , xn}, so this
is a loss with respect to the empirical measure. The
expected risk is denoted

RL,P (f) = Ex[RL,T (f)].

Then consistency means that, under appropriate con-
ditions as λn → 0 and n→∞ (see appendix), we have

Ex[RL,T (ĝ)]→ min
f∈H
RL,P (f). (6)
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The proof of this claim requires a concentration of
measure result relating RL,T (f) to its expectation,
RL,P (f), uniformly over f ∈ H. The argument fol-
lows closely that made in [Cucker and Smale, 2001],
except we make use of McDiarmid’s inequality.

Finally we show that if ĝ satisfies (6), then it ranks
samples according to their density: f(xi) > f(xj) =⇒
ĝ(xi) > ĝ(xj).

5.2 Finite-Sample Generalization Result

Based on a sample {x1, . . . , xn}, our approach learns a
ranker gn, and computes the values gn(x1), . . . , gn(xn).

Let g
(1)
n ≤ g

(2)
n ≤ · · · ≤ g

(n)
n be the ordered permuta-

tion of these values. For a test point η, we evalu-
ate gn(η) and compute R̂n(η). For a prescribed false
alarm level α, we define the decision region for claim-
ing anomaly by

Rα = {x : R̂n(x) ≤ α}

= {x :

n∑
j=1

1{gn(x)≤gn(xj)} ≤ αn}

= {x : gn(x) < gdαnen }

where dαne denotes the ceiling integer of αn.

We give a finite-sample bound on the probability that
a newly drawn nominal point η lies in Rα. In the
following Theorem, F denotes a real-valued function
class of kernel based linear functions equipped with
the `∞ norm over a finite sample x = {x1, . . . , xn}:

‖f‖`x∞ = max
x∈x
|f(x)|.

Note that F contain solutions to an SVM-type prob-
lem, so we assume the output of our rankAD algo-
rithm, gn, is an element of F . We let N (γ,F , n) de-
note the covering number of F with respect to this
norm (see appendix for details).

Theorem 3. Fix a distribution P on Rd and suppose
x1, . . . , xn are generated iid from P . For g ∈ F let
g(1) ≤ g(2) ≤ · · · ≤ g(n) be the ordered permutation
of g(x1), . . . , g(xn). Then for such an n-sample, with
probability 1 − δ, for any g ∈ F , 1 ≤ m ≤ n and
sufficiently small γ > 0,

P
{
x : g(x) < g(m) − 2γ

}
≤ m− 1

n
+ ε(n, k, δ),

where ε(n, k, δ) = 2
n (k+ log n

δ ), k = dlogN (γ,F , 2n)e.

Remarks

(1) To interpret the theorem notice that the LHS
is precisely the probability that a test point drawn
from the nominal distribution has a score below the

α ≈ m−1
n percentile. We see that this probability

is bounded from above by α plus an error term that
asymptotically approaches zero. This theorem is true
irrespective of α and so we have shown that we can
simultaneously approximate multiple level sets.
(2) A similar inequality holds for the event giving a
lower bound on g(x). However, let us emphasize that
lower bounds are not meaningful for our context. The
ranks g(1) ≤ g(2) ≤ · · · ≤ g(n) are sorted in increasing
order. A smaller g(x) signifies that x is more of an
outlier. Points below the lowest rank g(1) correspond
to the most extreme outliers.

6 Experiments

In this section, we carry out point-wise anomaly de-
tection experiments on synthetic and real-world data
sets. We compare our ranking-based approach against
density-based methods BP-K-NNG [Sricharan and
Hero, 2011] and aK-LPE [Qian and Saligrama, 2012],
and two other state-of-art methods based on random
sub-sampling, isolated forest [Liu et al., 2008] (iFor-
est) and massAD [Ting et al., 2010]. One-class SVM
[Schölkopf et al., 2001] is included as a baseline.

6.1 Implementation Details

In our simulations, the Euclidean distance is used as
distance metric for all candidate methods. For one-
class SVM the lib-SVM codes [Chang and Lin, 2011]
are used. The algorithm parameter and the RBF ker-
nel parameter for one-class SVM are set using the same
configuration as in [Ting et al., 2010]. For iForest
and massAD, we use the codes from the websites of
the authors, with the same configuration as in [Ting
et al., 2010]. For aK-LPE we use the average k-NN
distance Eq.(2) with fixed k = 20 since this appears to
work better than the actual K-NN distance of [Zhao
and Saligrama, 2009]. Note that this is also sug-
gested by the convergence analysis in Thm 1 [Qian and
Saligrama, 2012]. For BP-K-NNG, the same k is used
and other parameters are set according to [Sricharan
and Hero, 2011].

For our rankAD approach we follow the steps de-
scribed in Algorithm 1. We first calculate the ranks
Rn(xi) of nominal points according to Eq.(3) based
on aK-LPE. We then quantize Rn(xi) uniformly into
m=3 levels rq(xi) ∈ {1, 2, 3} and generate pairs (i, j) ∈
P whenever rq(xi) > rq(xj). We adapt the routine
from [Chapelle and Keerthi, 2010] and extend it to a
kernelized version for the learning-to-rank step Eq.(5).
The trained ranker is then adopted in Eq.(4) for test
stage prediction. We point out some implementation
details of our approach as follows.
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(1) Resampling: We follow [Qian and Saligrama, 2012]
and adopt the U-statistic based resampling to compute
aK-LPE ranks. We randomly split the data into two
equal parts and use one part as “nearest neighbors” to
calculate the ranks (Eq.(2, 3)) for the other part and
vice versa. Final ranks are averaged over 20 times of
resampling.

(2) Quantization levels & K-NN For real experiments
with 2000 nominal training points, we fix k = 20 and
m = 3. These values are based on noting that the
detection performance does not degrade significantly
with smaller quantization levels for synthetic data.
The k parameter in K-NN is chosen to be 20 and is
based on Theorem 1 and results from synthetic exper-
iments (see below).

(3) Cross Validation using pairwise disagreement loss:
For the rank-SVM step we use a 4-fold cross valida-
tion to choose the parameters C and σ. We vary C ∈
{0.001, 0.003, 0.01, . . . , 300, 1000}, and the RBF kernel
parameter σ ∈ Σ = {2iD̃K , i = −10,−9, . . . , 9, 10},
where D̃K is the average 20-NN distance over nominal
samples. The pair-wise disagreement indicator loss is
adopted from [Lan et al., 2012] for evaluating rankers
on the input pairs:

L(f) =
∑

(i,j)∈P

1{f(xi)<f(xj)}

Reported AUC performances are averaged over 5 runs.

6.2 Synthetic Data sets

We first apply our method to a Gaussian toy problem,
where the nominal density is:

f0 ∼ 0.2N ([5; 0] , [1, 0; 0, 9])+0.8N ([−5; 0] , [9, 0; 0, 1]) .

Anomaly follows the uniform distribution within
{(x, y) : −18 ≤ x ≤ 18,−18 ≤ y ≤ 18}. The goal
here is to understand the impact of different param-
eters (k-NN parameter and quantization level) used
by RankAD. Fig.2 shows the level curves for the es-
timated ranks on the test data. As indicated by the
asymptotic consistency (Thm.2) and the finite sample
analysis (Thm.3), the empirical level curves of rankAD
approximate the level sets of the underlying density
quite well. We vary k and m and evaluate the AUC
performances of our approach shown in Table 1. The
Bayesian AUC is obtained by thresholding the likeli-
hood ratio using the generative densities. From Table
1 we see the detection performance is quite insensitive
to the k-NN parameter and the quantization level pa-
rameter m, and for this simple synthetic example is
close to Bayesian performance.
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Figure 2: Level sets for the estimated ranks. 600 training
points are used for training.

Table 1: AUC performances of Bayesian detector, aK-
LPE, and rankAD with different values of k and m. 600
training points are used for training. For test 500 nominal
and 1000 anomalous points are used.

AUC k=5 k=10 k=20 k=40

m=3 0.9206 0.9200 0.9223 0.9210
m=5 0.9234 0.9243 0.9247 0.9255
m=7 0.9226 0.9228 0.9234 0.9213
m=10 0.9201 0.9208 0.9244 0.9196

aK-LPE 0.9192 0.9251 0.9244 0.9228
Bayesian 0.9290 0.9290 0.9290 0.9290

Table 2: Data characteristics of the data sets used in
experiments. N is the total number of instances. d the
dimension of data. The percentage in brackets indicates
the percentage of anomalies among total instances.

data sets N d anomaly class

Annthyroid 6832 6 classes 1,2
Forest Cover 286048 10 class 4 vs. class 2

HTTP 567497 3 attack
Mamography 11183 6 class 1

Mulcross 262144 4 2 clusters
Satellite 6435 36 3 smallest classes
Shuttle 49097 9 classes 2,3,5,6,7
SMTP 95156 3 attack

6.3 Real-world data sets

We conduct experiments on several real data sets used
in [Liu et al., 2008] and [Ting et al., 2010], including 2
network intrusion data sets HTTP and SMTP from
[Yamanishi et al., 2000], Annthyroid, Forest Cover
Type, Satellite, Shuttle from UCI repository [Frank
and Asuncion, 2010], Mammography and Mulcross
from [Rocke and Woodruff, 1996]. Table 2 illustrates
the characteristics of these data sets.

We randomly sample 2000 nominal points for training.
The rest of the nominal data and all of the anomalous
data are held for testing. Due to memory limit, at
most 80000 nominal points are used at test time. The

796



Learning Efficient Anomaly Detectors from K-NN Graphs

Table 3: Anomaly detection AUC performance and test stage time of various methods.

Data Sets rankAD one-class svm BP-K-NNG aK-LPE iForest massAD

AUC

Annthyroid 0.844 0.681 0.823 0.753 0.856 0.789
Forest Cover 0.932 0.869 0.889 0.876 0.853 0.895

HTTP 0.999 0.998 0.995 0.999 0.986 0.995
Mamography 0.909 0.863 0.886 0.879 0.891 0.701

Mulcross 0.998 0.970 0.994 0.998 0.971 0.998
Satellite 0.885 0.774 0.872 0.884 0.812 0.692
Shuttle 0.996 0.975 0.985 0.995 0.992 0.992
SMTP 0.934 0.751 0.902 0.900 0.869 0.859

test time

Annthyroid 0.338 0.281 2.171 2.173 1.384 0.030
Forest Cover 1.748 1.638 8.185 13.41 7.239 0.483

HTTP 0.187 0.376 2.391 11.04 5.657 0.384
Mamography 0.237 0.223 0.981 1.443 1.721 0.044

Mulcross 2.732 2.272 8.772 13.75 7.864 0.559
Satellite 0.393 0.355 0.976 1.199 1.435 0.030
Shuttle 1.317 1.318 6.404 7.169 4.301 0.186
SMTP 1.116 1.105 7.912 11.76 5.924 0.411

time for testing all test points and the AUC perfor-
mance are reported in Table 3.

We observe that while being faster than BP-K-NNG,
aK-LPE and iForest, and comparable to one-class
SVM during test stage, our approach also achieves
superior performance for all data sets. The density
based aK-LPE and BP-K-NNG has somewhat good
performance, but its test-time degrades with training
set size. massAD is very fast at test stage, but has
poor performance for several data sets.

One-class SVM Comparison The baseline one-class
SVM has good test time due to the similar O(dS1)
test stage complexity where S1 denotes the number of
support vectors. However, its detection performance
is pretty poor, because one-class SVM training is in
essence approximating one single α-percentile density
level set. α depends on the parameter of one-class
SVM, which essentially controls the fraction of points
violating the max-margin constraints [Schölkopf et al.,
2001]. Decision regions obtained by thresholding with
different offsets are simply scaled versions of that par-
ticular level set. Our rankAD approach significantly
outperforms one-class SVM, because it has the ability
to approximate different density level sets.

aK-LPE & BP-K-NNG Comparison: Computation-
ally RankAD significantly outperforms density-based
aK-LPE and BP-K-NNG, which is not surprising
given our discussion in Sec.4.3. Statistically, RankAD
appears to be marginally better than aK-LPE and BP-
K-NNG for many datasets and this requires more care-
ful reasoning. To evaluate the statistical significance
of the reported test results we note that the number
of test samples range from 5000-500000 test samples
with at least 500 anomalous points. Consequently, we

can bound test-performance to within 2-5% error with
95% confidence (< 2% for large datasets and < 5% for
the smaller ones (Annthyroid, Mamography, Satellite)
) using standard extension of known results for test-set
prediction [Langford, 2005]. After accounting for this
confidence RankAD is marginally better than aK-LPE
and BP-K-NNG statistically. For aK-LPE we use re-
sampling to robustly ranked values (see Sec. 6.1) and
for RankAD we use cross-validation (CV) (see Sec. 6.1)
for rank prediction. Note that we cannot use CV for
tuning predictors for detection because we do not have
anomalous data during training. All of these argu-
ments suggests that the regularization step in RankAD
results in smoother level sets and better accounts for
smoothness of true level sets (also see Fig 6.2) in some
cases, unlike NN methods.

7 Conclusions

We presented a novel anomaly detection framework
based on combining statistical density information
with a discriminative ranking procedure. Our scheme
learns a ranker over all nominal samples based on
the k-NN distances within the graph constructed from
these nominal points. This is achieved through a pair-
wise learning-to-rank step, where the inputs are prefer-
ence pairs (xi, xj) and asymptotically models the situ-
ation that data point xi is located in a higher density
region relative to xj . We then show the asymptotic
consistency of our approach, which allows for flexible
false alarm control during test stage. We also provide
a finite-sample generalization bound on the empirical
false alarm rate of our approach. Experiments on syn-
thetic and real data sets demonstrate our approach has
state-of-art statistical performance as well as low test
time complexity.
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