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Appendices
This document contains supplementary material for the
submission “Gamma Processes, Stick-Breaking, and Vari-
ational Inference”.

A Variational inference details

To effectively perform variational inference, we re-write G
as a single sum of weighted atoms, using indicator vari-
ables {dk} for the rounds in which the atoms occur, similar
to Paisley et al. (2010). We re-state our construction of the
gamma CRM that we use for the inference algorithms:

G =

∞∑
k=1

Eke
−Tkδωk

, (1)

where Ek
iid∼ Exp(c), Tk

ind∼
Gamma(dk, α),

∞∑
k=1

1(dk=r)
iid∼ Poisson(γ), ωk

iid∼
1
γH0. Here dk denotes the round in which atom k appears,

and may be defined as dk
∆
= 1 +

∞∑
i=1

I

{
i∑

j=1

Cj < k

}
.

Conversely, given the round indicators d = {dk},
we can recover the round-specific atom counts as

Ci =
∞∑
k=1

I(dk = i).

We place gamma priors on α, γ and c : α ∼
Gamma(a1, a2), γ ∼ Gamma(b1, b2), c ∼ Gamma(c1, c2).
Denoting the data, the latent prior variables and the model
hyperparameters by D,Π and Λ respectively, the full like-
lihood may be written as P (D,Π|Λ) =

P (D,Π−G|ΠG,Λ) · P (α) · P (γ) · P (c) · P (d|γ)

·
K∏
k=1

P (Ek|c) · P (Tk|dk, α) ·
N∏
n=1

P (znk|Ek, Tk),

with Π−G denoting the set of the latent variables excluding
those from the Poisson-Gamma prior. The distribution of d

is given by P (d|γ) =

∞∏
r=1

γ
∑

k 1(dk=r)(∑
k 1(dk=r)

)
!
·exp

−γI
 ∞∑
r′=r

∞∑
k=1

1(dk=r′ ) > 0

 .

See Paisley et al. (2011) for discussions on how to approx-
imate some of these factors in the variational algorithm.

A.1 The Variational Prior Distribution

Mean-field variational inference involves minimizing the
KL divergence between the model posterior, and a suitably
constructed variational distribution which is used as a more
tractable alternative to the actual posterior distribution. To
that end, we propose a fully-factorized variational distribu-
tion on the Poisson-Gamma prior as follows:

Q = q(α)·q(γ)·q(c)·
K∏
k=1

q(Ek)·q(Tk)·q(dk)·
N∏
n=1

q(znk),

where q(Ek) ∼ Gamma(ξ́k, έk), q(Tk) ∼
Gamma(úk, ύk), q(α) ∼ Gamma(κ1, κ2), q(γ) ∼
Gamma(τ1, τ2), q(c) ∼ Gamma(ρ1, ρ2), q(znk) ∼
Poisson(λnk), q(dk) ∼ Mult(ϕk).

The evidence lower bound (ELBO) may therefore be writ-
ten as L = EQ logP (D,Π|Λ) − EQ logQ, with the rele-
vant distributions described above.

A.2 Variational parameter updates

We first re-state the closed form updates for the variational
distributions on the prior variables. The updates for the hy-
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perparameters in q(Ek), q(α), q(c) and q(γ) are as follows:

ξ́k =

N∑
n=1

EQ(znk) + 1, έk = E(c) +N × EQ
[
e−Tk

]
,

κ1 =

K∑
k=1

∑
r≥1

rϕk(r) + a1, κ2 =

K∑
k=1

EQ(Tk) + a2,

ρ1 = c1 +K, ρ2 =

K∑
k=1

EQ(Ek) + c2,

τ1 = b1 +K, τ2 =
∑
r≥1

{
1−

K∏
k=1

r−1∑
ŕ=1

ϕk(ŕ)

}
+ b2.

The updates for the multinomial probabilities in q(dk) are
given by:

ϕk(r) ∝ exp{rEQ(logα)− log Γ(r) + (r − 1)EQ(log Tk)−

ζ ·
∑
i 6=k

ϕi(r)− EQ(γ)

r∑
j=2

∏
k′ 6=k

j−1∑
r′=1

ϕk′ (r
′
)}.

Next we describe the gradient ascent updates on q(Tk) and
the updates on q(Π−G) and q(znk).

The gradients for the two variational parameters in q(Tk)
are:

∂L
∂úk

=
∑
r≥1

(r − 1)ϕk(r)ψ
′
(úk)− EQ(α)

ύk

−
N∑
n=1

EQ(Ek)

(
ύk

ύk + 1

)úk

· log

(
ύk

ύk + 1

)

−
N∑
n=1

EQ(znk)
1

ύk
− (úk − 1)ψ

′
(úk)− 1

∂L
∂ύk

= −
∑
r≥1

(r − 1)ϕk(r)
1

ύk
+ EQ(α)

úk

(ύk)
2

−
N∑
n=1

EQ(Ek)úk
ύk
úk−1

(ύk + 1)úk+1

+

N∑
n=1

EQ(znk)
úk

(ύk)
2 −

1

ύk
.

For the topic modeling problems, we model the observed
vocabulary-vs-document corpus count matrix D as D ∼
Poi(ΦZ), where the V × K matrix Φ models the factor
loadings, and the K×N matrix Z models the actual factor
counts in the documents. We put theK−truncated Poisson-
Gamma prior on Z, and put a Dirichlet(β1, . . . , βV ) prior
on the columns of Φ.

The variational distribution Q consequently gets a
Dirichlet(Φ|{b}k) distribution multiplied to it, where b =
(b1, . . . , bV ) are the variational Dirichlet hyperparameters.

This setup does not immediately lend itself to closed form
updates for the b-s, so we resort to gradient ascent. The
gradient of the ELBO with respect to each variational hy-
perparameter is

∂L
∂bvk

= −EQ(znk) ·
∑
v bvk − bvk

(
∑
v bvk)

2 + ψ
′
(bvk)

·

(
βv − bvk +

∑
n

dvn

)
+ ψ

′
(
∑
v

bvk)×(∑
v

bvk − V − βv −
∑
n

dvn + 1

)
.

In practice however we found a closed-form update facil-
itated by a simple lower bound on the ELBO to converge
faster. We describe the update here. First note that the part
of the ELBO relevant to a potential closed form variational
update of φvk can be written as

L = −φvk ·
∑
n

EQ(znk) +
∑
n

dvn · log φvk + · · · ,

which can then be lower bounded as

L ≥ log φvk ·

(
−
∑
n

EQ(znk) +
∑
n

dvn

)
+ · · · .

This allows us to analytically update bvk as bvk =
−
∑
n EQ(znk) +

∑
n dvn + βv . This frees us from hav-

ing to choose appropriate corpus-specific initializations and
learning rates for the Φs.

A similar lower bound on the ELBO allows us to update the
variational parameters of q(znk) as λnk = −1−

∑
v dvn+

EQ(logEk) + EQ(Tk).

B Variational inference using denormalized
DP construction

We describe our algorithm derived from the simpler con-
struction of the Gamma process by multiplying the stick-
breaking construction of the Dirichlet process by a Gamma
random variable. The construction can be written as:

G = G0

∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δωi ,

where G0 ∼ Gamma(α, c), Vi
iid∼ Beta(1, α), ωi

iid∼
H0.

We use an equivalent form of the construction that is simi-
lar to the one used above :

G = G0

∞∑
k=1

Vke
−Tkδωk

,
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where G0 ∼ Gamma(α, c), Vk
iid∼ Beta(1, α), Tk

ind∼
Gamma(k − 1, α), ωi

iid∼ H0.

As before, we place gamma priors on α and c : α ∼
Gamma(a1, a2), c ∼ Gamma(c1, c2).

Our variational distribution for this prior is as follows:

Q = q(G0) · q(α) · q(c) ·
K∏
k=1

q(Vk) · q(Tk) ·
N∏
n=1

q(znk),

where q(G0) ∼ Gamma(g1, g2), q(Vk) ∼
Beta(νk1, νk2), q(Tk) ∼ Gamma(tk1, tk2), q(α) ∼
Gamma(κ1, κ2), q(c) ∼ Gamma(ρ1, ρ2), q(znk) ∼
Poisson(λnk).

The closed form updates for the variational hyperparame-
ters for α,G0, and c are as follows:

κ1 = a1, κ2 = a2 − EQ(logG0)−
∑
k

EQ(log(1− Vk)

+
∑
k

EQ(Tk),

g1 = α+

N∑
n=1

∑
k

EQ(znk), g2 = N ·
∑
k

EQ(Vke
−Tk),

ρ1 = c1, ρ2 = c2 + EQ(G0).

The updates for q(Vk) and q(Tk) are not closed form, ne-
cessitating gradient ascent steps. The gradients for the vari-
ational parameters in q(Vk) are:

∂L
∂νk1

= ψ
′
(νk1 + νk2)

[
νk1 + νk2 − α−

N∑
n=1

EQ(znk)− 1

]

+ψ
′
(νk1) ·

[
N∑
n=1

EQ(znk)− νk1 + 1

]
−N · EQ

(
G0e

−Tk
) νk2

νk1 + νk2

∂L
∂νk2

= ψ
′
(νk1 + νk2)

[
νk1 + νk2 − α−

N∑
n=1

EQ(znk)− 1

]
−N · EQ

(
G0e

−Tk
) νk1

νk1 + νk2
+ ψ

′
(νk2) · [α− νk2] .

The gradients for the variational parameters in q(Tk) are:

∂L
∂tk1

= 1 + ψ
′
(tk1) · (k − tk1 − 1)−

log tk2 −
1

tk2

(
α+

N∑
n=1

EQ(znk)

)

−N · EQ(G0Vk) · ∂

∂tk1

(
tk2

tk2 + 1

)tk1

∂L
∂tk2

=
tk1

t2k2

(α+

N∑
n=1

EQ(znk))− 1

tk2
(k − 1)

−N · EQ(G0Vk) · ∂

∂tk2

(
tk2

tk2 + 1

)tk1

.

C Markov chain Monte Carlo sampling
details

We re-write the construction of the Poisson-Gamma prior:

G =

∞∑
k=1

Eke
−Tkδωk

,

Ek
iid∼ Exp(c), Tk

ind∼ Gamma(dk, α),
∞∑
k=1

1(dk=r)
iid∼

Pois(γ), ωk
iid∼ 1

γH0. We put improper priors on α and
c, and a noninformative Gamma prior on γ. The indicator
counts are given byZnk ∼ Pois(gk), where gk = Eke

−Tk .
To avoid sampling the atom weights Ek and Tk, we inte-
grate them out using Monte Carlo techniques in the sam-
pling steps for the prior.

C.1 Sampling the round indicators

The conditional posterior for the round indicators d =
{dk}Kk=1 can be written as

p
(
dk = i|{dl}k−1

l=1 , {Znk}
N
n=1, α, c, γ

)
∝ p

(
{Znk}Nn=1|dk = i, α, c

)
p
(
dk = i|{dl}k−1

l=1

)
.

For the first factor, we collapse out the stick-breaking
weights and approximate the resulting integral using
Monte-Carlo techniques as follows:

p
(
{Znk}Nn=1|dk = i, α, c

)
=

∫
[0,∞]i

N∏
n=1

Pois(Znk|gk)dG

≈ 1

S

S∑
s=1

N∏
n=1

Pois(Znk|g(s)
k ),

where g(s)
k = E

(s)
k e−T

(s)
k

d
= V

(s)
k,dk

∏dk
l=1(1−V (s)

kl ). Here S
is the number of simulated samples from the integral over
the stick-breaking weights. We take S = 1000 in our ex-
periments.

The second factor is the same as Paisley et al. (2010):

p(dk = d|γ, {dl}k−1
l=1 ) =

0 if d < dk−1

1−
∑Dk−1

t=1 Pois(t|γ)

1−
∑Dk−1−1

t=1 Pois(t|γ)
if d = dk−1(

1− 1−
∑Dk−1

t=1 Pois(t|γ)

1−
∑Dk−1−1

t=1 Pois(t|γ)

)
(1− Pois(0|γ))Pois(0|γ)h−1

if d = dk−1 + h

Here Dk
∆
=

k∑
j=1

I(dj = dk). Normalizing the product of

these two factors over all i is infeasible, so we evaluate
this product for increasing i till it drops below 10−2, and
normalize over the gathered values.
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C.2 Sampling the factor variables

Here we consider the Poisson factor modeling scenario
that we use to model vocabulary-document count matri-
ces. Recall that a V × N count matrix D is modeled as
D = Poi(ΦZ), where the V × K matrix Φ models the
factor loadings, and the K × N matrix Z models the ac-
tual factor counts in the documents.. We put the Poisson-
Gamma prior on Z and symmetric Dirichlet(β1, . . . , βV )
priors on the columns of Φ. The sampling steps for Φ and
Z are described next.

C.2.1 Sampling Φ

First note that the elements of the count matrix are
modeled as dvn = Poi

(∑K
k=1 φvkzkn

)
, which can be

equivalently written as dvn =
∑K
k=1 dvkn, dvkn =

Poi(φvkzkn). Standard manipulations then allow us to
sample the dvkn’s from Mult(dvn; pv1n, . . . , pvKn) where
pvkn = φvkzkn/

∑K
k φvkzkn.

Now we have φk ∼ Dirichlet(β1, . . . , βV ). Using stan-
dard relationships between Poisson and multinomial dis-
tributions, we can derive the posterior distribution of the
φk’s as Dirichlet(β1 + d1k, . . . , βV + dV k), where dvk =∑N
n=1 dvkn.

C.2.2 Sampling Z

In our algorithm we sample each znk conditioned on all
the other variables in the model; therefore the conditional
posterior distribution can be written as

p(znk|D,Φ, Zn,−k,d, α, c, γ)

= p(D|Zn,Φ)p(znk|d, α, c, Zn,−k)

=

V∏
v=1

Poi

(
dvn|

K∑
k=1

φvkzkn

)
p(Zn|d, α, c)

p(Zn,−k|d, α, c)
.

The distributions in both the numerator and denominator
of the second factor can be sampled from using the Monte
Carlo techniques described above, by integrating out the
stick-breaking weights.

C.3 Sampling hyperparameters

As mentioned above, we put a noninformative Gamma
prior on γ and improper (1) priors on α and c. The pos-
terior sampling steps are described below:

C.3.1 Sampling γ

Given the round indicators d = {dk}, we can recover the
round-specific atom counts as described above. Then the
conjugacy between the Gamma prior on γ and the Poisson
distribution of Ci gives us a closed form posterior distribu-
tion for γ: p(γ|d, Z, α, c) = Gamma(γ|a +

∑K
i=1 Ci, b +

dK).

C.3.2 Sampling α

The conditional posterior distribution of α may be written
as:

p(α|Z,d, c) ∝ p(α)

N∏
n=1

K∏
k=1

p(Z|d, α, c).

We calculate the posterior distribution of Z using Monte
Carlo techniques as described above. Then we dis-
cretize the search space for α around its current values as
(αcur + t∆α)

U
t=L, where the lower and upper bounds L

and U are chosen so that the unnormalized posterior falls
below 10−2. The search space is also clipped below at 0. α
is then drawn from a multinomial distribution on the search
values after normalization.

C.3.3 Sampling c

We sample c in exactly the same way as α. We first write
the conditional posterior as

p(c|Z,d, α) ∝ p(c)
N∏
n=1

K∏
k=1

p(Z|d, α, c).

The search space (c > 0) is then discretized using appro-
priate upper and lower bounds as above, and Z is sam-
pled using Monte Carlo techniques. c is then drawn from a
multinomial distribution on the search values after normal-
ization.
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