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Abstract

Mixture proportion estimation (MPE) is a
fundamental tool for solving a number of
weakly supervised learning problems – su-
pervised learning problems where label infor-
mation is noisy or missing. Previous work
on MPE has established a universally con-
sistent estimator. In this work we estab-
lish a rate of convergence for mixture pro-
portion estimation under an appropriate dis-
tributional assumption, and argue that this
rate of convergence is useful for analyzing
weakly supervised learning algorithms that
build on MPE. To illustrate this idea, we ex-
amine an algorithm for classification in the
presence of noisy labels based on surrogate
risk minimization, and show that the rate of
convergence for MPE enables proof of the al-
gorithm’s consistency. Finally, we provide a
practical implementation of mixture propor-
tion estimation and demonstrate its efficacy
in classification with noisy labels.

1 Introduction

Mixture proportion estimation (MPE) is the following
problem: Let F,G, and H be probability distributions
such that

F = (1− κ)G+ κH, (1)

where 0 ≤ κ ≤ 1. Given random samples from F and
H, estimate κ. It has recently been shown that a so-
lution to MPE leads to solutions to various “weakly”
supervised learning problems such as anomaly detec-
tion, learning from positive and unlabeled examples,
domain adaptation, and classification with label noise
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(Blanchard et al., 2010; Scott et al., 2013; Sanderson
and Scott, 2014).

Without any assumptions on F , G, and H, κ in (1) is
not identifiable given F and H. In particular, if F =
(1−κ)G+κH holds, then any alternate decomposition
of the form F = (1− κ+ δ)G′ + (κ− δ)H , with G′ =
(1 − κ + δ)−1((1 − κ)G + δH) , and δ ∈ [0, κ) , is also
valid. To ensure identifiability, it has been assumed
that G is irreducible with respect to H, meaning that
it is not possible to write G = γH + (1− γ)F ′, where
F ′ is a distribution and 0 < γ ≤ 1 . Blanchard et al.
(2010) establish the following result.

Proposition 1 (Blanchard et al. (2010)). If (1) holds
and G is irreducible with respect to H, then κ in (1)
is equal to

κ∗(F |H) := sup{κ |F = (1− κ)G′ + κH

for some distribution G′},

the maximum proportion of H in F .

Blanchard et al. (2010) also establish a universally con-
sistent estimator κ̂ for κ∗(F |H), given random samples
from F and H with sample sizes growing to infinity.
By Proposition 1, this estimator also consistently es-
timates κ in (1) under the irreducibility assumption.

The first contribution of the present paper concerns
the rate of convergence of κ̂ to κ∗. Blanchard et al.
(2010) establish a “no free lunch” result which says
that the rate of convergence of κ̂ to κ∗ can be arbi-
trarily slow. In other words, to ensure a rate of con-
vergence, it is necessary to make some kind of distribu-
tional assumption. We introduce such an assumption
that is slightly stronger than irreducibility and ensures
root-n rate of convergence for κ̂.

Our second contribution concerns the application of κ̂
to solve other learning problems like those mentioned
above. We build on the recent work of Natarajan et al.
(2013) who show that it is possible to learn a classifier
in the presence of label noise by performing empirical
risk minimization based on a cost-sensitive surrogate
loss, where the cost parameter α of the loss is defined
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in terms of the label noise flipping probabilities. In
Natarajan et al. (2013), these proportions are assumed
known. When the proportions are unknown, which is
more likely in practice, a consistent estimator α̂ of α
can be expressed in terms of κ̂, using the approach
of Scott et al. (2013). Based on our first contribu-
tion, we show that a rate for α̂, which follows from the
rate for κ̂, leads to consistency of the surrogate-based
learning procedure when the label noise proportions
are unknown.

As a final contribution, we suggest a practical im-
plementation of the estimator κ̂ of Blanchard et al.
(2010), and demonstrate its efficacy on three data
sets in a label noise setting, including a real data set
from nuclear particle classification that is naturally de-
scribed by the label noise model. Since κ̂ is based on
Vapnik-Chervonenkis (VC) bounds, which are known
to be loose for typical learning scenarios, its practical
utility had not previously been clear.

An outline of the paper follows. The next section fur-
ther motivates the MPE problem. Section 3 reviews
the estimator κ̂ of Blanchard et al. (2010) and estab-
lishes a rate of convergence for this estimator under
a proposed distributional assumption. Section 4 ex-
amines classification with surrogate losses under label
noise with unknown noise proportions, and uses the re-
sults of Section 3 to establish a consistent classification
procedure. In Section 5, κ̂ is demonstrated empirically
and shown to be practically useful.

2 MPE for Weakly Supervised
Learning

MPE is useful for a number of “weakly” supervised
learning problems (WSL), wherein label information
is missing or noisy in some way. For example, in the
problem of learning from positive and unlabeled ex-
amples (LPUE) (Steinberg and Cardell, 1992; Denis,
1998; Liu et al., 2002; Denis et al., 2005; Elkan and
Noto, 2008; Ward et al., 2009), H and G are the dis-
tributions governing the positive and negative classes,
respectively, and F is the distribution of unlabeled
examples. As has been previously observed, and as
we show below, training a cost-sensitive classifier on
the positive and unlabeled data yields a good cost-
insensitive (i.e., conventional) classifier for the under-
lying problem of interest. However, the appropriate
cost parameter depends on the proportion κ of pos-
itive examples in the unlabeled data, and since this
is typically unknown, it needs to be estimated. As-
suming G is irreducible with respect to H allows the
estimator κ̂ of Blanchard et al. (2010) to be applied
toward this end.

Another relevant WSL problem is binary classification
with label noise, when the label noise is assumed to be
independent of the observed feature vector (Blum and
Mitchell, 1998; Lawrence and Schölkopf, 2001; Bouvey-
ron and Girard, 2009; Stempfel and Ralaivola, 2009;
Long and Servido, 2010; Manwani and Sastry, 2011;
Natarajan et al., 2013). As with LPUE, training a
cost-sensitive classifier on the noisy data yields a good
cost-insensitive classifier. Once again, however, the
appropriate cost parameter depends on the noise pro-
portions. Scott et al. (2013) show that if each class-
conditional distribution is irreducible with respect to
the other, these proportions can be recovered by solv-
ing two MPE problems (see Proposition 3 below).

A third WSL problem that illustrates the utility of
MPE is the following domain adaptation problem:
given labeled examples from multiple classes, and an
unlabeled data set where the classes occur in differ-
ent proportions than in the training data, determine
the proportion of each class in the unlabeled data
set (Titterington, 1983; Latinne et al., 2001). Here
F is the unlabeled data set, and H is any class-
conditional distribution whose proportion in F is to
be estimated. Sanderson and Scott (2014) demon-
strate irreducibility-based assumptions under which
MPE can be used to consistently estimate the un-
known class proportions.

MPE has the potential to be applied to a number
of other WSL problems, many of which reduce to
one of the above problems at least in special cases.
These include crowdsourcing (Raykar et al., 2010),
multiple instance learning (Blum and Kalai, 1998),
co-training (Blum and Mitchell, 1998), and learning
from partial labels (Cour et al., 2011). Finally, we re-
mark that MPE had been studied prior to Blanchard
et al. (2010), but under parametric modeling assump-
tions (McLachlan, 1992; Bouveyron and Girard, 2009).
Our focus is on nonparametric methods and learning-
theoretic analysis.

3 A Rate for Estimation of the
Maximal Mixing Proportion

To begin, we review the universally consistent estima-
tor κ̂ of Blanchard et al. (2010) of κ∗(F |H), which
can converge arbitrarily slowly, and then introduce a
distributional assumption under which this estimator
converges at a known rate.

Let F and H be probability measures on a probability
space (X ,S). Intuition for the estimator comes from
a connection to the receiver operating characteristic
(ROC) for the problem of testing the null hypothesis
X ∼ H against the alternative X ∼ F . Given a mea-
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surable set S ∈ S, we can think of S as a rejection
region (where the null hypothesis is rejected). Then
H(S) is the false positive rate and F (S) is the true
positive rate, and the optimal ROC is defined as

β(τ) := sup{F (S) |H(S) ≤ τ, S ∈ S}.

The ensuing result follows from Theorem 6 of Blan-
chard et al. (2010); see also Scott (2014).
Proposition 2 (Blanchard et al. (2010)).

κ∗(F |H) = inf
S∈S,H(S)>0

F (S)
H(S)

= inf
τ∈[0,1)

{
1− β(τ)

1− τ

}
.

In words, κ∗ is the minimum slope among lines pass-
ing through the point (1, 1) in ROC space and some
other point on the optimal ROC. If the optimal ROC
happens to be concave, this is the slope of the ROC at
its right end-point.

The estimator κ̂ of Blanchard et al. (2010) relies on
VC theory (Devroye et al., 1996). Consider a sequence
of VC classes of sets, S1,S2, . . ., with VC dimensions

Vk <∞. Define εi(k, δi) := 3
√

Vk log(ni+1)−log δi/2
ni

for
i = 0, 1. By the VC inequality, for any i = 0, 1, δi > 0,
k ≥ 1 and any distribution Q on X , with probability
at least 1− δi over the draw of an i.i.d. sample of size
ni according to Q , we have

∀S ∈ Sk
∣∣∣Q(S)− Q̂(S)

∣∣∣ ≤ εi(k, δi) , (2)

where Q̂ denotes the empirical distribution built on
the sample.

In MPE we have training data

X1
0 , . . . , X

n0
0

iid∼ H, (3)

X1
1 , . . . , X

n1
1

iid∼ F. (4)

For k ≥ 1, define

κ̂(k, δ0, δ1) := inf
S∈Sk

F̂ (S) + ε1(k, δ1)

(Ĥ(S)− ε0(k, δ0))+

where (·)+ is the max of its argument and zero (the
ratio is defined to be ∞ if the denominator is zero),
and where F̂ (S) and Ĥ(S) are the empirical true posi-
tive and false positive probabilities associated with the
rejection region S. By the VC inequality and Propo-
sition 2, κ̂(k, δ0, δ1) is an upper bound on κ∗(F |H),
with probability at least 1− δ0 − δ1.

Next, define

κ̂(δ0, δ1) := inf
k≥1

κ̂(k, δ0k−2, δ1k
−2).

By the union bound, this is also an upper bound on κ∗,
with probability at least 1−2(δ0 +δ1), since

∑
k k
−2 =

π2/6 < 2. To ensure that this upper bound approaches
κ∗ as n0, n1 →∞, the sequence (Sk)∞k=1 is assumed to
satisfy the following universal approximation property,
which we refer to as (AP1): For any S∗ ∈ S , and any
distribution Q ,

lim inf
k→∞

inf
S∈Sk

Q(S∆S∗) = 0 ,

where S∆S∗ = S\S∗ ∪ S∗\S is the symmetric set dif-
ference.

Finally, κ̂ is defined as κ̂ = κ̂( 1
n0
, 1
n1

). Blanchard et al.
(2010) show the following, which makes no assumption
on the distributions F and H and thus establishes a
universally consistent method for MPE.
Theorem 1 (Blanchard et al. (2010)). With probabil-
ity at least 1−2( 1

n0
+ 1
n1

), κ̂ ≥ κ∗(F |H). Furthermore,

if (Sk)∞k=1 satisfies (AP1), then κ̂
i.p.−→ κ∗(F |H) as

min{n0, n1} → ∞.

We now introduce an assumption on F and H that will
ensure a certain rate of convergence for κ̂ above. We
use supp(Q) to denote the support of a distribution Q.

(A) There exists a distribution G and γ ∈ [0, 1] such
that supp(H) 6⊂ supp(G) and F = (1−γ)G+γH.

The condition supp(H) 6⊂ supp(G) clearly implies that
G is irreducible with respect to H, and therefore γ in
(A) is equal to κ∗(F |H).

In addition, we adopt a modified approximation con-
dition on the sequence (Sk), referred to as (AP2): For
all G, H with supp(H) 6⊂ supp(G) there exists k ≥ 1
and S ∈ Sk s.t. G(S) = 0 and H(S) > 0.

Remark: (AP1) requires that the sets in Sk become
increasing complex, so that Vk → ∞. On the other
hand, (AP2) does not. For example, if X = Rd and
S is the Borel σ-algebra, (AP2) is satisfied taking S1

to be the VC class of all open balls {x : ‖x− c‖ < r},
c ∈ Rd, r > 0, and Sk = ∅ for k ≥ 2. In this
case, we could even simplify the estimator of κ∗ to
be κ̂′ := κ̂(1, 1

n0
, 1
n1

), and the rate of convergence pre-
sented below would still hold (the proof requires only
minor modifications). However, we elect to work with
the definition of κ̂ above to emphasize that the rate of
convergence applies to the universally consistent esti-
mator.
Theorem 2. Suppose (Sk)k≥1 is chosen to satisfy
(AP2). If F and H are such that (A) holds, then
there exist a constant C > 0 such that for n0 and n1

sufficiently large, the estimator κ̂ satisfies

Pr

(
|κ̂− κ∗| ≥ C

[√
log n0

n0
+
√

log n1

n1

])
≤ 2
n0

+
2
n1
.

(5)
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where κ∗ = κ∗(F |H).

Proof. We begin by establishing (5) without the ab-
solute value, which is the more challenging direction.
The reverse direction will follow easily by the first part
of Theorem 1.

By (A), there exists a distribution G and γ ∈ [0, 1]
such that F = (1−γ)G+γH and supp(H) 6⊂ supp(G).
Then G is irreducible with respect to H, and Propo-
sition 1 implies that γ = κ∗. By (AP2), there exists
j ≥ 1 and S ∈ Sj such that G(S) = 0 and H(S) > 0.
But then

F (S)
H(S)

= (1− γ)
G(S)
H(S)

+ γ = κ∗.

By the VC inequality and union bound, we have that
with probability at least 1− 2( 1

n0
+ 1

n1
),

κ̂ ≤ F (S) + 2ε1(j, j−2/n1)
(H(S)− 2ε0(j, j−2/n0))+

≤ F (S) + ε

(H(S)− ε)+

where ε := 2(ε1(j, j−2/n1) + ε0(j, j−2/n0)). Now let
ν be such that ε = ν

1+νH(S), which is achieved by
ν = ε

H(S)−ε . Let N be such that n0, n1 ≥ N implies
ε ≤ 1

2H(S). Then, for n0, n1 ≥ N and with probability
at least 1− 2( 1

n0
+ 1

n1
),

κ̂ ≤ (1 + ν)
F (S) + ε

H(S)
= (1 + ν)κ∗ + ν

≤ κ∗ + 2ν

≤ κ∗ +
4

H(S)
ε.

This establishes the existence of a constant C such
that for n0, n1 ≥ N ,

Pr

(
κ̂− κ∗ ≥ C

[√
log n0

n0
+
√

log n1

n1

])
≤ 2
n0

+
2
n1
.

The same inequality holds with the absolute value by
the first part of Theorem 1, which holds on the same
event (samples where the VC bounds hold for all k ≥
1) as was used to establish the above inequality.

Henceforth we assume κ̂ is defined in terms of VC
classes satisfying (AP2).

4 Classification with Unknown Label
Noise Proportions

We now study the use of surrogate losses for designing
a classifier in the presence of label noise when the label
noise proportions are unknown. We propose a natural

learning rule for this problem and apply the rate of
convergence result for κ̂ to deduce consistency of the
learning procedure. Before addressing this problem, it
is necessary to first review surrogate losses, and how
they can be used to overcome label noise when the
noise proportions are known.

Let (X,Y ) be random on X × {0, 1} where X is a
measurable space, and let P denote the probability
measure governing (X,Y ). Let M denote the set of
decision functions, i.e., the set of measurable functions
X → R. Every f ∈M induces a classifier x 7→ u(f(x))
where u(t) is the unit step function

u(t) :=
{

1, t > 0
0, t ≤ 0.

For any f ∈M, define the cost-insensitive P-risk of f

RP (f) := E(X,Y )∼P [1{u(f(X)) 6=Y }]

Define the cost-insensitive Bayes P -risk R∗P :=
inff∈MRP (f). It is well known (Devroye et al., 1996)
that for any f ∈M, the excess P -risk satisfies

RP (f)−R∗P = 2EX [1{u(f(X))6=u(η(X)− 1
2 )}|η(X)− 1

2 |],
(6)

where η(x) := P (Y = 1 |X = x).

Generalizing the above, for any α ∈ (0, 1) we can define
the α-cost-sensitive P -risk for any f ∈M,

RP,α(f) := E(X,Y )∼P [(1− α)1{Y=1}1{f(X)≤0}

+ α1{Y=0}1{f(X)>0}].

The corresponding Bayes risk is R∗P,α :=
inff∈MRP,α(f), and the analogue to (6) is

Rα(f)−R∗α = EX [1{u(f(X))6=u(η(X)−α)}|η(X)− α|]
(7)

(Scott, 2012). Note (6) corresponds to the case α = 1
2 .

With this background, we now turn to the problem of
classification with label noise. We assume (X,Y, Ỹ )
are jointly distributed, where Y is the true but unob-
served label, and Ỹ is the observed but noisy label. We
focus on label noise that is independent of the feature
vector X, meaning that the conditional distribution of
Ỹ given X and Y depends only on Y .

We would like to minimize RP (f), but we only have
access to data from P̃ , the joint distribution of (X, Ỹ ).
Natarajan et al. (2013) show that minimizing a cost-
sensitive P̃ -risk is equivalent to minimizing the cost-
insensitive P -risk. We state and prove an equivalent
result which has a simpler proof. Let us denote πi =
Pr(Y = 1 − i | Ỹ = i), i = 0, 1, and introduce the
following assumption on the amount of label noise.

(B) π0 <
1
2 and π1 <

1
2 .
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The following result connects the cost-sensitive P̃ -risk
to the cost-insensitive P -risk.
Lemma 1. If (B) holds, then for any f ∈M,

RP (f)−R∗P = 2(1− π1 − π0)(RP̃ ,α(f)−R∗
P̃ ,α

) (8)

where α = ( 1
2 − π0)/(1− π1 − π0).

Proof. Note that (B) ensures α ∈ (0, 1). Define η̃(x)
in analogy to η(x) by η̃(x) := Pr(Ỹ = 1|X = x),
leading to

η(x) = Pr(Y = 1, Ỹ = 1|X = x)

+ Pr(Y = 1, Ỹ = 0|X = x)

= Pr(Y = 1|Ỹ = 1, X = x)η̃(x)

+ Pr(Y = 1|Ỹ = 0, X = x)(1− η̃(x))
= (1− π1)η̃(x) + π0(1− η̃(x))
= (1− π0 − π1)η̃(x) + π0.

Observe that

η(x)− 1
2 = (1− π0 − π1)η̃(x) + π0 − 1

2

= (1− π0 − π1)[η̃(x)− α].

The result follows now from (6) and (7):

RP (f)−R∗P = 2EX
[
1
{u(f(X)) 6=u(η(x)− 1

2 )}
|η(x)− 1

2 |
]

= 2(1− π0 − π1)EX
[
1{u(f(X)) 6=u(η̃(x)−α)}|η̃(x)− α|

]
= 2(1− π1 − π0)(RP̃ ,α(f)−R∗

P̃ ,α
).

4.1 Surrogate Losses

A loss is any measurable function L : {0, 1} × R →
[0,∞). For example, the P -risk is defined in terms of
the 0 − 1 loss, L(y, t) = 1{y 6=u(t)}. Given a loss L we
define the risk

RP,L(f) = E(X,Y )∼P [L(Y, f(X))],

and the corresponding optimal risk R∗P,L =
inff∈MRP,L(f).

A surrogate loss is one that is used as a surrogate for
another, such as a loss L that is convex in its second
argument in lieu of the 0-1 loss. Surrogate losses are
common in machine learning because they can often be
optimized efficiently, unlike the 0-1 loss and its cost-
sensitive variants. The notion of classification calibra-
tion was developed to theoretically justify the use of
surrogate losses. A loss L is said to be α-classification
calibrated iff there exists an increasing and continuous
function θ with θ(0) = 0 such that for all f ∈M,

RP,α(f)−R∗P,α ≤ θ(RP,L(f)−R∗P,L).

An equivalent and more technical characterization of
α-CC is provided by Scott (2012), but the above defini-
tion suffices for our purposes. The point is that driving
the surrogate excess risk to zero drives the target ex-
cess risk to zero for α-CC losses, and the former can
be accomplished by computationally tractable meth-
ods like support vector machines, as shown below.

Any loss L can be expressed L(y, t) = 1{y=1}L1(t) +
1{y=0}L0(t). Given a loss L and α ∈ (0, 1), define

Lα(y, t) := (1− α)1{y=1}L1(t) + α1{y=0}L0(t). (9)

Scott (2012) establishes that L is 1
2 -CC iff Lα is α-CC.

Several examples of 1
2 -CC losses are known, so these

readily translate to examples of α-CC losses via Eqn.
(9). In particular, Bartlett et al. (2006) establish that
if L(y, t) = φ(yt) where φ is convex and differentiable
at 0 with φ′(0) < 0, then L is 1

2 -CC. This justifies
several common losses including the hinge loss (φ(z) =
max{0, 1 − z}) and the logistic loss (φ(z) = log(1 +
exp(−z))). Combining these ideas with Lemma 1 leads
to the following result.

Corollary 1. Suppose L is 1
2 -CC, assume (B) is sat-

isfied and let α = ( 1
2 − π0)/(1− π1 − π0). Then there

exists an increasing and continuous function θ with
θ(0) = 0 such that for all f ∈M,

RP (f)−R∗P ≤ θ(RP̃ ,Lα(f)−R∗
P̃ ,Lα

).

Natarajan et al. (2013) consider the setting where π0

and π1 are known. Using the above result, they apply
Rademacher complexity analysis to bound RP̃ ,Lα(f̂)−
R∗
P̃ ,Lα

for a classification strategy f̂ based on a surro-
gate loss Lα.

4.2 Estimating α

When π0 and π1 are unknown, a natural strategy is
to base a learning algorithm on a surrogate loss Lbα,
where α̂ is an estimate of α. We propose an estimate
of the form

α̂ =
1
2 − π̂0

1− π̂0 − π̂1
,

where π̂0 and π̂1 are estimates based the framework of
Scott et al. (2013). Thus, suppose we observe noisy
data

X1
0 , . . . , X

n0
0

iid∼ P̃0 := (1− π0)P0 + π0P1, (10)

X1
1 , . . . , X

n1
1

iid∼ P̃1 := (1− π1)P1 + π1P0. (11)

where P0 and P1 are the marginal distributions of X
given Y = 0 and 1, respectively. The first sample can
be thought of as observed patterns with noisy label
Ỹ = 0, and similarly for the second sample. For sim-
plicity, the sample sizes n0 and n1 are assumed to be
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nonrandom. Scott et al. (2013) establish the following
result. The distributions P0 and P1 are said to be mu-
tually irreducible if P0 is irreducible with respect to P1

and vice versa.

Proposition 3 (Scott et al. (2013)). Assume π0 +
π1 < 1. If P0 6= P1, then P̃1 6= P̃0, and there exist
unique 0 ≤ π̃0, π̃1 < 1 such that

P̃0 = (1− π̃0)P0 + π̃0P̃1 (12)

P̃1 = (1− π̃1)P1 + π̃1P̃0. (13)

In particular,

π̃0 =
π0

1− π1
< 1 and π̃1 =

π1

1− π0
< 1. (14)

Furthermore, if P0 and P1 are mutually irreducible,
then π̃0 = κ∗(P̃0|P̃1) and π̃1 = κ∗(P̃1|P̃0).

Under the assumptions of this result, we can obtain
estimates ̂̃π0 and ̂̃π1 of π̃0 and π̃1 using the estimator
described in Section 3, and use these to estimate π0

and π1 by inverting the identities in (14), leading to
the estimates

π̂0 =
̂̃π0(1− ̂̃π1)

1− ̂̃π0
̂̃π1

and π̂1 =
̂̃π1(1− ̂̃π0)

1− ̂̃π0
̂̃π1

. (15)

To obtain a rate of convergence on α̂, we need to en-
sure that P̃0 and P̃1 satisfy assumption (A) in both di-
rections, and that P0 and P1 are mutually irreducible.
The following assumption is sufficient for this purpose.

(C) supp(P0) 6⊂ supp(P1) and supp(P1) 6⊂ supp(P0).

This assumption is reasonable in many classification
problems. It essentially says that for each of the two
(noise-free) classes, there exist patterns belonging to
that class that could not possibly be confused with
patterns from the other class. We have the following.

Proposition 4. If (B) and (C) hold, then there exists
C > 0 such that for n0 and n1 sufficiently large,

Pr

(
|α̂− α| ≥ C

[√
log n0

n0
+
√

log n1

n1

])
≤ 4
n0

+
4
n1
.

Proof. (B) implies π0 + π1 < 1, and by (C), P0 and
P1 are mutually irreducible which further implies P0 6=
P1. Thus Proposition 3 implies π̃0 = κ∗(P̃0|P̃1) and
π̃1 = κ∗(P̃1|P̃0). Next, apply Theorem 2 to both of
the estimators ̂̃π0 and ̂̃π1. To verify the assumptions of
that theorem, we need to verify (A) for both (F,H) =
(P̃1, P̃0) and (F,H) = (P̃0, P̃1). We will show (A) for
(F,H) = (P̃1, P̃0), the other case being similar. From
(13), it suffices to show supp(P̃1) 6⊂ supp(P0). But
this holds because P̃1 = (1 − π1)P1 + π1P0 (see Eqn.

(11)) and supp(P1) 6⊂ supp(P0) and π1 < 1. We can
now apply Theorem 2 to both ̂̃π0 and ̂̃π1. It is then
not hard to show that these rates lead to similar rates
for π̂1 and π̂0, which in turn lead to the desired rate
for α̂.

4.3 Algorithm and Main Consistency Result

We now introduce a consistent classification procedure
based on surrogate losses in the case of unknown label
noise proportions. In addition to the two data sets
used to estimate α, we assume a third data set

(X1, Ỹ1), . . . , (Xn, Ỹn) iid∼ P̃ ,

where P̃ is the joint distribution of (X, Ỹ ). For sim-
plicity, we assume that n, n0, and n1 are of the same
order when tending to infinity. Remark: Although we
are assuming separating training sets for the classifier
and for α̂, this is actually not necessary. Having two
training sets just makes the analysis slightly simpler
since n0 and n1 are nonrandom in our setup.

The algorithm relies on the framework of reproducing
kernel Hilbert spaces. Thus, let H be a RKHS, and let
L be a loss for binary classification. We say that L is
Lipschitz if L(y, t) is a Lipschitz function of t for each
y. The algorithm returns the classifier

f̂ = arg min
f∈H

1
n

n∑
i=1

Lbα(Ỹi, f(Xi)) + λn‖f‖2H, (16)

where Lbα is the α̂-weighted cost-sensitive loss asso-
ciated with L, as defined in (9). For example, if
L(y, t) = max{0, 1− yt} is the hinge loss, f̂ is a cost-
sensitive support vector machine.

We will assume that the reproducing kernel k asso-
ciated with H is universal and bounded (Steinwart
and Christmann, 2008). The former property implies
that elements of the RKHS can get arbitrarily close
to the Bayes risk. The latter property states that
supx k(x, x) =: B2 < ∞. The Gaussian kernel is an
example satisfying both of these properties.

Theorem 3. Assume (B) and (C) hold, that the
reproducing kernel associated with H is universal
and bounded, and that L is a Lipschitz, 1

2 -CC loss.
Let λn > 0 tend to zero as n → ∞ such that
λn
√
n/ log n→∞. Then

RP (f̂)−R∗P → 0 in probability

as n0, n1, n→∞.

Proof. By Corollary 1, it suffices to show RP̃ ,Lα(f̂)−
R∗
P̃ ,Lα

→ 0 in probability. For any f ∈ H and loss L′,
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denote the empirical L′-risk

R̂L′(f) :=
1
n

n∑
i=1

L′(Ỹi, f(Xi)),

and denote the objective function J(f) := R̂Lbα(f) +
λn‖f‖2. Also define L0 := max{L(0, 0), L(1, 0)}. Ob-
serve that J(f̂) ≤ J(0) ≤ L0. Therefore λn‖f̂‖2 ≤
L0 − R̂Lbα(f̂) ≤ L0, and we deduce that f̂ ∈ BH(Mn),
the ball of radius Mn in H, where Mn :=

√
L0/λn.

Let ε > 0, and let fε ∈ H be such that RP̃ ,Lα(fε) <
R∗
P̃ ,Lα

+ ε
2 , which is possible since the the reproducing

kernel associated with H is universal (Steinwart and
Christmann, 2008). Then

RP̃ ,Lα(f̂)−RP̃ ,Lα(fε) = RP̃ ,Lα(f̂)− R̂Lα(f̂)

+ R̂Lα(f̂)− R̂Lbα(f̂)

+ R̂Lbα(f̂)− R̂Lbα(fε)

+ R̂Lbα(fε)− R̂Lα(fε)

+ R̂Lα(fε)−RP̃ ,Lα(fε).

The first and last terms can be bounded, with proba-
bility at least 1− 1/n, by

2DBMn√
n

+ 2BMn

√
ln 2n
2n

using Rademacher complexity analysis for balls in a
RKHS (Mohri et al., 2012). Here D is the Lipschitz
constant for L and B is the bound on the kernel. By
the assumed rate of decay for λn, both term tend to
zero as n → ∞. For the last term, we also need to
observe that fε ∈ BH(Mn) for n sufficiently large.

The middle term can be bounded by λn‖fε‖2, which
tends to zero as n → ∞. This follows from the def-
inition of f̂ , since J(f̂) ≤ J(fε) implies R̂Lbα(f̂) −
R̂Lbα(fε) ≤ λn‖fε‖2 − λn‖f̂‖2 ≤ λn‖fε‖2.

To bound the second term, observe that for any f ∈
BH(Mn),

R̂Lα(f)− R̂Lbα(f) =
1
n

[ ∑
i:Ỹi=1

(α̂− α)L(1, f(Xi))

+
∑
i:Ỹi=0

(α− α̂)L(0, f(Xi))

]
≤ |α̂− α| sup

x,y
L(y, f(x))

≤ |α̂− α| (L0 +D‖f‖∞) ,

where D is the Lipschitz constant of L. By Cauchy-
Schwarz and the reproducing property,

‖f‖∞ = sup
x
|〈f, k(·, x)〉| ≤ ‖f‖HB

where B is the bound on the kernel. Now ‖f‖H ≤√
L0
λn

, and so for the second term to go to zero, we
need |α̂−α|/λn to go to zero. Under (B) and (C), we

know that |α̂−α| converges at a rate of
√

logn
n , and by

our assumption on the rate of decay of λn, |α̂−α|/λn
tends to zero as n→∞, except on a vanishingly small
event.

The fourth term is handled in a similar manner, where
again we observe that fε ∈ BH(Mn) for n sufficiently
large.

In summary, we have shown thatRP̃ ,Lα(f̂)−R∗
P̃ ,Lα

≤ ε
with probability tending to one as n (and with it n0

and n1) tends to infinity. This concludes the proof.

5 Implementation and Experiments
for Mixture Proportion Estimation

The estimator κ̂ relies on VC bounds, which are known
to be loose in typical learning situations. Therefore it
is not obvious that the estimator κ̂ is practically useful,
not to mention tractable. In this section, we propose
an implementation of the mixture proportion estima-
tor that is closely motivated by κ̂, and demonstrate its
performance on three data sets.

κ̂ works as follows: Consider the collection of classi-
fiers S1 ∪ S2 ∪ · · · . For each f in this collection, con-
servatively estimate the false positive and true positive
probabilities, such that their ratio is an upper bound
on κ∗. If the collection of classifiers is rich enough, and
the sample sizes tend to infinity, this upper bound con-
verges to κ∗.

Motivated by this idea, we suggest the following prac-
tical algorithm for MPE. First, split each of the two
samples (10) and (11) in half (or some other ratio).
Using the first half of each data set, run a univer-
sally consistent classification algorithm that yields a
full ROC. In our implementation, we run kernel lo-
gistic regression (KLR) with a Gaussian kernel, and
vary the threshold on the posterior probability esti-
mate to obtain an ROC. Using the second half of each
sample, construct conservative estimates of the ROC
for a discrete set of thresholds on the KLR poste-
rior probability function. To obtain these conserva-
tive estimates, we do not use the empirical error plus
or minus a VC bound. Instead, we use direct bino-
mial tail inversion, which is the tightest possible devia-
tion bound for a binomial random variable (Langford,
2005). Using these conservative estimates, we then
compute the minimum slope for any of these (conserva-
tively estimated) operating points to the point (1, 1) in
ROC space. A Matlab implementation is available at
http://web.eecs.umich.edu/∼cscott/code.html.
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To study the performance of this implementation, we
examined the problem of classification with label noise
using three data sets. The waveform data set is avail-
able from the UCI Repository, and consists of three
classes of synthetically generated waveforms. The
classes are overlapping, as the Bayes risk for this data
set is known to be around 10 %. We generated data for
a binary classification problem (using only two of the
classes) with label noise proportions π0 and π1 spec-
ified as in Table 1. Sample sizes of n0 = n1 = 1000
were chosen. We also used the MNIST handwritten
digits data set, digits 3 and 8, with a similar setup as
to the waveform data. In this case the sample sizes
were n0 = n1 = 2000.

A third data set comes from nuclear particle classi-
fication, where the training data are realistically de-
scribed by the label noise model. The data are ob-
tained from organic scintillation detectors, which de-
tect both gamma-rays and neutrons, and associate ev-
ery detected particle with a digitally sampled pulse-
shaped waveform (Adams and White, 1978). It is
important to classify gamma-ray pulses from neutron
pulses, because the energy distribution of neutrons is
used to characterize different nuclear materials in nu-
clear inspection settings (e.g., to inventory nuclear ma-
terials at nuclear power facilities). Training data was
obtained by measuring particles emitted from a Cf-252
source, which undergoes spontaneous decay and emits
both neutrons and gamma rays. Through a special ex-
perimental configuration, the time of flight (TOF) for
each particle hitting the detector was also measured.
Since neutrons travel more slowly than gamma-rays,
this gives noisy labels by looking only at those particles
with TOF in a certain window. Gamma-rays travel at
the speed of light, so a data set with mostly gamma-
ray pulses can be obtained by focusing on those par-
ticles with TOFs around the speed of light. However,
neutrons can still have TOFs in this window because
they were generated from either a background event
or from another fission event that occurred just an
instant before the one being measured. Similarly, a
TOF-window to select neutrons will also contain some
proportion of gamma-ray pulses. We obtain samples
of size n0 = n1 = 3000 from the Cf-252 source. It is
important to keep in mind that in this application, the
ground truth π0 and π1 are unknown, and it can only
be assessed whether our estimates of these quantities
are reasonable based on physics knowledge.

The results are reported in Table 1. These results indi-
cate that our implementation provides reasonably ac-
curate estimates of the label noise proportions in the
four experimental settings where the true proportions
are known. In the nuclear particle classification prob-
lem, although ground truth labels are unavailable, the

data set π0 π1 π̂0 π̂1

waveform 0.1 0.25 0.1072 0.2808
waveform 0.15 0.05 0.1470 0.0679
digits 0.1 0.25 0.1153 0.1955
digits 0.15 0.05 0.1432 0.0419
nuclear N/A N/A 0.0185 0.0812

Table 1: Results for mixture proportion estimation as
applied to classification with label noise.

estimated proportions are at least consistent with the
expectation that noisy labels should be relatively rare
(given the high rate of fission events relative to the ex-
pected rate of background events), and also with the
knowledge that neutrons are rarer background events
than gamma-rays.

6 Final Thoughts

We have demonstrated a distributional assumption for
MPE under which the universally consistent estimator
of Blanchard et al. (2010) converges at a known rate.
We then applied this result to establish the consistency
of a surrogate-based algorithm for classification with
label noise with unknown noise proportions. Although
we have focused on the risk as a performance mea-
sure, our rate of convergence result should also be in-
strumental in establishing consistency or rates of con-
vergence for learning algorithms geared toward other
performance measures such as the F -measure.

We also proposed an implementation of κ̂ and demon-
strated reasonable performance in a label noise setup.
It would also be natural to experimentally examine
the performance of a classifier trained according to
the algorithm in (16). Fortunately, this has already
been done in a certain sense. Natarajan et al. (2013)
examine the sensitivity of their algorithm, which as-
sumes known noise proportions, to misspecification of
these proportions. When the misspecification is minor,
the decrease in performance is negligible, suggesting
that accurate mixture proportion estimation will in-
deed translate to accurate classification.
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