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Abstract

We consider learning from data of variable
quality that may be obtained from different
heterogeneous sources. Addressing learning
from heterogeneous data in its full general-
ity is a challenging problem. In this paper,
we adopt instead a model in which data is
observed through heterogeneous noise, where
the noise level reflects the quality of the data
source. We study how to use stochastic gra-
dient algorithms to learn in this model. Our
study is motivated by two concrete examples
where this problem arises naturally: learning
with local differential privacy based on data
from multiple sources with different privacy
requirements, and learning from data with la-
bels of variable quality.

The main contribution of this paper is to
identify how heterogeneous noise impacts
performance. = We show that given two
datasets with heterogeneous noise, the order
in which to use them in standard SGD de-
pends on the learning rate. We propose a
method for changing the learning rate as a
function of the heterogeneity, and prove new
regret bounds for our method in two cases
of interest. Finally, we evaluate the perfor-
mance of our algorithm on real data.

1 INTRODUCTION

Modern large-scale machine learning systems often in-
tegrate data from several different sources. In many
cases, these sources provide data of a similar type (i.e.
with the same features) but collected under different
circumstances. For example, patient records from dif-
ferent studies of a particular drug may be combined
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to perform a more comprehensive analysis, or a collec-
tion of images with annotations from experts as well as
non-experts may be combined to learn a predictor. In
particular, data from different sources may be of vary-
ing quality. In this paper we adopt a model in which
data is observed through heterogeneous noise, where
the noise level reflects the quality of the data source.
We study how to use stochastic gradient algorithms to
learn from data of heterogeneous quality.

In full generality, learning from heterogeneous data is
essentially the problem of domain adaptation — a chal-
lenge for which good and complete solutions are diffi-
cult to obtain. Instead, we focus on the special case of
heterogeneous noise and show how to use information
about the data quality to improve the performance of
learning algorithms which ignore this information.

Two concrete instances of this problem motivate our
study: locally differentially private learning from mul-
tiple sites, and classification with random label noise.
Differential privacy (Dwork et al., 2006b,a) is a pri-
vacy model that has received significant attention in
machine-learning and data-mining applications. A
variant of differential privacy is local privacy — the
learner can only access the data via noisy estimates,
where the noise guarantees privacy (Duchi et al., 2012,
2013). In many applications, we are required to learn
from sensitive data collected from individuals with het-
erogeneous privacy preferences, or from multiple sites
with different privacy requirements; this results in the
heterogeneity of noise added to ensure privacy. Un-
der random classification noise (RCN) (Kearns, 1998),
labels are randomly flipped before being presented to
the algorithm. The heterogeneity in the noise addi-
tion comes from combining labels of variable quality —
such as labels assigned by domain experts with those
assigned by a crowd.

To our knowledge, Crammer et al. (2006) were the first
to provide a theoretical study of how to learn classi-
fiers from data of variable quality. In their formula-
tion, like ours, data is observed through heterogeneous
noise. Given data with known noise levels, their study
focuses on finding an optimal ordering of the data and
a stopping rule without any constraint on the compu-
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tational complexity. We instead shift our attention to
studying computationally efficient strategies for learn-
ing classifiers from data of variable quality.

We propose a model for variable data quality which
is natural in the context of large-scale learning us-
ing stochastic gradient descent (SGD) and its vari-
ants (Bottou, 2010; Bekkerman et al., 2011). We as-
sume that the training data are accessed through an
oracle which provides an unbiased but noisy estimate
of the gradient of the objective. The noise comes from
two sources: the random sampling of a data point, and
additional noise due to the data quality. Our two mo-
tivating applications — learning with local differential
privacy and learning from data of variable quality —
can both be modeled as solving a regularized convex
optimization problem using SGD. Learning from data
with heterogeneous noise in this framework thus re-
duces to running SGD with noisy gradient estimates,
where the magnitude of the added noise varies across
iterations.

Main results. In this paper we study noisy stochas-
tic gradient methods when learning from multiple data
sets with different noise levels. For simplicity we con-
sider the case where there are two data sets, which we
call Clean and Noisy. We process these data sets se-
quentially using SGD with learning rate O(1/t). In
a future full version of this work we also analyze
averaged gradient descent (AGD) with learning rate
O(1/v/t). We address some basic questions in this
setup:

In what order should we process the data? Suppose we
use standard SGD on the union of Clean and Noisy.
We show theoretically and empirically that the or-
der in which we should process the datasets to get
good performance depends on the learning rate of the
algorithm: in some cases we should use the order
(Clean, Noisy) and in others (Noisy, Clean).

Can we use knowledge of the noise rates? We show
that using separate learning rates that depend on the
noise levels for the clean and noisy datasets improves
the performance of SGD. We provide a heuristic for
choosing these rates by optimizing an upper bound on
the error for SGD that depends on the ratio of the
noise levels. We analytically quantify the performance
of our algorithm in two regimes of interest. For mod-
erate noise levels, we demonstrate empirically that our
algorithm outperforms using a single learning rate and
using clean data only.

Does using noisy data always help? The work of Cram-
mer et al. (2006) suggests that if the noise level of noisy
data is above some threshold, then noisy data will not
help. Moreover, when the noise levels are very high,
our heuristic does not always empirically outperform
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simply using the clean data. On the other hand, our
theoretical results suggest that changing the learning
rate can make noisy data useful. How do we resolve
this apparent contradiction?

We perform an empirical study to address this ques-
tion. Our experiments demonstrate that very often,
there exists a learning rate at which noisy data helps;
however, because the actual noise level may be far from
the upper bound used in our algorithm, our optimiza-
tion may not choose the best learning rate for every
data set. We demonstrate that by adjusting the learn-
ing rate we can still take advantage of noisy data.

For simplicity we, like previous work Crammer et al.
(2006), assume that the algorithms know the noise lev-
els exactly. However, our algorithms can still be ap-
plied in the presence of approximate knowledge of the
noise levels, and our result on the optimal data order
only needs to know which dataset has more noise.

Related Work. There has been significant work
on the convergence of SGD assuming analytic prop-
erties of the objective function, such as strong convex-
ity and smoothness. When the objective function is
A-strongly convex, the learning rate used for SGD is
O(1/At) (Nemirovsky and Yudin, 1983; Agarwal et al.,
2009; Rakhlin et al., 2012; Bach and Moulines, 2011),
which leads to a regret of O(1/A%t) for smooth ob-
jectives. For non-smooth objectives, SGD with learn-
ing rate O(1/At) followed by some form of averaging
of the iterates achieves O(1/At) (Nesterov and Vial,
2008; Nemirovski et al., 2009; Shalev-Shwartz et al.,
2009; Xiao, 2010; Duchi and Singer, 2009).

There is also a body of literature on differentially pri-
vate classification by regularized convex optimization
in the batch (Chaudhuri et al., 2011; Rubinstein et al.,
2013; Kifer et al., 2012) as well as the online (Jain
et al., 2012) setting. In this paper, we consider classi-
fication with local differential privacy (Wasserman and
Zhou, 2010; Duchi et al., 2012), a stronger form of pri-
vacy than ordinary differential privacy. Duchi et al.
(2012) propose learning a classifier with local differen-
tial privacy using SGD, and Song et al. (2013) show
empirically that using mini-batches significantly im-
proves the performance of differentially private SGD.
Recent work by Bassily et al. (2014) provides an im-
proved privacy analysis for non-local privacy. Our
work is an extension of these papers to heterogeneous
privacy requirements.

Crammer et al. (2006) study classification when the la-
bels in each data set are corrupted by RCN of different
rates. Assuming the classifier minimizing the empiri-
cal 0/1 classification error can always be found, they
propose a general theoretical procedure that processes
the datasets in increasing order of noise, and deter-
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mines when to stop using more data. In contrast, our
noise model is more general and we provide a polyno-
mial time algorithm for learning. Our results imply
that in some cases the algorithm should process the
noisy data first, and finally, our algorithm uses all the
data.

2 THE MODEL

We consider linear classification in the presence
of noise. We are given 7T labelled examples
(x1,91),- .., (xr,yr), where z; € R? and y; € {—1,1}
and our goal is to find a hyperplane w that largely sep-
arates the examples labeled 1 from those labeled —1.
A standard solution is via the following regularized
convex optimization problem:

T
* . A 1
w' = argmin f(w) := Zllw|? + = 3" tw, @i, p:).
weW i—1
(1)

Here ¢ is a convex loss function, and 3 |w||? is a reg-
ularization term. Popular choices for ¢ include the
logistic loss £(w, z,y) = log(1+ e’waz) and the hinge
loss £(w, z,y) = max(0,1 — yw ).

Stochastic Gradient Descent (SGD) is a popular ap-
proach to solving (1): starting with an initial w;, at
step ¢, SGD updates w1 using the point (x4, y:) as
follows:

(2)

Here II is a projection operator onto the convex feasi-
ble set W, typically set to {w : [|w|l2 < 1/A} and n; is
a learning rate (or step size) which specifies how fast
w; changes. A common choice for the learning rate for
the case when A > 0 is ¢/t, where ¢ = ©(1/A).

w1 = My (wy — ne(Awy + VE(wy, 24, y1))) -

2.1 The Heterogeneous Noise Model

We propose an abstract model for heterogeneous noise
that can be specialized to two important scenarios:
differentially private learning, and random classifica-
tion noise. By heterogeneous noise we mean that
the distribution of the noise can depend on the data
points themselves. More formally, we assume that the
learning algorithm may only access the labeled data
through an oracle G which, given a w € R?, draws a
fresh independent sample (x,y) from the underlying
data distribution, and returns an unbiased noisy gra-
dient of the objective function V f(w), based on the
example (z,y):

E[G(w)] = M+ Vi(w,z,y), E[[|G(w)|*] <T?. (3)
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The precise manner in which G(w) is generated de-
pends on the application. Define the noise level for the
oracle G as the constant I" in (3); larger I' means more
noisy data. Finally, to model finite training datasets,
we assume that an oracle G may be called only a lim-
ited number of times.

Observe that in this noise model, we can easily use
the noisy gradient returned by G to perform SGD. The
update rule becomes:

(4)

w1 = Iy (wi — mG(wy)) .-
The SGD estimate is w4 1.

In practice, we can implement an oracle such as G
based on a finite labelled training set D as follows. We
apply a random permutation on the samples in D, and
at each invocation, compute a noisy gradient based on
the next sample in the permutation. The number of
calls to the oracle is limited to |D|. If the samples in
D are drawn iid from the underlying data distribution,
and if any extraneous noise added to the gradient at
each iteration is unbiased and drawn independently,
then this process will implement the oracle correctly.

To model heterogeneous noise, we assume that we have
access to two oracles G; and Go implemented based on
datasets Dy and Do, which can be called at most | D1 |
and |Ds| times respectively. For j = 1,2, the noise
level of oracle G; is I';, and the values of I'y and I'y are
known to the algorithm. In some practical situations,
I'y and T’y will not be known exactly; however, our
algorithm in Section 4 also applies when approximate
noise levels are known, and our algorithm in Section 3
applies even when only the relative noise levels are
known.

2.1.1 Local Differential Privacy

Local differential privacy (Wasserman and Zhou, 2010;
Duchi et al., 2012; Kasiviswanathan et al., 2008) is
a strong notion of privacy motivated by differential
privacy (Dwork et al., 2006b). An untrusted algorithm
is allowed to access a perturbed version of a sensitive
dataset through a sanitization interface, and must use
this perturbed data to perform some estimation. The
amount of perturbation is controlled by a parameter
€, which measures the privacy risk.

Definition 1 (Local Differential Privacy). Let D =
(X1,...,X,) be a sensitive dataset where each X; € D
corresponds to data about individual i. A randomized
sanitization mechanism M which outputs a disquised
version (Uy,...,Uy) of D is said to provide e-local dif-
ferential privacy to individual i, if for all x,2’ € D
and for all S C S,

Pr(U; € S|X; =x) <ePr(U; € S|X; =2). (5)
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Here the probability is taken over the randomization
in the sanitization mechanism, and € is a parameter
that measures privacy risk where smaller € means less
privacy risk.

Consider learning a linear classifier from a sensitive la-
belled dataset while ensuring local privacy of the par-
ticipants. This problem can be expressed in our noise
model by setting the sanitization mechanism as the
oracle. Given a privacy risk €, for w € R? the or-
acle GPP draws a random labelled sample (x,%) from
the underlying data distribution, and returns the noisy
gradient of the objective function at w computed based

n (z,y) as
GPP (w) = M\w + Vel(w, z,y) + Z, (6)

where Z is independent random noise drawn from the
density: p(z) oc e~ (/2=

Duchi et al. (2012) showed that this mechanism pro-
vides e-local privacy assuming analytic conditions on
the loss function, bounded data, and that the oracle
generates a fresh random sample at each invocation.
The following result shows how to set the parameters
to fit in our heterogeneous noise model. The proof is
provided in the supplement.

Theorem 1. If |Vi(w,z,y)|| <1 for allw and (z,y),
then GPF(w) is e-local differentially private. Moreover,
for any w such that ||w| < %, E[GPP(w)] = Mw +
V]E(m»y) [f(w, T, y)]7 and

4(d* 4 d)

E[|677(w)|’] < 4+ ——

€

In practice, we may wish to learn classifiers from mul-
tiple sensitive datasets with different privacy parame-
ters. For example, suppose we wish to learn a classifier
from sensitive patient records in two different hospi-
tals holding data sets D; and Ds, respectively. The
hospitals have different privacy policies, and thus dif-
ferent privacy parameters €; and e5. This corresponds
to a heterogeneous noise model in which we have two
sanitizing oracles — QPP and Q?P. For j = 1,2, QPP
implements a differentially private oracle with privacy
parameter €; based on dataset D; and may be called
at most |D;| times.

2.1.2 Random Classification Noise

In the random classification noise model of Kearns
(1998), the learning algorithm is presented with la-
belled examples (z1,%1), - -, (zT, Jr), where each §; €
{—1,1} has been obtained by independently flipping
the true label y; with some probability o. Natarajan
et al. (2013) showed that solving

Zf (w, i, i, 0

argmlnf||w||2

(7)
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yields a linear classifier from data with random clas-
sification noise, where ¢ is a surrogate loss function
corresponding to a convex loss /:

(1 — U)E(w7 Z, y) — Uf(u% Z, _y)
1-20 ’

g(w7 x? y? U) =

and o is the probability that each label is flipped. This
problem can be expressed in our noise model using an
oracle GREN which on input w draws a fresh labelled
example (z,7) and returns

gRCN(w)

The SGD updates in (4) with respect to GRON
minimize (7). If ||z|| < 1 and ||Vl w,z,y)|]| <
1, we have E[Gren(w)] = Aw + Vl(w,z,y) and
E [[|GRN(w)]13] < 3+41/(1 — 20)?, under the random
classification noise assumption, so the oracle GRCN sat-
isfies the conditions in (3) with I'? =3+ 1/(1 — 20)2.

= \w + Vl(w,z,7,0).

In practice, we may wish to learn classifiers from mul-
tiple datasets with different amounts of classification
noise (Crammer et al., 2006); for example, we may
have a small dataset D; labeled by domain experts,
and a larger noisier dataset Dy, labeled via crowd-
sourcing, with flip probabilities o7 and o2. We model
this scenario using two oracles — GRON and GEN. For
j=1,2, oracle QJRCN is implemented based on D; and
flip probability o;, and may be called at most |D;|
times.

3 DATA ORDER DEPENDS ON
LEARNING RATE

Suppose we have two oracles Ge¢ (for “clean”) and Gy
(for “noisy”) implemented based on datasets D¢, Dy
with noise levels I'c, 'y (where I'c < T'y) respectively.
In which order should we query the oracle when us-
ing SGD? Perhaps surprisingly, it turns out that the
answer depends on the learning rate. Below, we show
a specific example of a convex optimization problem
such that with 7, = ¢/t, the optimal ordering is to use
Gc first when ¢ € (0,1/)), and the optimal ordering is
to use Gy first when ¢ > 1/A.

Let |Dc|+|Dn| = T and consider the convex optimiza-
tion problem:

(®)

min f||w||2
weW 2

L I
T Z yiw " @,
i=1

where the points {(x;,y;)} are drawn from the un-
derlying distribution by G¢ or Gn. Suppose G(w) =
Aw — yx + Z where Z is an independent noise vector
such that E[Z] = 0, E[||Z|?] = V& if G is Gc, and
E[|Z||?] = V2 if G is Gy with V;2 > V2.
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For our example, we consider the following three vari-
ants of SGD: CF and NF for “clean first” and “noisy
first” and AO for an “arbitrary ordering”:

1. CF:
(4).

For t < |Dc|, query Gc in the SGD update
For t > |D¢|, query Q.

. NF:
(4).

AO: Let S be an arbitrary sequence of length T
consisting of |D¢| C’s and |Dy| N’s. In the SGD
update (4) in round ¢, if the t-th element S; of S
is C, then query Gc; else, query Gy.

For t < |Dyl, query Gy in the SGD update
For t > | Dy, query Gc.

In order to isolate the effect of the noise, we consider
two additional oracles G¢ and Gj; the oracle G¢ (resp.
Gy) is implemented based on the dataset D¢ (resp.
Dy), and iterates over D¢ (resp. Dy) in exactly the
same order as Gc (resp. Gn); the only difference is
that for G¢ (resp. Gy), no extra noise is added to the
gradient (that is, Z = 0). The main result of this
section is stated in Theorem 2.

Theorem 2. Let {wt"}, {wNF) and {wiC} be the se-
quences of updates obtained by running SGD for objec-
tive function (8) under CF, NF and AO respectively,
and let {vEF}, {oNFY and {vPC} be the sequences of
updates under CF, NF and AO with calls to Gc and Gy
replaced by calls to G¢ and Gy. Let T = |Dc| + |Dnl.

1. If the learning rate n, = ¢/t where ¢ € ( 1), then
E [[vF, —wial?] <E [||UT+1 - wT+1H }

If the learning rate n, = ¢/t where ¢ > 1/A, then

“lUTJrl - wT+1|| ] <E [||UT+1 wT+1H }

This means arbitrary ordering is worse than sequen-
tially processing one dataset after the other except
when ¢ = 1/A. If the learning rate is small, then SGD
should use the clean data first to aggressively proceed
towards the optimum. If the learning rate is larger,
then SGD should reserve the clean data for refining the
initial estimates given by processing the noisy data.

4 ADAPTING THE LEARNING
RATES TO THE NOISE LEVEL

We now investigate whether the performance of SGD
can be improved by using different learning rates for
oracles with different noise levels. Suppose we have
oracles G; and Go with noise levels I';y and I'y that
are implemented based on two datasets D and Ds.
Unlike the previous section, we do not assume any
relation between I'y and I's — we analyze the error
for using oracle Gy followed by Gs in terms of I'; and
I's to choose a data order. Let T' = |Dq| + |D3|. Let
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51 ‘D—Tll and By = 1 — 1 = \1;2\ be the fraction
of the data coming from G, and G, respectively. We
adapt the gradient updates in (4) to heterogeneous
noise by choosing the learning rate 7, as a function of
the noise level. Algorithm 1 shows a modified SGD for

heterogeneous learning rates.

Algorithm 1 SGD with varying learning rate

1: Inputs: Oracles G1, G implemented by data sets
D1, Dy. Learning rates ¢; and co.

2: Set w; = 0.

3: fort=1,2,...,|D;| do

4 wipr =y (wy — Gi(wy))

5: end for

6: for t = |D1| + ]., |D1| + 2, ey |D1| -+ ‘D2| do

7w = Iy (wt - %gz(wt))

8: end for

9: return w|D1|+‘D2‘+1.

Consider SGD with learning rate c1/t while
querying G; and with 7, = ¢/t while querying G in
the update (4). We must choose an order in which
to query G; and G- as well as the constants ¢; and cs
to get the best performance. We do this by minimiz-
ing an upper bound on the distance between the final
iterate wr41 and the optimal solution w* to E[f(w)]
where f is defined in (1), and the expectation is with
respect to the data distribution and the gradient noise;
the upper bound we choose is based on Rakhlin et al.
(2012). Note that for smooth functions f, a bound on
the distance ||wry; — w*|| automatically translates to
a bound on the regret f(wr41) — f(w*).

Theorem 3 generalizes the results of Rakhlin et al.
(2012) to our heterogeneous noise setting; the proof
is in the supplement.

Theorem 3. If 2X\c; > 1 and if 2Xco # 1, and if we
query Gy before Go with learning rates ¢/t and co/t
respectively, then the SGD algorithm satisfies

4F2 2Aco—1 2
E ¥ ]|2 < 1 17
e — ] < 4 B
a3 (1 g i
— @) - . (9
T =1 O\ ey ) O

Two remarks are in order. First, the first two terms in
the right hand side dominate the other term. Sec-
ond, our proof techniques for Theorem 3, adapted
from Rakhlin et al. (2012), require that 2A¢; > 1 in
order to get a O(1/T) rate of convergence; without
this condition, the dependence on T is Q(1/T).

4.1 Algorithm description

Our algorithm for selecting ¢; and ¢y is motivated by
Theorem 3. We propose an algorithm that selects c;
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and c¢p by minimizing the quantity B(cy, ¢3) which rep-
resents the highest order terms in Theorem 3:

gt
T(2Xc; — 1)

AT3(1 - PN
T(2Acy — 1)
(10)

B(ey, ) =

Given A, I'1, I'y and B4, we use ¢j and ¢5 to denote the
values of ¢; and co that minimize B(cy,c2). We can
optlmlze for fixed co with respect to c1 by minimizing
2)\ T * — = 1/A?%, which
is 1ndependent of 81 or the noise levels I'y and I'y. Min-
imizing B(c7, ca) with respect to ¢z can be now per-
formed numerically to yield c; = argmin,, B(c}, c2).
This yields optimal values of ¢; and cs.

; this gives ¢f = 1/, and

Now suppose we have two oracles Gc, Gy with noise
levels I'c and I'y that are implemented based on
datasets D¢ and Dy respectively. Let I'c < 'y, and
let B = 5 3my and An = Biioy
of the total data in each data set. Define the following
functions:

be the fraction

H ( ) 41—%62)\0 1 41—\%‘(1 (2:)\c71)02
N A2 2xc — 1 ’
4F2 2>\c 1 41-12 1— 2Xc—1y 2
HNC( ) N 2 C( N ) )
A 2Xc—1

These represent the constant of the leading term in the
upper bound in Theorem 3 for (G1,G2) = (Gc, Gn) and
(G1,G2) = (Gn, Gc), respectively.

Algorithm 2 repeats the process of choosing optimal
c1,co with two orderings of the data — G¢ first and
On first — and selects the solution which provides the
best bounds (according to the higher order terms of
Theorem 3).

Algorithm 2 Selecting the Learning Rates
1:

Inputs: Data sets D¢ and Dy accessed through
oracles Gc and Gy with noise levels I'c and T'y.

. _ __|Dc _ __|Dn|
2: Let fc = [Dc|+|Dn] and fn = | Dc|+|Dnl|*
3: Calculate ccy = argmin, Hen(e) and ene =

argmin, Hyc(c).

4: if Hceyn (CCN) < HNC(CNC) then

5:  Run Algorithm 1 using oracles (G¢, Gn), learning
rates ¢ = % and ¢y = ccn.-

6: else

7 Run Algorithm 1 using oracles (Gn, Gc), learning
rates ¢; = g and ¢z = cnc-

8: end if

4.2 Regret Bounds

To provide a regret bound on the performance of SGD
with two learning rates, we need to plug the optimal
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values of ¢; and ¢z into the right hand side of (10).
Observe that as ¢; = ¢o and co = 0 are feasible inputs
o (10), our algorithm by construction has a superior
regret bound than using a single learning rate only, or
using clean data only.

Unfortunately, the value of ¢z that minimizes (10) does
not have a closed form solution, and as such it is diffi-
cult to provide a general simplified regret bound that
holds for all ', I's and B;. In this section, we consider
two cases of interest, and derive simplified versions of
the regret bound for SGD with two learning rates for
these cases.

We consider the two data orders (I'1,T'2) = (I'n,I'c)
and (I'1,I'9) = (I'c,'y) in a scenario where I'y/I'c >
1 and both Sy and B¢ are bounded away from 0 and
1. That is, the noisy data is much noisier. The follow-
ing two lemmas provide upper and lower bounds on
B(ct, ¢5) in this setting.

Lemma 1. Suppose (T'1,T3) = (Tn,Tc) and 0 < By <
1. Then for sufficiently large T'n/T'c, the optimal so-
lution ¢ to (10) satisfies

2log(I'n/T'c) + loglog(1//n)

2C;>\€ 1+ IOg(l/ﬁN) )
| 4 2108(4Tw/Tc) + loglog(1/5)
log(1/pn) .

Moreover, B(c,ch) satisfies:
4F%(10g(lr,—g) + 1 loglog [%N)
)\QTlog(ﬂ—lN)
<4 . 4+ 2log(F) + log log(ﬁlN)> .

log(5-)
Observe that the regret bound grows logarithmically
with I'y/T'c. Moreover, if we only used the cleaner

data, then the regret bound would be )\2

B(e,¢3) =

412
2T

B(er, e

) <

5 <7, which is
better, especially for large I'y/T'c. This means that
using two learning rates with the noisy data first gives

poor results at high noise levels.

Our second bound takes the opposite data order, pro-
cessing the clean data first.

Lemma 2. Suppose (I'1,I's) = (I¢,I'y) and 0 <
Bc < 1. Let o = (In/Tc)™2. Then for sufficiently
large T'n/T'c, the optimal solution ¢ to (10) satisfies:

2c5\ € [0‘, B } Moreover, B(ct,ch) satisfies:
* % 4F 8o
B(ci,c3) > )\QBCTﬁ /e

,1o8(1/5c)
4

).

Blet i) <o (1+
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If we only used the clean dataset, then the regret

bound would be so Lemma 2 yields an improve-

(1 + (%) - log(l/ﬁc)> .

2

As Bc < 1, observe that this factor is always less than
1, and tends to 1 as I'y/T'c tends to infinity; therefore
the difference between the regret bounds narrows as
the noisy data grows noisier. We conclude that using
two learning rates with clean data first gives a better
regret bound than using only clean data or using two
learning rates with noisy data first.

4rg
A2B3cT

ment by a factor of BéFN/FC)J

5 EXPERIMENTS

We next illustrate our theoretical results through ex-
periments on real data. We consider the task of train-
ing a regularized logistic regression classifier for binary
classification under local differential privacy. For our
experiments, we consider two real datasets — MNIST
(with the task 1 vs. Rest) and Covertype (Type 2 vs.
Rest). The former consists of 60,000 samples in 784
dimensions, while the latter consists of 500,000 sam-
ples in 54-dimensions. We reduce the dimension of the
MNIST dataset to 25 via random projections.

To investigate the effect of heterogeneous noise, we
divide the training data into subsets (D¢, Dy) to be
accessed through oracles (Gc, Gn) with privacy param-
eters (ec,en) respectively. We pick ec > ey, so Gy is
noisier than Gec. To simulate typical practical situa-
tions where cleaner data is rare, we set the size of D¢
to be Sc = 10% of the total data size. We set the reg-
ularization parameter A = 1073, I'¢ and I'yy according
to Theorem 1 and use SGD with mini-batching (batch
size 50).

Does Data Order Change Performance? Our
first task is to investigate the effect of data order
on performance. For this purpose, we compare three
methods — CleanFirst, where all of D¢ is used before
Dy, NoisyFirst, where all of Dy is used before D¢, and
Arbitrary, where data from DyU D¢ is presented to the
algorithm in a random order.

The results are in Figures 1(a) and 1(d). We use
€c 10, e 3. For each algorithm, we plot
|f(wrs1) — f(vrs+1)| as a function of the constant ¢
in the learning rate. Here f(wr41) is the function
value obtained after T" rounds of SGD, and f(vr41) is
the function value obtained after T rounds of SGD if
we iterate over the data in the same order, but add no
extra noise to the gradient. (See Theorem 2 for more
details.) As predicted by Theorem 2, the results show
that for ¢ < %, CleanFirst has the best performance,
while for ¢ > L, NoisyFirst performs best. Arbitrary
performs close to NoisyFirst for a range of values of ¢,

o
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which we expect as only 10% of the data belongs to
Dc.

Are Two Learning Rates Better than One? We
next investigate whether using two learning rates in
SGD can improve performance. We compare five ap-
proaches. Optimal is the gold standard where we ac-
cess the raw data without any intervening noisy oracle.
CleanOnly uses only D¢ with learning rate with the op-
timal value of ¢ obtained from Section 4. SameClean
and SameNoisy use a single value of the constant ¢
in the learning rate for Dy U D¢, where ¢ is ob-
tained by optimizing (10)* under the constraint that
¢1 = co. SameClean uses all of D¢ before using Dy,
while SameNoisy uses all of Dy before using Dc. In
Algorithm2, we use Algorithm 2 to set the two learn-
ing rates and the data order (D¢ first or Dy first).
In each case, we set e¢c = 10, vary ey from 1 to 10,
and plot the function value obtained at the end of the
optimization.

The results are plotted in Figures 1(b) and 1(e). Each
plotted point is an average of 100 runs. It is clear
that Algorithm2, which uses two learning rates, per-
forms better than both SameNoisy and SameClean. As
expected, the performance difference diminishes as ey
increases (that is, the noisy data gets cleaner). For
moderate and high ey, Algorithm?2 performs best, while
for low ey (very noisy Dy), CleanOnly has slightly bet-
ter performance. We therefore conclude that using two
learning rates is better than using a single learning rate
with both datasets, and that Algorithm2 performs best
for moderate to low noise levels.

Does Noisy Data Always Help? A natural ques-
tion to ask is whether using noisy data always helps
performance, or if there is some threshold noise level
beyond which we should not use noisy data. Lemma 2
shows that in theory, we obtain a better upper bound
on performance when we use noisy data; in contrast,
Figures 1(b) and 1(e) show that for low ey (high noise),
Algorithm2 performs worse than CleanOnly. How do we
explain this apparent contradiction?

To understand this effect, in Figures 1(c) and 1(f) we
plot the performance of SGD using two learning rates
(with ¢; = }) against CleanOnly as a function of the
second learning rate cy. The figures show that the
best performance is attained at a value of ¢y which is
different from the value predicted by Algorithm2, and
this best performance is better than CleanOnly. Thus,
noisy data always improves performance; however, the
improvement may not be achieved at the learning rate
predicted by our algorithm.

Note that we plug in separate noise rates for Gc and
Gn in the learning rate calculations.
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Figure 1: Column 1 plots |f(wr41) — f(vrs+1)| vs. constant ¢ for A = 0.001. Column 2 plots final objective
function value vs. ey for e¢ = 10. Column 3 plots final objective function value vs. ¢s for ey = 2 (top) and
en =1 (bottom). Top row shows figures for MNIST and bottom row for Covertype.

Why does our algorithm perform suboptimally? We
believe this happens because the values of 'y and '
used by our algorithm are fairly loose upper bounds.
For local differential privacy, an easy lower bound on I"

. 4(d2+d)
1S b

(resp. c2(U)) be the value of ¢y obtained by plug-
ging in these lower bounds (resp. upper bounds from
Theorem 1) to Algorithm 1. Our experiments show
that the optimal value of ¢y always lies between co(L)
and ¢3(U), which indicates that the suboptimal per-
formance may be due to the looseness in the bounds.

, where b is the mini-batch size; let co(L)

We thus find that even in these high noise cases, the-
oretical analysis often allows us to identify an interval
containing the optimal value of ¢5. In practice, we rec-
ommend running Algorithm 2 twice — once with upper,
and once with lower bounds to obtain an interval con-
taining co, and then performing a line search to find
the optimal cs.

6 CONCLUSION

In this paper we propose a model for learning from
heterogeneous noise that is appropriate for studying
stochastic gradient approaches to learning. In our
model, data from different sites are accessed through
different oracles which provide noisy versions of the
gradient. Learning under local differential privacy
and random classification noise are both instances of
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our model. We show that for two sites with different
noise levels, processing data from one site followed by
the other is better than randomly sampling the data,
and the optimal data order depends on the learning
rate. We then provide a method for choosing learning
rates that depends on the noise levels and showed that
these choices achieve lower regret than using a com-
mon learning rate. We validate these findings through
experiments on two standard data sets and show that
our method for choosing learning rates often yields im-
provements when the noise levels are moderate. In the
case where one data set is much noisier than the other,
we provide a different heuristic to choose a learning
rate that improves the regret.

There are several different directions towards gener-
alizing the work here. Firstly, extending the results
to multiple sites and multiple noise levels will give
more insights as to how to leverage large numbers of
data sources. This leads naturally to cost and bud-
geting questions: how much should we pay for addi-
tional noisy data? Our results for data order do not
depend on the actual noise levels, but rather their rel-
ative level. However, we use the noise levels to tune
the learning rates for different sites. If bounds on the
noise levels are available, we can still apply our heuris-
tic. Adaptive approaches for estimating the noise lev-
els while learning are also an interesting approach for
future study.
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