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A SUPPLEMENTARY MATERIAL

This supplementary material contains (i) detailed proofs of the consistency of MERR (Section A.1), (ii) numerical
illustrations (Section A.2).

A.1 Proofs

A.1.1 Proof of k: continuous, bounded ⇒ µ: H-measurable; µ: H-measurable,
X = µ(M+

1 (X)) ∈ B(H) ⇒ µ: X-measurable ⇒ ∃ρ

Below we give sufficient conditions for the existence of probability measure ρ. We divide the proof into 3 steps:

• k: continuous, bounded ⇒ µ: H-measurable: The mapping µ : (M+
1 (X),B(τw)) → (H,B(H)) is

measurable, iff the Lh : (M+
1 (X),B(τw)) → (R,B(R)) map defined as Lh(x) = 〈h, µx〉H

(

=
∫

X
h(u)dx(u)

)

is
measurable for ∀h ∈ H [38, Theorem IV. 22, page 116]. If k is assumed to be continuous and bounded, these
properties also hold for ∀h ∈ H [6, Lemma 4.23, page 124; Lemma 4.28, page 128], i.e. H = H(k) ⊆ Cb(X).
By the definition of the weak topology the Lh functions are continuous (for ∀h ∈ H), which implies the
required Borel measurability [6, page 480] of Lh-s (for ∀h ∈ H).

• µ : H-measurable, X = µ(M+
1 (X) ∈ B(H) ⇒ µ : X-measurable: Let τ denote the open sets on

H = H(k). Let τ |X = {A ∩ X : A ∈ τ} be the subspace topology on X , and let B(H)|X = {A ∩ X :
A ∈ B(H)} be the subspace σ-algebra on X . Since B (τ |X) = B(H)|X ⊆ B(H) (the containing relation
follows from the X ∈ B(H) condition), and B(H)|X = {A ∈ B(H) : A ⊆ X}, the measurability of
µ : (M+

1 (X),B(τw)) → (H,B(H)) implies the measurability of µ : (M+
1 (X),B(τw)) → (X, B(H)|X).

• µ : X-measurable ⇒ ∃ρ: Let us consider the

g : (M+
1 (X)× R,B(τw)⊗ B(R)) → (X × R, B(H)|X ⊗ B(R)) (14)

g(x, y) = [g1(x, y); g2(x, y)] = [µx; y] mapping. If g is a measurable function, then it defines ρ, a probability
measure on (X × R, B(H)|X ⊗ B(R)) by looking at g as a random variable taking values in X × R:

ρ(C) := M
(

g−1(C)
)

, (C ∈ B(H)|X ⊗ B(R)). (15)

Function g in Eq. (14) is measurable iff its coordinate functions, g1 and g2 are both measurable functions
[39, Proposition 3.2, page 201]. Thus, we need for ∀A ∈ B(H)|X , ∀B ∈ B(R)

B(τw)⊗ B(R) ∋ g−1
1 (A) = {(x, y) : g1(x, y) = µx ∈ A} = µ−1(A)× R, (16)

B(τw)⊗ B(R) ∋ g−1
2 (B) = {(x, y) : g2(x, y) = y ∈ B} = M

+
1 (X)×B. (17)

According to Eqs. (16)-(17), the measurability of g follows from the X-measurability of µ :
(M+

1 (X),B(τw)) → (X, B(H)|X), which is guaranteed by our conditions.

A.1.2 Proof of Ψ: Hölder continuous ⇒ K: measurable

[5]’s original assumption that (µa, µb) ∈ X×X 7→ K(µa, µb) ∈ R is measureable follows from the required Hölder
continuity [see Eq. (5)] since (i) the continuity of Ψ is equivalent to that of K, (ii) a continuous map between
topological spaces is Borel measurable [6, Lemma 4.29 on page 128; page 480].

A.1.3 Proof of K: linear ⇒ Ψ: Hölder continuous with L = 1, h = 1

In case of a linear K kernel K(µa, µb) = 〈µa, µb〉H (µa, µb ∈ X), by the bilinearity of 〈·, ·〉H and ‖〈·, a〉H‖2
H

=

‖a‖2H , we get that ‖K(·, µa)−K(·, µb)‖H = ‖〈·, µa〉H − 〈·, µb〉H‖
H

= ‖〈·, µa − µb〉H‖
H

= ‖µa − µb‖H . In other
words, Hölder continuity holds with L = 1, h = 1; K is Lipschitz continuous (h = 1).

A.1.4 Proof of X: compact metric, µ: continuous ⇒ X = µ
(

M
+
1 (X)

)

: compact metric

Let us suppose that X = (X, d) is a compact metric space. This implies that M
+
1 (X) is also a compact metric

space by Theorem 6.4 in [40] (page 55). The continuous (µ) image of a compact set is compact (see page 478 in
[6]), thus X = µ

(

M
+
1 (X)

)

⊆ H is compact metric.
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A.1.5 Proof of the Kernel Examples on X = µ(M+
1 (X))

Below we prove for theK : X×X → R functions in Table 1 that they are kernels on mean embedded distributions.

We need some definitions and lemmas. Z,Z+,R+,R≥0 denotes the set of integers, positive integers, positive real
numbers and non-negative real numbers, respectively.

Definition 1. Let X be a non-empty set. A K : X ×X → R function is called

• positive definite (pd; also referred to as kernel) on X, if it is
1. symmetric [K(a, b) = K(b, a), ∀a, b ∈ X], and
2.
∑n

i,j=1 cicjK(ai, aj) ≥ 0 for all n ∈ Z
+, {a1, . . . , an} ⊆ Xn, c = [c1; . . . ; cn] ∈ R

n.
• negative definite (nd; sometimes −K is called conditionally positive definite) on X, if it is

1. symmetric, and
2.
∑n

i,j=1 cicjK(ai, aj) ≤ 0 for all n ∈ Z
+, {a1, . . . , an} ⊆ Xn, c = [c1; . . . ; cn] ∈ R

n, where
∑n

j=1 cj = 0.

We will use the following properties of positive/negative definite functions:

1. K is nd ⇔ e−tK is pd for all t > 0; see Chapter 3 in [33].
2. K : X ×X → R

≥0 is nd ⇔ 1
t+K is pd for all t > 0; see Chapter 3 in [33].

3. If K is nd and non-negative on the diagonal (K(x, x) ≥ 0, ∀x ∈ X), then Kα is nd for all α ∈ [0, 1]; see
Chapter 3 in [33].

4. K(x, y) = 〈x, y〉X is pd, where X is a Hilbert space (since the pd property is equivalent to being a kernel).

5. K(x, y) = ‖x− y‖2X is nd, where X is a Hilbert space; see Chapter 3 in [33].
6. If K is nd, K + d (d ∈ R) is also nd. Proof: (i) K(x, y) + d = K(y, x) + d holds by the symmetry

of K, (ii)
∑n

i,j=1 cicj [K(ai, aj) + d] =
∑n

i,j=1 cicjK(ai, aj) +
∑n

i=1 ci
∑n

j=1 cjd =
∑n

i,j=1 cicjK(ai, aj) +
∑n

i=1 cid
∑n

j=1 cj =
∑n

i,j=1 cicjK(ai, aj) + 0 ≤ 0, where we used that
∑n

j=1 cj = 0 and K is nd.
7. If K is pd (nd) on X , then it is pd (nd) on X ′ ⊆ X as well. Proof: less constraints have to be satisfied for

X ′ ⊆ X .
8. If K is pd (nd) on X , then sK (s ∈ R

+) is also pd (nd). Proof: multiplication by a positive constant does
not affect the sign of

∑n
i,j=1 cicjK(ai, aj).

9. If K is nd on X and K(x, y) > 0 ∀x, y ∈ X , then 1
K is pd; see Chapter 3 in [33].

10. If K is pd on X , and h(u) =
∑∞

n=0 anu
n with an ≥ 0, then h ◦K is pd; see Chapter 3 in [33].

Making use of these properties one can prove the kernel property of the K-s in Table 1 (see also Table 3) as
follows. All the K-s are functions of ‖µa − µb‖H , ‖µa − µb‖H = ‖µb − µa‖H , hence K-s are symmetric.

K(x, y) = ‖x− y‖2H is nd on H = H(k) (Prop. 5), thus K(x, y) = ‖x− y‖2H is nd on X = µ
(

M
+
1 (X)

)

⊆ H(k)

(Prop. 7). Consequently, K(x, y) = ‖x− y‖dH is nd on X , where d ∈ [0, 2] (K(x, x) = 0 ≥ 0, Prop. 3).

• Hence, K(x, y) = e−t‖x−y‖d
H is pd, where t > 0, d ∈ [0, 2] (Prop. 1). By the (t, d) =

(

1
2θ2 , 2

)

and

(t, d) =
(

1
2θ2 , 1

)

choices, we get that KG and Ke are kernels.

• Using Prop. 2 (‖x− y‖dH ≥ 0), one obtains that K(x, y) = 1
t+‖x−y‖dH

is pd on X , where t > 0, d ∈ [0, 2].

By the (t, d) = (1,≤ 2) choice the kernel property of Kt follows.

• Thus, K(x, y) = s ‖x− y‖dH is nd on X , where s > 0, d ∈ [0, 2] (Prop. 8). Consequently, K(x, y) =
1

t+s‖x−y‖dH
is pd on X , where s > 0, d ∈ [0, 2], t > 0 (Prop. 2). By the (d, t, s) = (2, 1, 1

θ2 ), we have that

KC is kernel.
• Hence, K(x, y) = ‖x− y‖dH + e is nd on X , where d ∈ [0, 2], e ∈ R

+ (Prop. 6). Thus, K(x, y) =
(

‖x− y‖dH + e
)f

is nd on X , where d ∈ [0, 2], e ∈ R
+, f ∈ (0, 1] (‖x− y‖dH+e ≥ 0, Prop. 3). Consequently,

K(x, y) = 1

(‖x−y‖dH+e)f
is pd on X , where d ∈ [0, 2], e ∈ R

+, f ∈ (0, 1] (
(

‖x− y‖dH + e
)f

> 0; Prop. 9);

with the (d, e, f) =
(

2, θ2, 1
2

)

choice, one obtains that Ki is a kernel.

A.1.6 Proof of “Conditions of Proof A.1.4 and Proof A.1.5” ⇒ Ψ-s of K-s in Proof A.1.5:
Hölder continuous

We tackle the problem more generally:
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Table 3: Nonlinear kernels on mean embedded distributions.

Kernel (K) Parameter(s)

K(µa, µb) = e−t‖µa−µb‖d
H t > 0, d ∈ [0, 2]

K(µa, µb) =
1

t+‖µa−µb‖d
H

t > 0, d ∈ [0, 2]

K(µa, µb) =
1

t+s‖µa−µb‖d
H

s > 0, d ∈ [0, 2], t > 0

K(µa, µb) =
1

(‖µa−µb‖d
H+e)f

d ∈ [0, 2], e ∈ R
+

1. we give sufficient conditions for K kernels of the form

K(µa, µb) = K̄ (‖µa − µb‖H) , (18)

i.e., for radial kernels to have Hölder continuous canonical feature map (Ψ(µc) = K(·, µc)): ∃L > 0,

h ∈ (0, 1] such that ‖K(·, µa)−K(·, µb)‖H ≤ L ‖µa − µb‖hH .
2. Then we show that these sufficient conditions are satisfied for the K kernels listed in Table 1.

Let us first note that K is bounded. Indeed, since Ψ is Hölder continuous, specially it is continuous. Hence using
Lemma 4.29 in [6] (page 128), the

K0 : µa ∈ X → K(µa, µa) ∈ R

mapping is continuous. As we have already seen (Section A.1.4) X is compact. The continuous (K0) image of a
compact set (X), i.e., the {K(µa, µa) : µa ∈ X} ⊆ R set is compact, specially it is bounded above.

1. Sufficient conditions: Now, we present sufficient conditions for the assumed Hölder continuity

‖K(·, µa)−K(·, µb)‖H ≤ L ‖µa − µb‖hH . (19)

Using ‖u‖2
H

= 〈u, u〉
H
, the bilinearity of 〈·, ·〉

H
, the reproducing property of K and Eq. (18), we get

‖K(·, µa)−K(·, µb)‖2H = 〈K(·, µa)−K(·, µb),K(·, µa)−K(·, µb)〉H
= K(µa, µa) +K(µb, µb)− 2K(µa, µb) = 2K̄(0)− 2K̄(‖µa − µb‖H)

= 2
[

K̄(0)− K̄ (‖µa − µb‖H)
]

.

Hence, the Hölder continuity of K is equivalent to the existence of an L′
(

= L2

2

)

> 0 such that

K̄(0)− K̄ (‖µa − µb‖H) ≤ L′ ‖µa − µb‖2hH .

Since for µa = µb both sides are equal to 0, this requirement is equivalent to

u(µa, µb) :=
K̄(0)− K̄ (‖µa − µb‖H)

‖µa − µb‖2hH
≤ L′, (µa 6= µb)

i.e., that the u : X ×X → R function is bounded above. Function u is the composition (u = u2 ◦ u1) of
the mappings:

u1 : X ×X → R
≥0, u1(µa, µb) = ‖µa − µb‖H ,

u2 : R≥0 → R, u2(v) =
K̄(0)− K̄(v)

v2h
. (20)

Here, u1 is continuous. Let us suppose for u2 that
(a) (i) ∃h ∈ (0, 1] such that limv→0+ u2(v) exists, and
(b) u2 is continuous.
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In this case, since the composition of continuous functions is continuous (see page 85 in [41]), u is continuous.
As we have seen (Section A.1.4), X is compact. The product of compact sets (X ×X) is compact by the
Tychonoff theorem (see page 143 in [41]). Finally, since the continuous (u) image of a compact set (X×X),
i.e. {u(µa, µb) : (µa, µb) ∈ X×X} ⊆ R is compact (Theorem 8 in [41], page 141), we get that u is bounded,
specially bounded above.
To sum up, we have proved that if
(a) K is radial [see Eq. (18)],
(b) u2 [Eq. (20)] is (i) continuous and (ii) ∃h ∈ (0, 1] such that limv→0+ u2(v) exists,
then the Hölder property [Eq. (19)] holds for K with exponent h. In other words, the Hölder property of
a kernel K on mean embedded distributions can be simply guaranteed by the appropriate behavior of K̄
at zero.

2. Verification of the sufficient conditions: In the sequel we show that these conditions hold for the u2 functions
of the K kernels in Table 1. In the examples

K̄G(v) = e−
v2

2θ2 , K̄e(v) = e−
v

2θ2 , K̄C(v) =
1

1 + v2

θ2

, K̄t(v) =
1

1 + vθ
, K̄i(v) =

1√
v2 + θ2

.

The corresponding u2 functions are

u2G(v) =
1− e−

v2

2θ2

v2h
, u2e(v) =

1− e−
v

2θ2

v2h
, u2C(v) =

1− 1

1+ v2

θ2

v2h
, u2t(v) =

1− 1
1+vθ

v2h
, u2i(v) =

1
θ − 1√

v2+θ2

v2h
.

The limit requirements at zero complementing the continuity of u2-s are satisfied:
• u2G: In this case

lim
v→0+

u2G(v) = lim
v→0+

1− e−
v2

2θ2

v2
= lim

v→0+

1− e−
v

2θ2

v
= lim

v→0+

1
2θ2 e

− v

2θ2

1
=

1

2θ2
,

where we applied a v2 substitution and the L’Hopital rule; h = 1.
• u2e:

lim
v→0+

u2e(v) = lim
v→0+

1− e−
v

2θ2

v2h
= lim

v→0+

1
2θ2 e

− v

2θ2

2hv2h−1
=

1

2θ2
,

where we applied the L’Hopital rule and chose h = 1
2 , the largest h from the 2h− 1 ≤ 0 convergence

domain.
• u2C :

u2C(v) =

1− 1

1+ v2

θ2

v2h
=

1− θ2

θ2+v2

v2h
=

v2

θ2+v2

v2h
=

v2−2h

θ2 + v2
v→0+−−−−→ θ2

,

we chose h = 1, the largest value from the convergence domain (2− 2h ≥ 0 ⇒ 1 ≥ h).
• u2t:

u2t(v) =
1− 1

1+vθ

v2h
=

vθ−2h

1 + vθ
v→0−−−→ 1

,

thus we can have h = θ
2 , the largest element of the convergence domain (θ − 2h ≥ 0 ⇔ θ

2 ≥ h). Here

we require θ ≤ 2 in order to guarantee that h = θ
2 ≤ 1.

• u2i: Let g denote the nominator of u2i

g(v) =
1

θ
− 1√

v2 + θ2
=

1

θ
−
[

g(0) + g′(0)v +
g′′(0)

2
v2 + . . .

]

=
1

θ
−
[

1

θ
+

(

−1

2

1

(v2 + θ)
3
2

2v

)∣

∣

∣

∣

v=0

v +
g′′(0)

2
v2 + . . .

]

= −v2
[

g′′(0)

2!
+

g(3)(0)

3!
v + . . .

]

.

Hence,

lim
v→0+

u2i(v) = lim
v→0+

1
θ − 1√

v2+θ2

v2
= lim

v→0+

−v2
[

g′′(0)
2! + g(3)(0)

3! v + . . .
]

v2
= −g′′(0)

2
,

i.e., h can be chosen to be 1 (h = 1).
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A.1.7 Proof of ‖
∑n

i=1 fi‖
2 ≤ n

∑n
i=1 ‖fi‖

2

In a normed space (N, ‖·‖)
∥

∥

∥

∥

∥

n
∑

i=1

fi

∥

∥

∥

∥

∥

2

≤ n

n
∑

i=1

‖fi‖2 , (21)

where fi ∈ N (i = 1, . . . , n).

Indeed the statement holds since ‖∑n
i=1 fi‖

2 ≤ (
∑n

i=1 ‖fi‖)
2 ≤ n

∑n
i=1 ‖fi‖

2, where we applied the triangle
inequality, and a consequence that the arithmetic mean is smaller or equal than the squared mean (special case

of the generalized mean inequality) with ai = ‖fi‖ ≥ 0. Particularly,
∑n

i=1 ai

n ≤
√

∑

n
i=1(ai)2

n ⇒ (
∑n

i=1 ai)
2 ≤

n
∑n

i=1(ai)
2.

A.1.8 Proof of the Decomposition of the Excess Risk

It is known [5] that E [f ]− E [fH] = ‖
√
T (f − fH)‖2H (∀f ∈ H). Applying this identity with f = fλ

ẑ
∈ H and a

telescopic trick, we get

E
[

fλ
ẑ

]

− E [fH] =
∥

∥

∥

√
T
(

fλ
ẑ
− fH

)

∥

∥

∥

2

H
=
∥

∥

∥

√
T
[(

fλ
ẑ
− fλ

z

)

+
(

fλ
z
− fλ

)

+
(

fλ − fH
)]

∥

∥

∥

2

H
. (22)

By Eqs. (9), (10), and the operator identity A−1 − B−1 = A−1(B − A)B−1 one obtains for the first term in
Eq. (22)

fλ
ẑ
− fλ

z
= (T

x̂
+ λ)−1g

ẑ
− (Tx + λ)−1gz = (T

x̂
+ λ)−1(g

ẑ
− gz) + (T

x̂
+ λ)−1gz − (Tx + λ)−1gz

= (T
x̂
+ λ)−1(g

ẑ
− gz) +

[

(T
x̂
+ λ)−1 − (Tx + λ)−1

]

gz

= (T
x̂
+ λ)−1(g

ẑ
− gz) +

[

(T
x̂
+ λ)−1(Tx − T

x̂
)(Tx + λ)−1

]

gz

= (T
x̂
+ λ)−1

[

(g
ẑ
− gz) + (Tx − T

x̂
)(Tx + λ)−1gz

]

= (T
x̂
+ λ)−1

[

(g
ẑ
− gz) + (Tx − T

x̂
)fλ

z

]

.

Thus, we can rewrite the first term in (22) as

√
T
(

fλ
ẑ
− fλ

z

)

=: f−1 + f0, f−1 =
√
T (T

x̂
+ λ)−1(g

ẑ
− gz), f0 =

√
T (T

x̂
+ λ)−1(Tx − T

x̂
)fλ

z
.

The second term in (22) can be decomposed [5] as

√
T
[(

fλ
z
− fλ

)

+
(

fλ − fH
)]

=
√
T
[

(Tx + λ)−1(gz − TxfH) + (Tx + λ)−1(T − Tx)(f
λ − fH) + (fλ − fH)

]

=: f1 + f2 + f3,

where

f1 =
√
T (Tx + λ)−1(gz − TxfH), f2 =

√
T (Tx + λ)−1(T − Tx)(f

λ − fH), f3 =
√
T (fλ − fH).

Using these fi notations, (22) can be upper bounded as

E
[

fλ
ẑ

]

− E [fH] =

∥

∥

∥

∥

∥

3
∑

i=−1

fi

∥

∥

∥

∥

∥

2

H

≤ 5

3
∑

i=−1

‖fi‖2H , (23)

exploiting Section A.1.7 (‖·‖2 = ‖·‖2
H
, n = 5). Consequently, introducing the

S−1 = S−1(λ, z, ẑ) = ‖f−1‖2H, S0 = S0(λ, z, ẑ) = ‖f0‖2H,

S1 = S1(λ, z) = ‖f1‖2H, S2 = S2(λ, z) = ‖f2‖2H, A(λ) = ‖f3‖2H,

notations (for A(λ) see also Theorem 4), (23) can be rewritten as

E
[

fλ
ẑ

]

− E [fH] ≤ 5 [S−1 + S0 +A(λ) + S1 + S2] . (24)
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A.1.9 Proof of the Upper Bounding Terms of S−1 and S0

Using the

‖Mu‖H ≤ ‖M‖L(H)‖u‖H (M ∈ L(H), u ∈ H), (25)

relation, we get

S−1 ≤
∥

∥

∥

√
T (T

x̂
+ λ)−1

∥

∥

∥

2

L(H)
‖g

ẑ
− gz‖2H ,

S0 ≤
∥

∥

∥

√
T (T

x̂
+ λ)−1

∥

∥

∥

2

L(H)

∥

∥(Tx − T
x̂
)fλ

z

∥

∥

2

H
≤
∥

∥

∥

√
T (T

x̂
+ λ)−1

∥

∥

∥

2

L(H)
‖Tx − T

x̂
‖2
L(H)

∥

∥fλ
z

∥

∥

2

H
.

A.1.10 Proof of the Convergence Rate of the Empirical Mean Embedding

The statement we prove is as follows.[25]9

Let µx =
∫

X
k(·, u)dx(u) denote the mean embedding of distribution x ∈ M

+
1 (X) to the H = H(k) RKHS

determined by kernel k (µx ∈ H), which is assumed to be bounded k(u, u) ≤ Bk (∀u ∈ X). Let us given N

i.i.d. samples from distribution x: x1, ..., xN . Let µx̂ = 1
N

∑N
n=1 k(·, xn) ∈ H be the empirical mean embedding.

Then P

(

‖µx̂ − µx‖H ≤
√
2Bk√
N

+ ǫ
)

≥ 1− e
− ǫ2N

2Bk , or

‖µx̂i
− µxi

‖H ≤
√
2Bk√
N

+

√
2αBk√
N

=
(1 +

√
α)

√
2Bk√

N

with probability at least 1− e−α, where α = ǫ2N
2Bk

.

The proof will make use of the McDiarmid’s inequality.

Lemma 1 (McDiarmid’s inequality [42]). Let x1, . . . , xN ∈ X be independent random variables and function
g ∈ Xn → R be such that supu1,...,uN ,u′

j∈X

∣

∣g(u1, . . . , uN)− g(u1, . . . , uj−1, u
′
j, uj+1, . . . , uN )

∣

∣ ≤ cj ∀j = 1, . . . , N .

Then for all ǫ > 0 P (g(x1, . . . , xN )− E [g(x1, . . . , xN )] ≥ ǫ) ≤ e
− 2ǫ2
∑N

n=1
c2n .

Namely, let φ(u) = k(·, u), and thus k(u, u) = ‖φ(u)‖2H . Let us define

g(S) = ‖µx̂ − µx‖H =

∥

∥

∥

∥

∥

1

N

N
∑

n=1

φ(xn)− µx

∥

∥

∥

∥

∥

H

,

where S = {x1, . . . , xN} be the sample set. Define S′ = {x1, . . . , xj−1, x
′
j , xj+1, . . . , xN}, i.e., let us replace in

the sample set xj with x′
j . Then

|g (S)− g (S′)| =

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

N

N
∑

n=1

φ(xn)− µx

∥

∥

∥

∥

∥

H

−

∥

∥

∥

∥

∥

∥

1

N

N
∑

n=1;n6=j

φ(xn) +
1

N
φ(x′

j)− µx

∥

∥

∥

∥

∥

∥

H

∣

∣

∣

∣

∣

∣

≤ 1

N

∥

∥φ(xj)− φ(x′
j)
∥

∥

H
≤ 1

N

(

‖φ(xj)‖H +
∥

∥φ(x′
j)
∥

∥

H

)

≤ 1

N

[

√

k(xj , xj) +
√

k
(

x′
j , x

′
j

)

]

≤ 2
√
Bk

N

based on (i) the reverse and the standard triangle inequality, and (ii) the boundedness of kernel k. By using the
McDiarmid’s inequality (Lemma 1), we get

P (g(S)− E[g(S)] ≥ ǫ) ≤ e

− 2ǫ2

∑N
n=1

(

2
√

Bk
N

)2

= e
− 2ǫ2

N
4Bk
N2 = e

− ǫ2N
2Bk ,

or, in other words

1− e
− ǫ2N

2Bk ≤ P (g(S) < E[g(S)] + ǫ) ≤ P (g(S) ≤ E[g(S)] + ǫ) .

9In the original result a factor of 2 is missing from the denominator in the exponential function; we correct the proof
here.
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Considering the E[g(S)] term: since for a non-negative random variable (a) the E(a) = E(a1) ≤
√

E(a2)
√

E(12) =
√

E(a2) inequality holds due to the CBS, we obtain

E[g(S)] = E

[∥

∥

∥

∥

∥

1

N

N
∑

n=1

φ(xn)− µx

∥

∥

∥

∥

∥

H

]

≤

√

√

√

√

√E





∥

∥

∥

∥

∥

1

N

N
∑

n=1

φ(xn)− µx

∥

∥

∥

∥

∥

2

H





=

√

√

√

√

√E





〈

1

N

N
∑

i=1

φ(xi)− µx,
1

N

N
∑

j=1

φ(xj)− µx

〉

H



 =
√
b+ c+ d

using that ‖a‖2H =
√

〈a, a〉H . Here,

b = E





1

N2





N
∑

i,j=1;i6=j

k(xi, xj) +

N
∑

i=1

k(xi, xi)







 =
N(N − 1)

N2
Et∼x,t′∼xk(t, t

′) +
N

N2
Et∼x [k(t, t)] ,

c = − 2

N
E

[〈

N
∑

i=1

φ(xi), µx

〉

H

]

= −2N

N
Et∼x,t′∼x [k(t, t

′)] ,

d = E

[

‖µx‖2H
]

= Et∼x,t′∼x [k(t, t
′)]

applying the bilinearity of 〈·, ·〉H , and the representation property of µx. Thus,

√
b+ c+ d =

√

[

N − 1

N
− 2 + 1

]

Et∼x,t′∼x [k(t, t′)] +
1

N
Et∼x [k(t, t)]

=

√

1

N
(Et∼x [k(t, t)]− Et∼x,t′∼x [k(t, t′)]) =

√

Et∼x [k(t, t)]− Et∼x,t′∼x [k(t, t′)]√
N

.

Since
√

Et∼x [k(t, t)]− Et∼x,t′∼x [k(t, t′)] ≤
√

|Et∼x [k(t, t)]|+ |Et∼x,t′∼x [k(t, t′)]| ≤
√

Et∼x |k(t, t)|+ Et∼x,t′∼x |k(t, t′)|,

where we applied the triangle inequality, |k(t, t)| = k(t, t) ≤ Bk and |k(t, t′)| ≤
√

k(t, t)
√

k(t′, t′) (which holds

to the CBS), we get
√

Et∼x [k(t, t)]− Et∼x,t′∼x [k(t, t′)] ≤
√

Bk +
√
Bk

√
Bk =

√
2Bk.

To sum up, we obtained that ‖µx − µx̂‖H ≤
√
2Bk√
N

+ ǫ holds with probability at least 1 − e
− ǫ2N

2Bk . This is what

we wanted to prove.

A.1.11 Proof of the Bound on ‖g
ẑ
− gz‖2H, ‖Tx − T

x̂
‖2
L(H), ‖

√
T (T

x̂
+ λ)−1‖2

L(H), ‖fλ
z
‖2H

Below, we present the detailed derivations of the upper bounds on ‖g
ẑ
−gz‖2H, ‖Tx−T

x̂
‖2
L(H), ‖

√
T (T

x̂
+λ)−1‖2

L(H)

and ‖fλ
z
‖2H.

• Bound on ‖g
ẑ
− gz‖2H: By (11), we have g

ẑ
− gz = 1

l

∑l
i=1 [K(·, µx̂i

)−K(·, µxi
)] yi. Applying Eq. (21),

the Hölder property of K, the homogenity of norms ‖av‖ = |a| ‖v‖ (a ∈ R), assuming that yi is bounded
(|yi| ≤ C), and using (13), we obtain

‖g
ẑ
− gz‖2H ≤ 1

l2
l

l
∑

i=1

‖K(·, µx̂i
)−K(·, µxi

)yi‖2H ≤ L2

l

l
∑

i=1

y2i ‖µx̂i
− µxi

‖2hH ≤ L2C2

l

l
∑

i=1

[

(1 +
√
α)

√
2Bk√

N

]2h

= L2C2 (1 +
√
α)

2h
(2Bk)

h

Nh

with probability at least 1− le−α, based on a union bound.
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• Bound on ‖Tx − T
x̂
‖2
L(H): Using the definition of Tx and T

x̂
, and (21) with the ‖ · ‖L(H) operator norm,

we get

‖Tx − T
x̂
‖2
L(H) ≤

1

l2
l

l
∑

i=1

∥

∥

∥Tµxi
− Tµx̂i

∥

∥

∥

2

L(H)
. (26)

To upper bound the quantities ‖Tµxi
− Tµx̂i

‖2
L(H), let us see how Tµu

acts

Tµu
(f) = K(·, µu)δµu

(f) = K(·, µu)f(µu). (27)

If we can prove that

‖(Tµu
− Tµv

)(f)‖
H

≤ E ‖f‖
H
, (28)

then this implies ‖Tµu
− Tµv

‖
L(H) ≤ E. We continue with the l.h.s. of (28) using (27), (21) with n = 2,

the homogenity of norms, the reproducing and Hölder property of K:

‖(Tµu
− Tµv

)(f)‖2
H

= ‖K(·, µu)δµu
(f)−K(·, µv)δµv

(f)‖2
H

= ‖K(·, µu) [δµu
(f)− δµv

(f)] + [K(·, µu)−K(·, µv)] δµv
(f)‖2

H

≤ 2
[

‖K(·, µu) [δµu
(f)− δµv

(f)]‖2
H

+ ‖K(·, µu)−K(·, µv)δµv
(f)‖2

H

]

= 2
[

[δµu
(f)− δµv

(f)]
2 ‖K(·, µu)‖2H + [δµv

(f)]
2 ‖[K(·, µu)−K(·, µv)]‖2H

]

≤ 2
[

[δµu
(f)− δµv

(f)]
2
K(µu, µu) + L2 [δµv

(f)]
2 ‖µu − µv‖2hH

]

.

By rewriting the first terms, we arrive at

δµu
(f)− δµv

(f) = 〈f,K(·, µu)〉H − 〈f,K(·, µv)〉H ≤ |〈f,K(·, µu)−K(·, µv)〉H|
≤ ‖f‖

H
‖K(·, µu)−K(·, µv)‖H ≤ ‖f‖

H
L ‖µu − µv‖hH ,

δµv
(f) = 〈f,K(·, µv)〉H ≤ |〈f,K(·, µv)〉H| ≤ ‖f‖

H
‖K(·, µv)‖H = ‖f‖

H

√

K(µv, µv),

where we applied the reproducing and Hölder property ofK, the bilinearity of 〈·, ·〉
H

and the CBS inequality.
Hence

‖(Tµu
− Tµv

)(f)‖2
H

≤ 2
[

‖f‖2
H
L2 ‖µu − µv‖2hH K(µu, µu) + L2 ‖f‖2

H
K(µv, µv) ‖µu − µv‖2hH

]

= 2L2 ‖f‖2
H
‖µu − µv‖2hH [K(µu, µu) +K(µv, µv)] .

Thus

E2 = 2L2‖µu − µv‖2hH [K(µu, µu) +K(µv, µv)] .

Exploiting this property in (26), (4), and (13)

‖Tx − T
x̂
‖2
L(H) ≤

2L2

l

l
∑

i=1

‖µxi
− µx̂i

‖2hH [K(µxi
, µxi

) +K(µx̂i
, µx̂i

)] ≤ 4BKL2

l

l
∑

i=1

(1 +
√
α)

2h
(2Bk)

h

Nh

=
(1 +

√
α)

2h
2h+2(Bk)

hBKL2

Nh
. (29)

• Bound on ‖
√
T (T

x̂
+ λ)−1‖2

L(H): First we rewrite T
x̂
+ λ,

T
x̂
+ λ = (T + λ)− (T − T

x̂
) =

[

I − (T − T
x̂
)(T + λ)−1

]

(T + λ).

Let us now use the Neumann series of I − (T − T
x̂
)(T + λ)−1

√
T (T

x̂
+ λ)−1 =

√
T (T + λ)−1

∞
∑

n=0

[

(T − T
x̂
)(T + λ)−1

]n
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to have

∥

∥

∥

√
T (T

x̂
+ λ)−1

∥

∥

∥

L(H)
=

∥

∥

∥

∥

∥

√
T (T + λ)−1

∞
∑

n=0

[

(T − T
x̂
)(T + λ)−1

]n

∥

∥

∥

∥

∥

L(H)

≤
∥

∥

∥

√
T (T + λ)−1

∥

∥

∥

L(H)

∥

∥

∥

∥

∥

∞
∑

n=0

[

(T − T
x̂
)(T + λ)−1

]n

∥

∥

∥

∥

∥

L(H)

≤
∥

∥

∥

√
T (T + λ)−1

∥

∥

∥

L(H)

∞
∑

n=0

∥

∥

∥

[

(T − T
x̂
)(T + λ)−1

]n
∥

∥

∥

L(H)

≤
∥

∥

∥

√
T (T + λ)−1

∥

∥

∥

L(H)

∞
∑

n=0

∥

∥(T − T
x̂
)(T + λ)−1

∥

∥

n

L(H)
,

where ‖AB‖
L(H) ≤ ‖A‖

L(H) ‖B‖
L(H) and the triangle inequality was applied. By the spectral theorem,

the first term can be bounded as ‖
√
T (T + λ)−1‖L(H) ≤ 1

2
√
λ
, whereas for the second term, applying a

telescopic trick and a triangle inequality, we get
∥

∥(T − T
x̂
)(T + λ)−1

∥

∥

L(H)
=
∥

∥[(T − Tx) + (Tx − T
x̂
)] (T + λ)−1

∥

∥

L(H)

≤
∥

∥(T − Tx)(T + λ)−1
∥

∥

L(H)
+
∥

∥(Tx − T
x̂
)(T + λ)−1

∥

∥

L(H)
.

We know that

Θ(λ, z) := ‖(T − Tx)(T + λ)−1‖L(H) ≤
1

2
(30)

with probability at least 1− η
3 [5]. Considering the second term, using (29) and ‖(T + λ)−1‖L(H) ≤ 1

λ (by
the spectral theorem),

∥

∥(Tx − T
x̂
)(T + λ)−1

∥

∥

L(H)
≤ ‖Tx − T

x̂
‖
L(H)

∥

∥(T + λ)−1
∥

∥

L(H)
≤ (1 +

√
α)

h
2

h
2 +1(Bk)

h
2 (BK)

1
2L

N
h
2

1

λ
.

For fixed λ, the value of N can be chosen such that

(1 +
√
α)

h
2

h
2 +1(Bk)

h
2 (BK)

1
2L

N
h
2

1

λ
≤ 1

4
⇔ (1 +

√
α)

h
2

h
2 +3(Bk)

h
2 (BK)

1
2L

λ
≤ N

h
2 ⇔

(1 +
√
α)

2
2

h+6
h Bk(BK)

1
hL

2
h

λ
2
h

≤ N. (31)

In this case
∥

∥(T − T
x̂
)(T + λ)−1

∥

∥

L(H)
≤ 3

4 (the Neumann series trick is legitimate) and

∥

∥

∥

√
T (T

x̂
+ λ)−1

∥

∥

∥

L(H)
≤ 1

2
√
λ

1

1− 3
4

≤ 2√
λ
. (32)

• Bound on ‖fλ
z
‖2H: Using the explicit form of fλ

z
[(9)], (25), the positivity of Tx

[

⇒
∥

∥(Tx + λ)−1
∥

∥

L(H)
≤ 1

λ

]

, the homogenity of norms, Eq. (21), the boundedness assumption on yi

(|yi| ≤ C), the reproducing property and the boundedness of K [Eq. (4)], we get

∥

∥fλ
z

∥

∥

H
≤
∥

∥(Tx + λ)−1
∥

∥

L(H)
‖gz‖H ≤ 1

λ
‖gz‖H ,

where

‖gz‖2H ≤ 1

l2
l

l
∑

i=1

‖K(·, µxi
)yi‖2H ≤ 1

l

l
∑

i=1

C2 ‖K(·, µxi
)‖2

H
=

1

l

l
∑

i=1

C2K(µxi
, µxi

) ≤ 1

l

l
∑

i=1

C2BK = C2BK .

Thus, we have obtained that

∥

∥fλ
z

∥

∥

2

H
≤ 1

λ2
C2BK . (33)
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A.1.12 Final Step of the Proof (Union Bound)

Until now, we obtained that if

1. the sample number N satisfies Eq. (31),
2. (13) holds for ∀i = 1, . . . , l (which has probability at least 1− le−α = 1− e−[α−log(l)] = 1− e−δ applying a

union bound argument; α = log(l) + δ), and
3. Θ(λ, z) ≤ 1

2 is fulfilled [see Eq. (30)], then

S−1 + S0 ≤ 4

λ

[

L2C2 (1 +
√
α)

2h
(2Bk)

h

Nh
+

(1 +
√
α)

2h
2h+2(Bk)

hBKL2

Nh

C2BK

λ2

]

=
4L2C2 (1 +

√
α)

2h
(2Bk)

h

λNh

[

1 +
4(BK)2

λ2

]

.

By taking into account [5]’s bounds for S1 and S2

S1 ≤ 32 log2
(

6

η

)[

BKM2

l2λ
+

Σ2N(λ)

l

]

, S2 ≤ 8 log2
(

6

η

)[

4B2
KB(λ)

l2λ
+

BKA(λ)

lλ

]

,

plugging all the expressions to (24), we obtain Theorem 4 via a union bound.

A.1.13 Proof of Consequence 2

Since constant multipliers do not matter in the orders of rates, we discard them in the (in)equalities below. Our
goal is to choose λ = λl,N such that

• liml,N→∞ λl,N = 0, and

• in Theorem 4: (i’) log(l)

λ
2
h

≤ N , (i) lλ
b+1
b ≥ 1,10 and (ii) r(l, N, λ) = logh(l)

Nhλ3 +λc+ λc−2

l2 + λc−1

l + 1
l2λ+

1

lλ
1
b

→ 0.

In r(l, N, λ) we will require that the first term goes to zero
[

logh(l)
Nhλ3 → 0

]

, which implies log(l)

Nλ
3
h

→ 0 and hence

log(l)

Nλ
2
h

→ 0. Thus constraint (i’) can be discarded, and our goal is to fulfill (i)-(ii). Since

1. 2− c ≤ 1 (⇔ 1 ≤ c), 1
l2λ2−c = λc−2

l2 ≤ 1
l2λ (in order), and

2. c− 1 ≥ 0 (⇔ 1 ≤ c), λc−1

l ≤ 1

lλ
1
b

(in order)

condition (i)-(ii) reduces to

r(l, N, λ) =
logh(l)

Nhλ3
+ λc +

1

l2λ
+

1

lλ
1
b

→ 0, subject to lλ
b+1
b ≥ 1. (34)

Our goal is to study the behavior of this quantity in terms of the (l, N, λ) triplet; 1 < b, c ∈ [1, 2], h ∈ (0, 1]. To
do so, we

1. choose λ such a way that two terms match in order (and λ = λl,N → 0);
2. setting l = Na (a > 0) we examine under what conditions (i)-(ii) the convergence of r to 0 holds with the

constraint lλ
b+1
b ≥ 1 satisfied, (iii) are the matched terms also dominant, i.e., give the convergence rate.

We carry out the computation for all the
(

4
2

)

= 6 pairs in Eq. (34). Below we give the derivation of the results
summarized in Table 2.

• 1 = 2 in Eq. (34) [i.e., the first and second terms are equal in Eq. (34)]:

10
N(λ) can be upper bounded by (constant multipliers are discarded) λ−

1
b [5]. Using this upper bound in the l

constraint of Theorem 4 we get l ≥ λ
− 1

b

λ
⇔ lλ

1
b
+1=

b+1
b ≥ 1.
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– (i)-(ii): Exploiting h
c+3 > 0 in the λ choice, we get

logh(l)

Nhλ3
= λc ⇔

[

log(l)

N

]h

= λc+3 ⇔
[

log(l)

N

]
h

c+3

= λ → 0, if
log(l)

N
→ 0.

r(l, N) =

[

log(l)

N

]
hc
c+3

+
1

l2
[

log(l)
N

]
h

c+3

+
1

l
[

log(l)
N

]
h

b(c+3)

.

r(N) =

[

log(N)

N

]
hc
c+3

+
1

N2a
[

log(N)
N

]
h

c+3

+
1

Na
[

log(N)
N

]
h

b(c+3)

=

[

log(N)

N

]
hc
c+3

+
N

h
c+3

N2a log
h

c+3 (N)
+

N
h

b(c+3)

Na log
h

b(c+3) (N)
. (35)

Here,
∗ (ii): r(N) → 0 if

·
✄

✂

�

✁
1 → 0: [i.e., the first term goes to zero in Eq. (35)]; no constraint using that hc

c+3 > 0.

·
✄

✂

�

✁
2 → 0: 2a ≥ h

c+3 [⇐ h
c+3 > 0].

·
✄

✂

�

✁
3 → 0: a ≥ h

b(c+3) [⇐ h
b(c+3) > 0],

i.e., a ≥ max
(

h
2(c+3) ,

h
b(c+3)

)

= h
(c+3)min(2,b) .

∗ (i): We require Na

(

[

log(N)
N

]
h

c+3

)

b+1
b

≥ 1 ⇔ log
h

c+3
b+1
b (N)

N
h

c+3
b+1
b

−a
≥ 1. Since h

c+3
b+1
b > 0, it is sufficient

to have h
c+3

b+1
b − a ≤ 0 ⇔ h(b+1)

(c+3)b ≤ a.

To sum up, for (i)-(ii) we got a ≥ max
(

h
(c+3)min(2,b) ,

h(b+1)
(c+3)b

)

.

– (iii):

∗ (i): h(b+1)
(c+3)b ≤ a.

∗
✄

✂

�

✁
1 → 0: no constraint.

∗
✄

✂

�

✁
1 ≥

✄

✂

�

✁
2 [i.e., the first term dominates the second one in Eq. (35)]:

[

log(N)
N

]
hc
c+3 ≥ N

h
c+3

N2a log
h

c+3 (N)
⇔

log
hc
c+3+

h
c+3 (N) ≥ N

hc
c+3+

h
c+3−2a. Thus, since h(c+1)

c+3 > 0 we need h(c+1)
c+3 − 2a ≤ 0, i.e., h(c+1)

2(c+3) ≤ a.

∗
✄

✂

�

✁
1 ≥

✄

✂

�

✁
3 [i.e., the first term dominates the third one in Eq. (35)]:

[

log(N)
N

]
hc
c+3 ≥ N

h
b(c+3)

Na log
h

b(c+3) (N)
⇔

log
hc
c+3+

h
b(c+3) (N) ≥ N

h
b(c+3)

+ hc
c+3−a. Since hc

c+3 + h
b(c+3) > 0 we require h

b(c+3) +
hc
c+3 − a ≤ 0, i.e.,

h
b(c+3) +

hc
c+3 ≤ a.

To sum up, the obtained condition for a is max
(

h
b(c+3) +

hc
c+3 ,

h(c+1)
2(c+3)

)

=
hmax( 1

b
+c, c+1

2 )
c+3 ≤ a. Since

1
b + c ≥ c+1

2 ⇔ 1
b + c

2 ≥ 1
2 [⇐ c ≥ 1, b > 0], we got

max

(

h
(

1
b + c

)

c+ 3
,
h(b+ 1)

(c+ 3)b

)

≤ a, r(N) =

[

log(N)

N

]
hc
c+3

→ 0.

• 1 = 3 in Eq. (34):
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– (i)-(ii): Using in the λ choice that h
2 > 0, we obtain that

logh(l)

Nhλ3
=

1

l2λ
⇔ l2 logh(l)

Nh
= λ2 ⇔ l log

h
2 (l)

N
h
2

= λ → 0, if a <
h

2
in l = Na.

r(l, N) =

[

l log
h
2 (l)

N
h
2

]c

+
1

l2 l log
h
2 (l)

N
h
2

+
1

l

[

l log
h
2 (l)

N
h
2

]
1
b

.

r(N) = Nac−hc
2 log

hc
2 (N) +

1

N3a−h
2 log

h
2 (N)

+
1

Na+a
b
− h

2b log
h
2b (N)

.

Here,
∗ (ii): r(N) → 0 if

·
✄

✂

�

✁
1 → 0: ac− hc

2 = c
(

a− h
2

)

< 0 [⇐ hc
2 > 0], i.e., a < h

2 using that c > 0.

·
✄

✂

�

✁
2 → 0: 3a− h

2 ≥ 0 [⇐ h
2 > 0], i.e., h

6 ≤ a.

·
✄

✂

�

✁
3 → 0: a + a

b − h
2b ≥ 0 [⇐ h

2b > 0], i.e., h

2b(1+ 1
b )

= h
2b b+1

b

= h
2(b+1) ≤ a exploiting that

1 + 1
b > 0.

In other words, the requirement is max
(

h
6 ,

h
2(b+1)

)

≤ a < h
2 .

∗ (i): Na

[

Na log
h
2 (N)

N
h
2

]
b+1
b

≥ 1 ⇔ log
h
2

b+1
b (N)

N
h
2

b+1
b

−a−a
b+1
b

≥ 1. Since h
2
b+1
b > 0 it is enough to have

h
2
b+1
b − a− a b+1

b ≤ 0 ⇔ h
2
b+1
b ≤ a

(

1 + b+1
b

)

= a 2b+1
b ⇔ h

2
b+1
2b+1 ≤ a using that 2b+ 1 > 0, b > 0

[⇐ b > 1].

To sum up, for (i)-(ii) we obtained max
(

h
6 ,

h
2(b+1) ,

h
2

b+1
2b+1

)

≤ a < h
2 .

– (iii):
∗ (i): h

2
b+1
2b+1 ≤ a

∗
✄

✂

�

✁
2 → 0: h

6 ≤ a.

∗
✄

✂

�

✁
2 ≥

✄

✂

�

✁
1 : 1

N3a−h
2 log

h
2 (N)

≥ Nac−hc
2 log

hc
2 (N) ⇔ N

h
2 −3a+hc

2 −ac ≥ log
h(c+1)

2 (N). Thus, since

h(c+1)
2 > 0 we need h

2 − 3a + hc
2 − ac > 0, i.e., h(c+1)

2(c+3) = h(c+3−2)
2(c+3) = h

2 − h
c+3 > a, using that

c+ 3 > 0.
∗
✄

✂

�

✁
2 ≥

✄

✂

�

✁
3 : 1

N3a− h
2 log

h
2 (N)

≥ 1

Na+a
b
− h

2b log
h
2b (N)

⇔ Na+ a
b
− h

2b+
h
2 −3a ≥ log

h
2 − h

2b (N). Since h
2 − h

2b =

h
2

(

1− 1
b

)

> 0 using that h > 0 and b > 1, we need a+ a
b − h

2b +
h
2 − 3a > 0, i.e., a

(

1 + 1
b − 3

)

>

h
2

(

1
b − 1

)

⇔ a
(

1
b − 2

)

> h
2

(

1
b − 1

)

. Using that b > 1, 0 > 1
b − 1 > 1

b − 2; hence a <
h
2 (

1
b
−1)

1
b
−2

.

To sum up, we got

max

(

h

6
,
h

2

b+ 1

2b+ 1

)

≤ a < min

(

h

2
− h

c+ 3
,
h
2

(

1
b − 1

)

1
b − 2

)

r(N) =
1

N3a−h
2 log

h
2 (N)

→ 0.

• 1 = 4 in Eq. (34):

– (i)-(ii): Using in the λ choice that b
3b−1 > 0, we get

logh(l)

Nhλ3
=

1

lλ
1
b

⇔ l logh(l)

Nh
= λ3− 1

b
= 3b−1

b ⇔
[

l logh(l)

Nh

]
b

3b−1

= λ → 0, if h > a in l = Na.

r(l, N) =

[

l logh(l)

Nh

]
bc

3b−1

+
1

l2
[

l logh(l)
Nh

]
b

3b−1

+
1

l
[

l logh(l)
Nh

]
1

3b−1

.

r(N) =

[

logh(N)

Nh−a

]
bc

3b−1

+
1

N2a+ ab
3b−1− hb

3b−1 log
hb

3b−1 (N)
+

1

Na+ a
3b−1− h

3b−1 log
h

3b−1 (N)
.

Here,



Szabó et al.

∗ (ii): r(N) → 0, if

·
✄

✂

�

✁
1 → 0: h− a > 0 using that h > 0 and bc

3b−1 > 0, i.e., a < h,

·
✄

✂

�

✁
2 → 0: 2a+ ab

3b−1 − hb
3b−1 ≥ 0 [using that hb

3b−1 > 0]. In other words, a
(

2 + b
3b−1

)

≥ hb
3b−1 ⇔

a ≥
hb

3b−1

(2+ b
3b−1 )

= hb
3b−1

3b−1
6b−2+b = hb

7b−2 using that
(

2 + b
3b−1

)

> 0.

·
✄

✂

�

✁
3 → 0: a+ a

3b−1 − h
3b−1 ≥ 0 [using that h

3b−1 > 0], i.e., a
(

1 + 1
3b−1

)

≥ h
3b−1 ⇔ a ≥

h
3b−1

1+ 1
3b−1

=

h
3b−1

3b−1
3b−1+1 = h

3b making use of
(

1 + 1
3b−1

)

> 0.

Thus, we need max
(

hb
7b−2 ,

h
3b

)

≤ a < h.

∗ (i): Na

(

[

Na logh(N)
Nh

]
b

3b−1

)

b+1
b

≥ 1 ⇔ log
h(b+1)
3b−1 (N)

N
h(b+1)
3b−1

−a−a
b+1
3b−1

≤ 1. Since h(b+1)
3b−1 > 0, it is sufficient

h(b+1)
3b−1 − a− a b+1

3b−1 ≤ 0 ⇔ h(b+1)
3b−1 ≤ a

(

1 + b+1
3b−1

)

= a 3b−1+b+1
3b−1 = a 4b

3b−1 ⇔ h(b+1)
4b ≤ a, where we

used that 4b > 0, 3b− 1 > 0 [⇐ b > 1].

To sum up, for (i)-(ii) we received max
(

hb
7b−2 ,

h
3b ,

h(b+1)
4b

)

≤ a < h.

– (iii):

∗ (i): h(b+1)
4b ≤ a.

∗
✄

✂

�

✁
3 → 0: a ≥ h

3b .

∗
✄

✂

�

✁
3 ≥

✄

✂

�

✁
1 : 1

N
a+ a

3b−1
− h

3b−1 log
h

3b−1 (N)
≥
[

logh(N)
Nh−a

]
bc

3b−1 ⇔ N
(h−a)bc
3b−1 −a− a

3b−1+
h

3b−1 ≥ log
h(bc+1)
3b−1 (N).

Since h(bc+1)
3b−1 > 0, we need (h−a)bc

3b−1 − a − a
3b−1 + h

3b−1 > 0 ⇔ h(bc+1)
3b−1 > a

(

bc
3b−1 + 1 + 1

3b−1

)

⇔
h(bc+1)
3b−1 > a

(

1 + bc+1
3b−1

)

⇔ h(bc+1)
3b−1 > a 3b−1+bc+1

3b−1 ⇔ h(bc+1)
3b−1 > a 3b+bc

3b−1 ⇔ h(bc+1)
3b+bc > a

using at the last step that 3b− 1 > 0 and 3b+ bc > 0.
∗
✄

✂

�

✁
3 ≥

✄

✂

�

✁
2 : 1

N
a+ a

3b−1
− h

3b−1 log
h

3b−1 (N)
≥ 1

N
2a+ ab

3b−1
− hb

3b−1 log
hb

3b−1 (N)
⇔

log
h(b−1)
3b−1 (N) ≥ N−2a− ab

3b−1+
hb

3b−1+a+ a
3b−1− h

3b−1 . Since h(b−1)
3b−1 > 0, we require that −2a − ab

3b−1 +

hb
3b−1 + a+ a

3b−1 − h
3b−1 ≤ 0 ⇔ h(b−1)

3b−1 ≤ a
(

1 + b−1
3b−1

)

⇔ h(b−1)
3b−1 ≤ a 3b−1+b−1

3b−1 ⇔ h(b−1)
4b−2 ≤ a using

that 3b− 1 > 0 and 4b− 2 > 0.
To sum up, we obtained that

max

(

h(b− 1)

4b− 2
,
h

3b
,
h(b + 1)

4b

)

≤ a <
h(bc+ 1)

3b+ bc
, r(N) =

1

Na+ a
3b−1− h

3b−1 log
h

3b−1 (N)
→ 0.

• 2 = 3 in Eq. (34):
– (i)-(ii):

λc =
1

l2λ
⇔ λc+1 =

1

l2
⇔ λ =

1

l
2

c+1

→ 0, if l → ∞. [⇐ 2

c+ 1
> 0]

r(l, N) =
l

6
c+1 logh(l)

Nh
+

1

l
2c

c+1

+
l

2
b(c+1)

l
⇒ r(N) =

logh(N)

Nh− 6a
c+1

+
1

N
2ac
c+1

+
1

Na(1− 2
b(c+1) )

.

Here,
∗ (ii): r(N) → 0 if

·
✄

✂

�

✁
1 → 0: h− 6a

c+1 > 0 since h > 0, i.e., a < h(c+1)
6 using that c+ 1 > 0.

·
✄

✂

�

✁
2 → 0: 2ac

c+1 > 0 – this condition is satisfied by our assumptions (a > 0, c > 0).

·
✄

✂

�

✁
3 → 0: a

(

1− 2
b(c+1)

)

> 0. Using that a > 0, b > 0, c + 1 > 0 this requirement is

1 > 2
b(c+1) ⇔ b(c+ 1) > 2[⇐ b > 1, c ≥ 1].

Thus, we need a < h(c+1)
6 .

∗ (i): Na

(

1

N
2a
c+1

)
b+1
b

≥ 1 ⇔ Na− 2a(b+1)
(c+1)b ≥ 1. Thus it is enough to satisfy a − 2a(b+1)

(c+1)b > 0 ⇔ 1 >

2(b+1)
(c+1)b , where we used that a > 0.
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To sum up, for (i)-(ii) we obtained a < h(c+1)
6 , 1 > 2(b+1)

(c+1)b .

– (iii):

∗ (i): 1 > 2(b+1)
(c+1)b .

∗
✄

✂

�

✁
2 → 0: no constraint.

∗
✄

✂

�

✁
2 ≥

✄

✂

�

✁
1 : 1

N
2ac
c+1

≥ logh(N)

N
h− 6a

c+1
⇔ Nh− 6a

c+1
− 2ac

c+1 ≥ logh(N). Thus, since h > 0 we require that

h − 6a
c+1 − 2ac

c+1 > 0 ⇔ h > a 6+2c
c+1 ⇔ h(c+1)

6+2c > a, where the 6 + 2c > 0, c + 1 > 0 relations were
exploited [⇐ c ≥ 1].

∗
✄

✂

�

✁
2 ≥

✄

✂

�

✁
3 : 1

N
2ac
c+1

≥ 1

N
a(1− 2

b(c+1) )
⇔ Na(1− 2

b(c+1) )− 2ac
c+1 ≥ 1. Hence, by a > 0 and c+ 1 > 0 we need

a
(

1− 2
b(c+1)

)

− 2ac
c+1 > 0 ⇔ a b(c+1)−2

b(c+1) > 2ac
c+1 ⇔ b(c+1)− 2 > 2bc ⇔ b− 2 > bc ⇔ −2 > b(c− 1).

Since b > 0 and c ≥ 1, b(c− 1) ≥ 0; thus, this condition is never satisfied.

• 2 = 4 in Eq. (34):
– (i)-(ii):

λc =
1

lλ
1
b

⇔ λc+ 1
b
= cb+1

b =
1

l
⇔ λ =

1

l
b

bc+1

→ 0, if l → ∞ [⇐ b

bc+ 1
> 0].

r(l, N) =
l

3b
bc+1 logh(l)

Nh
+

1

l
bc

bc+1

+
l

b
bc+1

l2
⇒ r(N) =

logh(N)

Nh− 3ab
bc+1

+
1

N
abc
bc+1

+
1

N2a− ab
bc+1

.

Here,
∗ (ii): r(N) → 0, if

·
✄

✂

�

✁
1 → 0: Since h > 0 we get h− 3ab

bc+1 > 0, i.e., h(bc+1)
3b > a using that b > 0, bc+ 1 > 0.

·
✄

✂

�

✁
2 → 0: abc

bc+1 > 0 – the second condition is satisfied by our assumptions (a > 0, b > 0, c > 0).

·
✄

✂

�

✁
3 → 0: 2a − ab

bc+1 > 0. Making use of the positivity of a and bc + 1, this requirement is

equivalent to 2 > b
bc+1 ⇔ 2bc+ 2 > b ⇔ 2 > b(1− 2c), which holds since b(1− 2c) < 0.

Thus, we need h(bc+1)
3b > a.

∗ (i): Na

(

1

N
ab

bc+1

)
b+1
b

≥ 1 ⇔ Na−a(b+1)
bc+1 ≥ 1. Thus it is sufficient to have a − a(b+1)

bc+1 > 0 ⇔ 1 >

b+1
bc+1 , using a > 0.

To sum up, for (i)-(ii) we got h(bc+1)
3b > a, 1 > b+1

bc+1 .
– (iii):

∗ (i): 1 > b+1
bc+1 .

∗
✄

✂

�

✁
2 → 0: no constraint.

∗
✄

✂

�

✁
2 ≥

✄

✂

�

✁
1 : 1

N
abc
bc+1

≥ logh(N)

N
h− 3ab

bc+1
⇔ Nh− 3ab

bc+1− abc
bc+1 ≥ logh(N). Since h > 0, this holds if h − 3ab

bc+1 −
abc
bc+1 > 0 ⇔ h > a 3b+bc

bc+1 ⇔ h(bc+1)
3b+bc > a, exploiting that 3b+ bc > 0, bc+ 1 > 0.

∗
✄

✂

�

✁
2 ≥

✄

✂

�

✁
3 : 1

N
abc
bc+1

≥ 1

N
2a− ab

bc+1

⇔ N2a− ab
bc+1− abc

bc+1 ≥ 1. Hence, since a > 0 and bc+ 1 > 0 we have

2a − ab
bc+1 − abc

bc+1 > 0 ⇔ 2 > b+bc
bc+1 ⇔ 2bc+ 2 > b + bc ⇔ bc+ 2 > b ⇔ 2 > b(1 − c). This holds

since b(1− c) ≤ 0.
Thus, we got

h(bc+ 1)

3b+ bc
> a, 1 >

b+ 1

bc+ 1
r(N) =

1

N
abc
bc+1

→ 0.

• 3 = 4 in Eq. (34):
– (i)-(ii):

1

l2λ
=

1

lλ
1
b

⇔ 1

l
= λ1− 1

b
= b−1

b ⇔ 1

l
b

b−1

= λ → 0, if l → ∞ [⇐ b

b− 1
> 0].

r(l, N) =
l

3b
b−1 logh(l)

Nh
+

1

l
bc

b−1

+
l

b
b−1

l2
⇒ r(N) =

logh(N)

Nh− 3ab
b−1

+
1

N
abc
b−1

+
1

N2a− ab
b−1

.

Here,
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Figure 1: (a) Learned entropy of a one-dimensional marginal distribution of a rotated 2d Gaussian. Axes x:
rotation angle in [0, π]. Axis y: entropy. (b) RMSE values of the MERR and DFDR algorithms. Boxplots are
calculated from 25 experiments.

∗ (ii): r(N) → 0 if

·
✄

✂

�

✁
1 → 0: Since h > 0 we get h− 3ab

b−1 > 0, i.e., h(b−1)
3b > a using that 3b > 0 and b− 1 > 0.

·
✄

✂

�

✁
2 → 0: abc

b−1 > 0. This requirement holds by our assumptions [a > 0, b > 1, c > 0].

·
✄

✂

�

✁
3 → 0: 2a− ab

b−1 > 0. By a > 0 and b−1 > 0, this constraint is 2 > b
b−1 ⇔ 2b−2 > b ⇔ b > 2.

Hence, we need h(b−1)
3b > a, b > 2.

∗ (i): Na

(

1

N
ab

b−1

)
b+1
b

≥ 1 ⇔ Na−a b+1
b−1 ≥ 1. Thus we need a−a b+1

b−1 > 0 ⇔ 1−1 b+1
b−1 > 0 ⇔ 1 > b+1

b−1 ,

where we used that a > 0. The 1 > b+1
b−1 is never satisfied since b+1

b−1 > 1.

A.2 Numerical Experiments: Aerosol Prediction

In this section we provide numerical results to demonstrate the efficiency of the analysed ridge regression tech-
nique. The experiments serve to illustrate that the MERR approach compares favourably to

1. the only alternative, theoretically justified distribution regression method (since it avoids density
estimation);3 see Section A.2.1,

2. modern domain-specific, engineered methods (which beat state-of-the-art multiple instance learning alter-
natives); see Section A.2.2.

In our experiments we used the ITE toolbox (Information Theoretical Estimators; [43]).11

A.2.1 Supervised entropy learning

We compare our MERR (RKHS based mean embedding ridge regression) algorithm with [1]’s DFDR (kernel
smoothing based distribution free distribution regression) method, on a benchmark problem taken from the latter
paper. The goal is to learn the entropy of Gaussian distributions in a supervised way. We chose an A ∈ R

2×2

matrix, whose Aij entries were uniformly distributed on [0, 1] (Aij ∼ U [0, 1]). We constructed 100 sample sets
from {N(0,Σu)}100u=1, where Σu = R(βu)AA

TR(βu)
T and R(βu) was a 2d rotation matrix with angle βu ∼ U [0, π].

From each N(0,Σu) distribution we sampled 500 2-dimensional i.i.d. points. From the 100 sample sets, 25 were
used for training, 25 for validation (i.e., selecting appropriate parameters), and 50 points for testing. Our goal
is to learn the entropy of the first marginal distribution: H = 1

2 ln(2πeσ
2), where σ2 = M1,1, M = Σu ∈ R

2×2.
Figure 1(a) displays the learned entropies of the 50 test sample sets in a typical experiment. We compare the
results of DFDR and MERR. One can see that the true and the estimated values are close to each other for
both algorithms, but MERR performs better. The boxplot diagrams of the RMSE (root mean square error)

11The ITE toolbox contains the MERR method and its numerical demonstrations (among others); see https://
bitbucket.org/szzoli/ite/.

https://bitbucket.org/szzoli/ite/
https://bitbucket.org/szzoli/ite/
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Table 4: Prediction accuracy of the MERR method in AOD prediction using different kernels: 100 ×
RMSE(±std). K: linear. The best single and ensemble predictions are written in bold.

kG ke kC kt kp(p = 2) kp(p = 3)
7.97 (±1.81) 8.25 (±1.92) 7.92 (±1.69) 8.73 (±2.18) 12.5 (±2.63) 171.24 (±56.66)

kr ki kM, 32
kM, 52

ensemble

9.66 (±2.68) 7.91 (±1.61) 8.05 (±1.83) 7.98 (±1.75) 7.86 (±1.71)

values calculated from 25 experiments confirm this performance advantage (Figure 1(b)). A reason why MERR
achieves better performance is that DFDR needs to do many density estimations, which can be very challenging
when the sample sizes are small. By contrast, the MERR algorithm does not require density estimation.

A.2.2 Aerosol prediction

Aerosol prediction is one of the largest challenges of current climate research; we chose this problem as a further
testbed of our method. [35] pose the AOD (aerosol optical depth) prediction problem as a MIL task: (i) a given
pixel of a multispectral image corresponds to a small area of 200× 200m2, (ii) spatial variability of AOD can be
considered to be small over distances up to 100km, (iii) ground-based instruments provide AOD labels (yi ∈ R),
(iv) a bag consists of randomly selected pixels within a 20km radius around an AOD sensor. The MIL task can
be tackled using our MERR approach, assuming that (i) bags correspond to distributions (xi), (ii) instances in
the bag ({xi,n}Nn=1) are samples from the distribution.

We selected the MISR1 dataset [35], where (i) cloudy pixels are also included, (ii) there are 800 bags with (iii) 100
instances in each bag, (iv) the instances are 16-dimensional (xi,n ∈ R

16). Our baselines are the reported state-
of-the-art EM (expectation-maximization) methods achieving average 100 × RMSE = 7.5 − 8.5 (±0.1 − 0.6)
accuracy. The experimental protocol followed the original work, where 5-fold cross-validation (4 × 160 (160)
samples for training (testing)) was repeated 10 times; the only difference is that we made the problem a bit
harder, as we used only 3× 160 samples for training, 160 for validation (i.e., setting the λ regularization and the
θ kernel parameter), and 160 for testing.

• Linear K: In the first set of experiments, K was linear. To study the robustness of our method, we picked
10 different kernels (k) and their ensembles: the Gaussian, exponential, Cauchy, generalized t-student,
polynomial kernel of order 2 and 3 (p = 2 and 3), rational quadratic, inverse multiquadratic kernel, Matérn
kernel (with 3

2 and 5
2 smoothness parameters). The expressions for these kernels are

kG(a, b) = e−
‖a−b‖22

2θ2 , ke(a, b) = e−
‖a−b‖2

2θ2 , kC(a, b) =
1

1 +
‖a−b‖2

2

θ2

,

kt(a, b) =
1

1 + ‖a− b‖θ2
, kp(a, b) = (〈a, b〉+ θ)p , kr(a, b) = 1− ‖a− b‖22

‖a− b‖22 + θ
,

ki(a, b) =
1

√

‖a− b‖22 + θ2
, kM, 32

(a, b) =

(

1 +

√
3 ‖a− b‖2

θ

)

e−
√

3‖a−b‖2
θ

kM, 52
(a, b) =

(

1 +

√
5 ‖a− b‖2

θ
+

5 ‖a− b‖22
3θ2

)

e−
√

5‖a−b‖2
θ ,

where p = 2, 3 and θ > 0. The explored parameter domain was (λ, θ) ∈ {2−65, 2−64, . . . , 2−3} ×
{2−15, 2−14, . . . , 210}; increasing the domain further did not improve the results.

Our results are summarized in Table 4. According to the table, we achieve 100 × RMSE = 7.91 (±1.61)
using a single kernel, or 7.86 (±1.71) with ensemble of kernels (further performance improvements might
be obtained by learning the weights).

• Nonlinear K: We also studied the efficiency of nonlinear K-s. In this case, the argument of K was
‖µa − µb‖H instead of ‖a− b‖2 (see the definition of k-s); for K examples, see Table 1. Our obtained
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Table 5: Prediction accuracy of the MERR method in AOD prediction using different kernels: 100 ×
RMSE(±std); single prediction case. K: nonlinear. Rows: kernel k. Columns: kernel K. For each row
(k), the smallest RMSE value is written in bold.

k\K KG Ke KC Kt KM, 32

ke 8.14 (±1.80) 8.10 (±1.81) 8.14 (±1.81) 8.07 (±1.77) 8.09 (±1.88)
kC 7.97 (±1.58) 8.13 (±1.79) 7.96 (±1.62) 8.09 (±1.69) 7.90 (±1.63)
kM, 32

8.00 (±1.66) 8.14 (±1.80) 8.00 (±1.69) 8.08 (±1.72) 7.96 (±1.69)

ki 8.01 (±1.53) 8.17 (±1.74) 8.03 (±1.63) 7.93 (±1.57) 8.04 (±1.67)

k\K KM, 52
Kr Ki linear

ke 8.14 (±1.78) 8.12 (±1.81) 8.12 (±1.80) 8.25 (±1.92)
kC 7.95 (±1.60) 7.92 (±1.61) 7.93 (±1.61) 7.92 (±1.69)
kM, 32

8.02 (±1.71) 8.04 (±1.69) 7.98 (±1.72) 8.05 (±1.83)

ki 8.05 (±1.61) 8.05 (±1.63) 8.06 (±1.65) 7.91(±1.61)

results are summarized in Table 5. One can see that using nonlinear K kernels, the RMSE error drops to
7.90 (±1.63) in the single prediction case, and decreases further to 7.81 (±1.64) in the ensemble setting.

Despite the fact that MERR has no domain-specific knowledge wired in, the results fall within the same range
as [35]’s algorithms. The prediction is fairly precise and robust to the choice of the kernel, however polynomial
kernels perform poorly (they violate our boundedness assumption).


