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Abstract

In theory, Bayesian nonparametric (BNP)
models are well suited to streaming data sce-
narios due to their ability to adapt model
complexity with the observed data. Unfor-
tunately, such benefits have not been fully
realized in practice; existing inference algo-
rithms are either not applicable to stream-
ing applications or not extensible to BNP
models. For the special case of Dirichlet
processes, streaming inference has been con-
sidered. However, there is growing inter-
est in more flexible BNP models building
on the class of normalized random measures
(NRMs). We work within this general frame-
work and present a streaming variational in-
ference algorithm for NRM mixture models.
Our algorithm is based on assumed density
filtering (ADF), leading straightforwardly to
expectation propagation (EP) for large-scale
batch inference as well. We demonstrate the
efficacy of the algorithm on clustering docu-
ments in large, streaming text corpora.

1 Introduction

Often, data arrive sequentially in time and we are
tasked with performing unsupervised learning as the
data stream in, without revisiting past data. For ex-
ample, consider the task of assigning a topic to a news
article based on a history of previously assigned docu-
ments. The articles arrive daily—or more frequently—
with no bound on the total number in the corpus. In
clustering such streaming data, Bayesian nonparamet-
ric (BNP) models are natural as they allow the number
of clusters to grow as data arrive. A challenge, how-
ever, is that it is infeasible to store the past cluster as-
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signments, and instead inference algorithms must rely
solely on summary statistics of these variables.

Stochastic variational inference (SVI) [1] has become
a popular method for scaling posterior inference in
Bayesian latent variable models. Although SVI has
been extended to BNP models, SVI requires specify-
ing the size of the data set a priori, an inappropriate
assumption for streaming data. In contrast, streaming
variational Bayes (SVB) [2] handles unbounded data
sets by exploiting the sequential nature of Bayes the-
orem to recursively update an approximation of the
posterior. Specifically, the variational approximation
of the current posterior becomes the prior when con-
sidering new observations. While SVB is appropriate
for parametric models, it does not directly generalize
to the BNP setting that is essential for streaming data.

For BNP models, streaming inference has been lim-
ited to algorithms hand-tailored to specific models.
For example, a streaming variational inference algo-
rithm for Dirichlet process (DP) mixture models was
recently proposed based on heuristic approximations
to the Chinese restaurant process (CRP) predictive
distribution associated with the DP [3].

We seek a method for streaming inference in BNP
models that is more generally extensible. We are mo-
tivated by the recent focus on a broader class of BNP
priors—normalized random measures (NRMs)—that
enable greater control of various properties than the
DP permits. For example, in clustering tasks, there
is interest in having flexibility in the distribution of
cluster sizes. Throughout the paper, we focus on the
specific case of the normalized generalized gamma pro-
cess (NGGP), though our methods are more general.
Recently, NGGP mixture models have been shown to
outperform the DP [4, 5], but inference has relied on
Markov chain Monte Carlo (MCMC). Due to the limi-
tations of MCMC, such demonstrations have been lim-
ited to small data sets. Importantly, NGGPs and the
DP differ mainly in their asymptotic scaling proper-
ties and the use of NGGPs may be more appropriate
in large data sets where the logarithmic cluster growth
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rate of the DP is not appropriate.

To address the challenge of streaming inference in
NRM mixture models, we develop a variational algo-
rithm based on assumed density filtering (ADF) [6].
Our algorithm uses infinite-dimensional approxima-
tions to the mixture model posterior and allows general
BNP predictive distributions to be used by leveraging
an auxiliary variable representation. As a byproduct
of the ADF construction, a multi-pass variant straight-
forwardly yields an expectation propagation (EP) al-
gorithm for batch inference in BNP models. This pro-
vides a new approach to scalable BNP batch inference.

In the special case of DPs, our algorithm reduces to
that of [3]. As such, our framework forms a theoret-
ically justified and general-purpose scheme for BNP
streaming inference, encompassing previous heuristic
and model-specific approaches, and with a structure
that enables insight into BNP inference via EP.

We demonstrate our algorithm on clustering docu-
ments from text corpora using an NRM mixture model
based on the NGGP [5]. After a single pass through
a modest-sized data set, our streaming variational in-
ference algorithm achieves performance nearly on par
with that of a batch sampling-based algorithm that it-
erates through the data set hundreds of times. We like-
wise examine a New York Times corpus of 300,000 doc-
uments to which the batch algorithm simply does not
scale (nor would it be applicable in a truly streaming
setting). In these experiments, we justify the impor-
tance of considering the flexible class of NRM-based
models. Our work represents the first application of
non-DP-based NRMs to such large-scale applications.

2 Background

2.1 Completely Random Measures

A completely random measure (CRM) [7] is a distri-
bution over measures G on Θ such that for disjoint
Ak ⊂ Θ, G(Ak) are independent random variables and

G =
∞∑

k=1

πkδθk . (1)

The masses πk and locations θk are characterized by
a Poisson process on Θ × R+ with Lévy measure
µ(dθ, dπ) [7, 8]. We restrict our attention to homoge-
neous CRMs where µ(dθ, dπ) = H0(dθ)λ(dπ), a com-
mon assumption in the literature [9, 10, 11]. We de-
note a draw from a homogeneous CRM as

G ∼ CRM(λ,H0). (2)

The total mass T = G(Θ) =
∑∞
k=1 πk is almost surely

finite [12]. However, since T 6= 1 in general, CRMs
cannot directly be used as priors for mixture models.

2.2 Normalized Random Measures

One can normalize a CRM by its finite total mass to
construct a BNP prior for mixture models. Specifi-
cally, define the normalized random measure (NRM)
P =

∑∞
k=1

πk
T δθk . The Dirichlet process (DP) is an

NRM which arises from normalizing the masses of a
gamma process [9]. However, more flexible NRMs can
be constructed by starting with different CRMs.

In the mixture model setting, we observe data {xi ∈
Rd} with xi generated from mixture component θzi .
Here, we assume the assignment variables, zi, are 1-
of-K coded so that

∑
k zik = 1 and zik = 1 implies

that observation i is assigned to component θk via θzi .
The resulting NRM mixture model can be written as:

G | λ,H0 ∼ CRM(λ,H0)

zi | G ∼
∞∑

k=1

πk
T
δk

xi | zi, θ ∼ F (xi|θzi),

(3)

where F (·|·) is an observation model.

For our running example of the normalized generalized
gamma process (NGGP), the GGP Lévy measure is

λ(dπ) =
a

Γ(1− σ)
π−σ−1e−τπdπ, (4)

where τ ∈ [0,∞), a ∈ (0,∞), and σ ∈ [0, 1). Notable
special cases of the NGGP are σ = 0, where we obtain
the DP, and σ = 0.5, where we obtain the normalized
inverse-Gaussian (IG) process. The NGGP with σ 6= 0
provides greater control over model properties, such as
the distribution of cluster sizes [4].

For any NRM mixture model, by introducing an aux-
iliary variable Un ∼ Γ(n, T ), we can integrate out the
NRM P and define a partial urn scheme [5, 11]. In the
case of the NGGP we have:

p(zn+1 = k|Un, z1:n)∝
{
nk − σ, k ≤ K
a(Un + τ)σ, k = K + 1,

(5)
where K is the number of instantiated clusters in z1:n.
When σ = 0, Eq. (5) reduces to the well known Chi-
nese restaurant process (CRP) corresponding to the
DP. The posterior distribution of Un is given by [11]:

p(Un|z1:n) ∝ Unn
(Un + τ)n−aK

e−
a
σ (Un+τ)σ . (6)

Together, Eqs. (5) and (6) can be used to define
MCMC samplers for NGGP mixture models [5, 13];
our streaming algorithm also exploits the use of Un.

2.3 Assumed Density Filtering

Assumed density filtering (ADF) was first developed
as a sequential procedure for inference in dynamic
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models that iteratively projects an intractable distri-
bution onto a simpler family of distributions. Let
z1:n = (z1, z2, . . . , zn) be a sequence of random vari-
ables with joint distribution pn(z1:n). We can write
the joint distribution as a product of factors,

pn(z1:n) ∝
n∏

i=1

fi(z1:i). (7)

ADF approximates the sequence of distributions
pn(z1:n) with a sequence q̂n(z1:n) ∈ Qn, where Qn is a
family of simpler distributions. Based on the current
q̂n(z1:n), the approximation to pn+1(z1:n+1) is formed
as follows. The (n+1)st factor is incorporated to form

p̂n+1(z1:n)
4∝ fn+1(z1:n+1)q̂n(z1:n), which is then pro-

jected onto Qn+1 by minimizing the KL divergence:

q̂n+1(z1:n+1) =

arg min
qn+1∈Qn+1

KL
(
p̂n+1(z1:n+1)||qn+1(z1:n+1)

)
. (8)

When Qn factorizes as qn(z1:n) =
∏n
i=1 qn(zi),

the optimal distribution for each factor is
given by the marginal distribution, q̂n+1(zi) ∝∫
fn+1(z1:n+1)q̂n(z1:n)dz\i, where z\i denotes the set
{zj , j 6= i}. The tractability of this integral for certain
families of factors fn and q̂n motivates ADF, and in
particular, the recursive projection onto {Qn}.

2.4 Expectation Propagation

ADF can be generalized to perform batch inference in
static models resulting in the well known expectation
propagation (EP) algorithm [6]. In EP, one approx-
imates an intractable, factorized distribution over a
fixed set of model parameters, θ, with a tractable dis-
tribution, q ∈ Q. In place of Eq. (7), we have

p(θ) ∝
n∏

i=1

fi(θ). (9)

An EP iteration begins with both a posterior approx-
imation, q̂(θ), and stored local contributions, q̄j(θ),
associated with each factor fj(θ). To refine the pos-
terior approximation, a local contribution is removed
to form a normalized approximation to the remaining
n − 1 factors, q̂\j(θ) ∝

qθ)
q̄j(θ)

. As in ADF, the jth

factor is then appended to the approximation q̂\j and
projected back onto Q to obtain a refined q̂(θ):

q̂(θ) = arg min
q∈Q

KL
(
p̂(θ) ∝ fj(θ)q̂\j(θ)

∣∣∣
∣∣∣q(θ)

)
. (10)

The jth local contribution is then updated to

q̄j(θ) ∝
q̂(θ)

q̂\j(θ)
. (11)

When q̂, q̄j , q̂\j are in the exponential family with the
same type of sufficient statistics, ν̂, ν̄j , ν̂\j ∈ Rm, re-
spectively, then ν̄j = ν̂− ν̂\j . This process of removing
local statistics from the approximation, adding in the
respective factor, and re-projecting onto Q is repeated
for all factors until convergence.

The link between ADF and EP, comparing Eqs. (8)
and (10), allows us to extend our streaming BNP al-
gorithm of Sec. 3 to EP for batch inference (Sec. 3.4).
EP is easily parallelized [14], allowing these methods
to scale to massive batch data sets, though we leave
the parallel extension of our method to future work.

3 Streaming Variational Inference for
BNP Mixture Models

We now turn to deriving a streaming inference algo-
rithm for the NRM mixture model of Eq. (3). Here,
our goal is joint inference of the growing set of local
cluster indicators, z1:n, and the static set of global
cluster parameters, θ = {θk}∞k=1. The method is de-
rived from the ADF algorithm of Sec. 2.3 and boils
down to: (1) a local update of cluster soft assignments
for the current data point and (2) a global update
of cluster variational parameters. The local update
follows directly from ADF. Embedded in this step is
computing the NRM predictive probability on cluster
assignments, for which we use the auxiliary variable
representation of Eq. (5) combined with an additional
variational approximation to compute an intractable
integral. For computational tractability, the global
step uses an approximation similar to that proposed
in [15], though an exact ADF update is possible.

To start, note that the posterior for the first n assign-
ments, z1:n, and cluster parameters, θ, factorizes as:

pn(z1:n, θ|x1:n) ∝ p(xn|zn, θ)p(zn|z1:n−1) (12)

× p(z1:n−1, θ|x1:n−1)

∝ p(θ)
n∏

i=1

p(xi|zi, θ)p(zi|z1:i−1). (13)

Eq. (12) emphasizes the sequential decomposition
of the posterior while Eq. (13) concretely links our
derivation with ADF. We set the first factor to
p(x1|z1, θ)p(z1)

∏∞
k=1 p(θk), where p(z11 = 1) = 1 so

that p(x1|z1, θ)p(z1) = p(x1|θ1)p(z1). We then de-
fine p(xi|zi, θ)p(zi|z1:i−1) as the ith factor. We apply
ADF to Eq. (13) to obtain a sequence of factorized
variational approximations of the form q̂n(z1:n, θ) =∏∞
k=1 q̂n(θk)

∏n
i=1 q̂n(zi) for the first n factors. Since

the first factor takes this factorized form, we have
q̂1(z1, θ) ∝ p(z1)p(x1|θ1)p(θ1)

∏∞
k=2 p(θk), so algorith-

mically we only update q̂1(z1) and q̂1(θ1). For subse-
quent factors, assume the posterior p(z1:n−1, θ|x1:n−1)

970



Streaming Variational Inference for Bayesian Nonparametric Mixture Models

is approximated by a factorized q̂n−1(z1:n−1, θ). To
obtain the next approximate posterior after the nth
observation, we use Eq. (8):

p̂n(z1:n, θ|x1:n)
4∝ p(xn|zn, θ)p(zn|z1:n−1)q̂n−1(z1:n−1, θ)

q̂n(z1:n, θ) = arg min
qn∈Qn

KL
(
p̂n(z1:n, θ|x1:n)||qn(z1:n, θ)

)
.

(14)

Given our mean field assumption, the optimal distri-
butions for the local variables, z1:n, are given by the
marginal distributions:

q̂n(zi) ∝
∑

z\i

∫
p(xn|zn, θ)p(zn|z1:n−1)q̂n−1(z1:n−1, θ)dθ.

(15)

For i < n, Eq. (15) indicates that the optimal vari-
ational distributions for the assignments are retained,
i.e. q̂n(zi) = q̂n−1(zi). The optimal distribution for the
new observation’s assignment, zn, is given by:

q̂n(znk) ∝ qpr(znk)

∫
p(xn|znk, θ)q̂n−1(θk)dθk, (16)

where qpr(zn) =
∑
z1:n−1

p(zn|z1:n−1)
∏n−1
i=1 q̂n−1(zi) is

an approximate prior probability for the cluster assign-
ment of xn, mirroring the role of the predictive rule,
p(zn|z1:n−1), when assignments are fully observed. We
consider conjugate exponential family models so that
q̂n−1(θk) is in the same family as p(θk), allowing the
integral in Eq. (16) to be given in closed form. As
such, our focus is on studying qpr for NRMs.

The update in Eq. (16) has appeared previously in
both batch [15] and streaming [3] inference algorithms
for DP mixtures (without being derived from the ADF
framework). In the batch case, qpr(zn) was evaluated
by sampling, and in the latter case a heuristic ap-
proximation was used. We instead use a principled
variational approximation to evaluate Eq. (16) which
extends to a large class of NRMs.

The combinatorial sum over z1:n−1 embedded in eval-
uating qpr(zn) appears to be a daunting barrier to ef-
ficient streaming inference. However, as we show in
Sec. 3.1, for the models we consider the resulting qpr

can be written in terms of sums of local soft assign-
ments,

∑n−1
i=1 q̂n−1(zi). Since these past soft assign-

ments remain unchanged, the sum—instead of past as-
signment histories—can be stored as a sufficient statis-
tic. Furthermore, since p(zn|z1:n−1) places mass on zn
taking a previously unseen component, the approxi-
mation qpr(zn) inherits this ability and allows our al-
gorithm to introduce new components when needed.
This is a crucial feature of our approach that enables
our approximate inference scheme to maintain the ben-
efits of nonparametric modeling, and is in contrast

to approaches based on truncations to the underlying
NRM or on heuristics for creating new clusters.

As in EP [6], the optimal update for the global param-
eters, θk, is also proportional to the marginal:

q̂n(θk) ∝ (17)
∑

z1:n

∫
p(xn|zn, θ)p(zn|z1:n−1)q̂n−1(z1:n−1, θ)dθ\k.

Eq. (17) is often intractable so we use the conjugate
variational Bayes update for θk as in [15]:

log q(θk) ≈ Eθ\k,zn log[p(xn|zn, θ)q̂n−1(θ)] + C, (18)

where C is a constant. See the Supplement for details.
The expectation is taken with respect to the optimal
distributions q̂n(zn) and q̂n(θ\k) =

∏
j 6=k q̂n(θj). This

implies that

log q(θk) ≈ q̂n(znk) log p(xn|zn, θ) + log q̂n−1(θk) + C ′.
(19)

For the conjugate models we consider, Eq. (19) leads
to tractable updates. Our streaming algorithm, which
we refer to as ADF-NRM, proceeds at each step by
first computing the local update in Eq. (16), and then
the global update in Eq. (19). See Alg. 1.

3.1 Predictive Rule for NGGPs

A key part of the streaming algorithm is efficiently
computing qpr(zn). When a DP prior is used, qpr(zn)
admits a simple form similar to the CRP:

qpr(znk)∝





n−1∑

i=1

q̂i(zik), k ≤ Kn−1

a, k = Kn−1 + 1,

(20)

where Kn−1 is the number of considered components
in x1:n−1 (see Sec. 3.3). Unfortunately, NRMs do not
admit such a straightforward expression for qpr(zn)
since in general p(zn|z1:n−1) is not known in closed
form and for NGGPs it is given by a computationally
demanding and numerically unstable expression [16]
unsuitable for large, streaming data.

Instead, as in Eq. (5), we can introduce an auxiliary
variable, Un, to obtain a tractable variational approx-
imation for NRMs, as detailed in the Supplement. We
focus on the popular case of the NGGP here.

We rewrite qpr(zn) in terms of Un−1 and the unnor-
malized masses, π, and integrate over these variables:

qpr(zn) =
∑

z1:n−1

∫∫ [
p(zn|π)p(π|Un−1, z1:n−1) (21)

× p(Un−1|z1:n−1)

n−1∏

i=1

q̂n−1(zi)

]
dUn−1dπ.
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The term p(π|Un, z1:n−1) is stated in the Supplement
and p(Un−1|z1:n−1) is shown in Eq. (6). The ran-
dom measure π consists of a set of instantiated atoms,
π1, . . . , πK , and a Poisson process π∗ representing
the remaining mass. Since the integral in Eq. (21)
is intractable, we introduce a partially factorized
approximation: p(π|Un−1, z1:n−1)p(Un−1|z1:n−1) ≈
q(π|Un−1)q(Un−1) ∈ Qπ×U and solve

arg min
q∈Qπ×U

KL
(
q(π|Un−1)q(Un−1)q̂(z1:n−1)||

p(π|Un−1, z1:n−1)p(Un−1|z1:n−1)q̂(z1:n−1)
)
.

(22)
The optimal distributions are given by:

q(Un−1) ∝ e− aσ (Un−1+τ)σ Un−1
n−1

(Un−1 + τ)n−1−aEq̂ [Kn−1]

(23)

q(πk|Un−1) ∝ πEq̂ [nk]
k e−Un−1πkλ(dπk), (24)

where Eq̂n−1
[Kn−1] is the expected number of clus-

ters observed so far, which can be recursively com-
puted as described in the Supplement, and Eq̂n−1 [nk] =∑n−1
i=1 q̂n−1(zik) is the expected number of assignments

to component k. The variational distribution of π∗ is a
Poisson process with tilted Lévy measure eUn−1πλ(dπ).
As detailed in the Supplement, using these variational
approximations in Eq. (21) combined with a delta
function approximation to q(Um−1) yields:

qpr(znk)∝





max

(
n−1∑

i=1

q̂i(zik)− σ, 0

)
, k ≤ Kn−1

a(Ûn−1 + τ)σ, k = Kn−1 + 1,
(25)

where Ûn−1 = arg max q(Un−1). For the DP (σ = 0),
Eq. (25) reduces to Eq. (20) and the resulting algo-
rithm reduces to that of [3]. Note the differences be-
tween Eqs. (25) and (5) and between Eqs. (23) and (6).
In both cases, hard assignments are replaced by soft as-
signments. As previously noted, the sum of these past
soft assignments serve as sufficient statistics, and since
they do not change between iterations, can be stored
in place of individual assignments. Furthermore, the
recursive computation of Eq̂n−1 [Kn−1] in Eq. (23) al-
lows past assignments to be discarded.

3.2 Computational Complexity

Due to the streaming nature of the ADF-NRM algo-
rithm, we analyze the per-observation computational
complexity. As seen in Alg. 1, for each observation we
compute a finite dimensional probability vector with
Kn + 1 elements, which is O(Kn). Additionally, we
need to compute Ûn via numerical optimization of
q(Un), which is a univariate and unimodal function

Algorithm 1 ADF for NRM mixture models

Initialize: K = 1, S1 = 1
q̂1(θ1) ∝ p(x1|θ1)p(θ1), q̂1(z11) = 1
for n = 1 to ∞ do
Ûn = arg max q(Un) with q(Un) in Eq. (23)
for k = 1 to K do
qpr(znk) ∝ max(Sk − σ, 0)
q̂n(znk) ∝ qpr(znk)

∫
p(xn|znk, θk)q̂n−1(θk)dθk

end for
qpr(zn,K+1) ∝ a(Ûn + τ)σ

q̂n(zn,K+1) ∝ qpr(zn,K+1)
×
∫
p(xn|zn,K+1, θ)p(θK+1)dθK+1

normalize q̂n(zn,1:K+1)
if q̂n(zn,K+1) > ε then
SK+1 = 0, q̂n−1(θK+1) = p(θK+1),K = K + 1

else
normalize q̂n(zn,1:K)

end if
for k = 1 to K do
q̂n(θk) ∝ p(xn|znk, θk)q̂n(znk)q̂n−1(θk)
Sk = Sk + q̂n(znk)

end for
end for

so can be maximized efficiently with complexity de-
noted O(U). Thus, the per-iteration computational
complexity of ADF-NRM is O(Kn+U). We note that
in practice the runtime is dominated by the O(Kn)
term due to the NGGP introducing many clusters; the
optimization of Ûn terminates in a few iterations (in-
dependent of Kn) and so does not limit the scalability
of the algorithm. It is known that E[Kn] ' a log n for
the DP and follows a power-law with index σ ∈ (0, 1)
for the NGGP [17]. This implies that for large n the
complexity of ADF-NRM with a NGGP is larger than
that with a DP, but is sub-linear in n and so remains
computationally feasible. Of course, a posteriori Kn

can grow much more slowly in practice when the data
has a compact representation.

3.3 Efficiently Coping with New Clusters

While the probability that a data point belongs to a
new cluster, q̂n(zn,K+1), is always greater than zero, it
is computationally infeasible to introduce a new com-
ponent at each iteration since the per iteration com-
plexity of ADF-NRM is O(Kn). In practice, new com-
ponents are added only if q̂n(zn,Kn+1) > ε for ε ≥ σ
a threshold. The restriction ε ≥ σ is natural: if
q̂n(zn,Kn+1) < σ then Kn + 1 will be assigned zero
prior probability at step n+ 1 in Eq. (25) and will be
effectively removed. The threshold parameter explic-
itly controls the trade off between accuracy and speed;
a larger threshold introduces fewer clusters leading to a
worse variational approximation but faster run times.
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One can view our thresholding as an adaptive trunca-
tion of the posterior, in contrast to the common ap-
proach of truncating the component prior.

During execution of ADF-NRM and EP-NRM of
Sec. 3.4, redundant clusters can be created due to the
order of observations processed. As in [3], we introduce
merge steps to combine distinct clusters that explain
similar observations. Since a benefit of the NGGP over
the DP is the addition of many small but important
clusters (see Sec. 4), we found that frequent merging
degrades predictive performance of NGGP models by
prematurely removing these clusters. In our experi-
ments, we only merge clusters whose similarity exceeds
a conservatively large merge threshold.

3.4 Extension to EP

For data sets of fixed size, N , ADF-NRM can be ex-
tended to EP-NRM for batch inference analogously
to Sec. 2.4. Assume we have both an approximation
to the batch posterior q̂(θ, z1:N ) and local contribu-
tions q̄j(θ, zj) for j = 1, . . . , N , both of which can
be computed using ADF. In particular, q̂(θ, z1:N ) =
q̂N (θ, z1:N ), the final ADF posterior approximation,

and q̄j(θ, zj) ∝ q̂j(θ,z1:j)
q̂j−1(θ,z1:(j−1))

, the ratio between suc-

cessive ADF approximations. Now define

q̂\j(θ, z\j) ∝
q̂(θ, z1:N )

q̄j(θ, zj)
(26)

to be the approximate posterior with xj removed. We
refine q̂(θ, z1:N ) by projecting q̂\j(θ, z\j)fj(θ, z1:N ) =
q̂\j(θ, z\j)p(xj |zj , θ)p(zj |z\j) onto Q using Eq. (8).
Similar to ADF, the updated soft assignment for zj
is given by q̂(zjk) ∝ qpr

\j(zjk)
∫
p(xj |zjk, θ)q̂\j(θk)dθk

where qpr
\j is the approximate predictive distribu-

tion given all other soft assignments. The ap-
proximate global update is given by q̂(θk) ∝
p(xj |zk, θ)q̂(zjk)q̂\j(θk). The jth local contribution is
then updated to

q̄j(θ, zj) ∝
q̂(θ, z1:N )

q̂\j(θ, z\j)
. (27)

We cycle through the data set repeatedly, at each stage
applying the steps above, until convergence.

For conjugate exponential families, the computations
required for the global cluster parameters, θ, in
Eq. (26) and Eq. (27) reduce to updating sufficient
statistics as in Sec. 2.4. qpr

\j for NGGPs may similarly

be updated on each round by letting Sk =
∑N
i=1 q̂(zik)

and Sk,\j = Sk − q̂(zjk), where q̂(zik) are the current
soft assignments. Under the same logic as Eq. (25),
qpr
\j for instantiated clusters is approximated by

qpr
\j(zjk) ∝ max(Sk,\j − σ, 0), (28)

Figure 1: ADF-NRM posterior mean mixture components
for the synthetic bars data set with (top) and without (bot-
tom) merge steps.

and qpr
\j(zj,K+1) follows analogously (see Supplement).

After computing the refined soft assignment, q̂(zjk),
we update Sk = Sk,\j + q̂(zjk). As a consequence
of this approach, the total weight on an instantiated
cluster k, Sk, can become small upon revisits of the
data assignments. In practice, we remove cluster k if
Sk < ε, where ε is as in Sec. 3.3.

4 Experiments

We evaluate ADF-NRM on both real and synthetic
data using the task of document clustering. Each
document is represented by a vector of word counts,
xd ∈ RV+, where V is the size of the vocabulary, and
xdw is the number of occurrences of word w in docu-
ment d. We then model the corpus as a NGGP mixture
of multinomials; that is, our data are generated as in
Eq. (3) with xd ∼ Mult(Nd, θ

zd), where Nd is the num-
ber of words in document d and θk is a vector of word
probabilities in cluster k. We take H0 to be Dirich-
let such that θk ∼ Dir(α). We then use our proposed
algorithms to perform inference over {zd} and {θk}.

We focus on comparing the IG (σ = 0.5) to the DP
(σ = 0). The choices of α used to set the Dirichlet base
measure in our various experiments are discussed in
the Supplement. To select the NRM hyperparameters
a and τ , we adapt the grid-search method used for the
sampling-based batch procedure of [4] to our streaming
setting. As detailed in the Supplement, we perform a
preliminary analysis on a small subset of the data. Our
algorithm is then let loose on the remaining data with
these values fixed.

4.1 Synthetic Bars

First, we perform clustering on a synthetic data set
of 8 × 8 images to show that ADF-NRM can recover
the correct component distributions. Each image is
represented by a vector of positive integer pixel inten-
sities, which we interpret as a document over a vo-
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cabulary with 64 terms. The clusters correspond to
horizontal and vertical bars with an additive baseline
to ensure cluster overlap. Each of 200 images is gen-
erated by first choosing a cluster, zd, and then sam-
pling pixel intensities xd ∼ Mult(50, θzd). Fig. 1 de-
picts the resulting ADF-NRM posterior mean mixture
components under the learned variational distribution,
Eq̂N [θk], based on an IG prior (σ = 0.5), both with and
without merge moves. We see that in both cases the
algorithm learns the correct clusters, but merge moves
remove redundant and extraneous clusters.

4.2 Synthetic Power-Law Clusters

To explore the benefit of the additional flexibility of
IGs over DPs, we generated 10,000 synthetic docu-
ments, xd, from a Pitman-Yor(.75, 1) mixture of multi-
nomials. The Pitman-Yor prior is another commonly
used BNP prior famous for its ability to model clusters
whose sizes follow certain power-law distributions [18].

We assess the ADF-NRM predictive log-likelihood and
inferred number of clusters versus number of observed
documents. For each model, we selected hyperparam-
eters based on a randomly selected set of 1, 000 doc-
uments. We then continue our algorithm on 7, 000
training documents and use the remaining 2, 000 for
evaluation. Mean predictive log-likelihoods, number of
clusters, and error estimates were obtained by permut-
ing the order of the training documents 5 times. We
compare our ADF-NRM performance to that of a base-
line model where the cluster parameters are inferred
based on ground-truth-labeled training data. Lastly,
after the completion of ADF, we performed 49 addi-
tional passes through the data using EP-NRM to ob-
tain refined predictions and number of clusters.

We see in Fig. 2 that both the IG and DP models per-
form similarly for small n, but as the amount of data
increases, the IG provides an increasingly better fit
in terms of both predictive log-likelihood and number
of clusters. This substantiates the importance of our
streaming algorithm being able to handle a broad class
of NRMs. Furthermore, after a single data pass, ADF-
NRM comes close to reaching the baseline model even
with the IG/Pitman-Yor model mismatch. It is also
evident in Fig. 2 that additional EP iterations both im-
prove predictions and the match between inferred and
true number of clusters for both prior specifications.

4.3 KOS Blog Corpus

We also applied ADF-NRM to cluster the KOS cor-
pus of 3,430 blog posts [19]. The fact that the cor-
pus is small enough to use non-streaming (batch) in-
ference algorithms allows us to compare ADF-NRM,
EP-NRM, and the collapsed Gibbs sampler for NGGP
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Figure 2: Mean predictive log-likelihood (left) and num-
ber of clusters (right) for the DP (cyan) and IG (red) priors
on the synthetic power-law data set using ADF-NRM. Tri-
angles indicate final values for EP-NRM after 50 epochs.
The ground-truth model is shown in purple. Error bars are
omitted due to their small size relative to the plot scale.

Table 1: Mean predictive performance and number of clus-
ters (± 1 std. err.) for ADF-NRM, EP-NRM, and a col-
lapsed Gibbs sampler on the KOS corpus.

Method Pred. log-lik #Clusters Epochs

ADF-DP -346023 ± 165 80 ± .17 1
ADF-IG -345588 ± 159 92 ± .18 1
EP-DP -342535 ± 181 104 ± 2.4 50
EP-IG -342195 ± 161 114 ± 1.5 50

Gibbs-DP -342164 ± 11 119 ± 0.3 215
Gibbs-IG -341468 ± 338 128 ± 1.3 215

mixture models presented in [5]. Importantly, we only
compare to Gibbs, which is not suited to the streaming
setting, in an attempt to form a gold standard. (Recall
that Gibbs targets the exact posterior in contrast to
our variational-based approach, and we do not expect
mixing to be an issue in this modest-sized data set.)

We evaluated performance as in Sec. 4.2. Here, we
held out 20% of the entire corpus as a test set and
trained (given the hyperparameters determined via
grid search) on the remaining 80% of documents. The
ADF-NRM predictive log-likelihoods for the IG and
DP were computed after a single pass through the
data set while those for EP-NRM were computed by
cycling through the data set 50 times. Error estimates
were obtained by permuting the order of the docu-
ments 20 times. Predictions for the collapsed Gibbs
sampler were computed by running 5 chains for 215
passes through the data and averaging the predictive
log-likelihood for the last 50 samples across chains.

The comparisons between all methods are depicted in
Table 1. For all algorithms (ADF, EP, and Gibbs)
the added flexibility of the IG provides a better fit
in terms of predictive log-likelihood. The additional
≈ 10 clusters associated with the IG for all algorithms
correspond to small clusters which seem to capture
finer-scale latent structure important for prediction.
Although performance increases moving from the one-
pass ADF-NRM to multi-pass EP-NRM, Fig. 3 dis-
plays that the most significant gains occur in the initial
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Figure 3: Predictive log-likelihood (left) and mean number
of clusters (right) using EP-NRM on KOS corpus. Vertical
lines indicate epochs and error bars ± 1 st. dev..

epoch. In fact, after a single epoch ADF performs sig-
nificantly better than a single epoch of Gibbs; it takes
about three Gibbs epochs to reach comparative perfor-
mance (see Supplement). Finally, while the IG Gibbs
sampler leads to the best performance, EP-NRM with
the IG prior is competitive and reaches similar perfor-
mance to the DP using Gibbs.

In summary, ADF-NRM provides competitive perfor-
mance with only a single pass through the data; more
refined approximations nearly matching the computa-
tionally intensive sampling-based approaches can be
computed via EP-NRM if it is feasible to both save
and cycle through the data.

4.4 New York Times Corpus

We performed streaming inference on a corpus of
300,000 New York Times articles [19]. We first identi-
fied a vocabulary of 7, 841 unique words by removing
words occurring in fewer than 20 and more than 90%
of documents, as well as terms resulting from obvious
errors in data acquisition. Then, we removed docu-
ments containing fewer than 20 words in our vocabu-
lary, resulting in a corpus of 266,000 documents. The
corpus is too large for batch algorithms, so we focus
on ADF-NRM comparing the DP and IG priors.

We determined hyperparameters as before and held
out 5, 000 documents as a test set, evaluating the pre-
dictive log-likelihood and number of clusters after ev-
ery 5, 000 training documents were processed. See
Fig. 4. As before, the IG obtains superior predictive
log-likelihood and introduces many additional small
clusters compared to the DP, suggesting that the IG
may be able to capture nuanced latent structure in
the corpus that the DP cannot (see the Supplement
for more details). Reassuringly, the recovered clusters
with highest weights correspond to interpretable top-
ics (Fig. 5). Yet again, we see the benefits of being
able to consider NRMs beyond the DP, which to date
has been the most widely considered BNP prior largely
due to the computational tools developed for it.
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Figure 4: Comparison of (left) predictive log-likelihood
and (right) number of clusters using ADF-NRM on the
New York Times corpus for the IG and DP priors.
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Let Sk =
PN

i=1 q̂i(zik) be the total weights assigned to cluster k and p̂k = SkPKN
j=1 Sj

. Figure 2 plots the

sorted p̂ks computed after a full pass for both ADF-IG and ADF-DP. The plots are similar for the large and
medium sized clusters but diverge for the smaller clusters; the inferred model from the IG both infers more
clusters and places comparatively more mass on these smaller clusters than that of the DP.

Table 1: Most probable words and their respective probabilities for the 4 most prevalent topics.

Topic 1 Topic 2 Topic 3 Topic 4
athletes (0.0083) merger (0.0036) reform (0.0031) quarterback (0.0045)
weight (0.0075) revenue (0.0033) conservative (0.0026) yankees (0.0045)

exercise (0.0068) shares (0.0031) senator (0.0024) scored (0.0043)
steroid (0.0055) cable (0.0031) parties (0.0022) pitcher (0.0038)

supplement (0.0049) businesses (0.0029) supporter (0.0022) offense (0.0037)

Table 2: Most probable words and their respective probabilities for the 4 most prevalent topics.

Topic 1 Topic 2 Topic 3 Topic 4
athletes (.83) merger (.36) reform (.31) quarterback (.45)
weight (.75) revenue (3.3) conservative (.26) yankees (.45)

exercise (.68) shares (.31) senator (.24) scored (.43)
steroid (.55) cable (.31) parties (.22) pitcher (.38)

supplement (.49) businesses (.29) supporter (.22) offense (.37)

Figure 2: Log-log plot of variational cluster weights in decreasing order.

7

Figure 5: Most probable words and their respective con-
tributions (in %) for the 4 most prevalent topics.

5 Discussion

We introduced the ADF-NRM algorithm, a variational
approach to streaming approximate posterior inference
in NRM-based mixture models. Our algorithm lever-
ages the efficient sequential updates of ADF while im-
portantly maintaining the infinite-dimensional nature
of the BNP model. The key to tractability is focusing
on approximating a partial-urn characterization of the
NRM predictive distribution of cluster assignments.
We also showed how to adapt the single-pass ADF-
NRM algorithm to a multiple-pass EP-NRM variant
for batch inference. Our empirical results demon-
strated the effectiveness of our algorithms, and the
importance of considering NRMs beyond the DP.

A potential drawback of the EP-NRM scheme is that
each observation needs to store its variational distribu-
tion over cluster assignments. An interesting question
is whether the local distributions can be grouped and
memoized [20] to both save computation and perform
data-driven split-merge moves. This combined with
simple parallel EP schemes [14, 21] would scale EP-
NRM to massive data sets.

Instead of examining predictive distributions and ex-
ploiting the NRM partial-urn scheme, a natural ques-
tion is whether similar algorithms can be developed
that do not integrate out the underlying measure.
Such algorithms would be directly applicable to hier-
archical BNP models such as topic models and hidden
Markov models [22].
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