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Abstract

This paper advocates a novel framework
for segmenting a dataset on a Riemannian
manifold M into clusters lying around low-
dimensional submanifolds of M . Important
examples of M , for which the proposed al-
gorithm is computationally efficient, include
the sphere, the set of positive definite matri-
ces, and the Grassmannian. The proposed al-
gorithm constructs a data-affinity matrix by
thoroughly exploiting the intrinsic geometry
and then applies spectral clustering. Local
geometry is encoded by sparse coding and di-
rectional information of local tangent spaces
and geodesics, which is important in resolv-
ing intersecting clusters and establishing the
theoretical guarantees for a simplified vari-
ant of the algorithm. To avoid complica-
tion, these guarantees assume that the un-
derlying submanifolds are geodesic. Exten-
sive validation on synthetic and real data
demonstrates the resiliency of the proposed
method against deviations from the theoret-
ical (geodesic) model as well as its superior
performance over state-of-the-art techniques.

1 Introduction

Many modern data sets are of moderate or high di-
mension, but manifest intrinsically low-dimensional
structures. Multi-manifold modeling (MMM), or its
special case, hybrid-linear modeling (HLM), are nat-
ural frameworks for studying such data-sets. In
MMM, data-sets are modeled as a union of low-
dimensional submanifolds (whereas HLM considers the
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union of affine subspaces). Clustering algorithms in
the MMM context aim at partitioning data accord-
ing to the underlying low-dimensional submanifolds.
MMM has been extensively studied and applied to
model data-sets embedded in the Euclidean space or
the sphere [Arias-Castro et al., 2011, Arias-Castro
et al., 2013, Cetingul and Vidal, 2009, Elhamifar and
Vidal, 2011, Kushnir et al., 2006, Ho et al., 2013, Lui,
2012, Wang et al., 2011].

There is an overwhelming number of application do-
mains where features extracted from data-sets lie on
Riemannian manifolds and the adjacency or similarity
between features is better described by non-Euclidean
distances. For example, auto-regressive moving av-
erage (ARMA) models are utilized to extract low-
rank linear subspaces (points on the Grassmannian)
for identifying spatio-temporal dynamics in video se-
quences [Turaga et al., 2011]. Moreover, convolving
patches of images by Gabor filters yields covariance
matrices (points on the manifold of positive semidefi-
nite matrices) that can capture effectively texture pat-
terns in images [Tou et al., 2009]. Notwithstanding,
current MMM strategies are not sufficiently broad for
handling data-sets embedded in more general Rieman-
nian manifolds.

The purpose of this paper is to develop theory and al-
gorithms for the MMM problem in general Riemannian
manifolds that are relevant to important applications.

Related Work. Recent advances in parsimonious
data representations and their important implications
in dimensionality reduction techniques have effected
the development of non-standard spectral-clustering
schemes that result in state-of-the-art results in mod-
ern applications [Arias-Castro et al., 2013, Chen and
Lerman, 2009a, Elhamifar and Vidal, 2009, Goh and
Vidal, 2008, Goldberg et al., 2009, Harandi et al., 2013,
Liu et al., 2013, Zhang et al., 2012]. Such schemes rely
on the assumption that data exhibit low-dimensional
structures, such as unions of low-dimensional linear
subspaces or submanifolds, but are restricted to Eu-
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clidean distances. Some theoretical guarantees for
particular HLM algorithms appear in [Chen and Ler-
man, 2009b, Lerman and Zhang, 2011, Soltanolkotabi
and Candès, 2012, Soltanolkotabi et al., 2014]. There
are fewer strategies for the MMM problem, which is
also known as manifold clustering. Only higher-order
spectral clustering and spectral local PCA are theo-
retically guaranteed [Arias-Castro et al., 2011, Arias-
Castro et al., 2013].

Several algorithms for clustering with non-Euclidean
distances are generalizations of well-known schemes
developed originally for Euclidean spaces. For ex-
ample, Gruber and Theis [2006], Tuzel et al. [2005],
Subbarao and Meer [2006], Cetingul and Vidal [2009]
extended the classical K-means algorithm and mean-
shift (MS) algorithm to general analytic manifolds,
where non-Euclidean distances on Grassmannians,
Stiefel manifolds, and matrix Lie groups, are used.
O’Hara et al. [2011] showed promising results by us-
ing the geodesic distance of product manifolds in
clustering of human expressions, gestures, and ac-
tions in videos. Goh and Vidal [2008] extended spec-
tral clustering and nonlinear dimensionality reduction
techniques to Riemannian manifolds. These previous
works are quite successful when the convex hulls of in-
dividual clusters are well-separated, but they often fail
when clusters intersect or are closely located.

Contributions. Despite the popularity of mani-
fold learning, the associated literature lacks generic
schemes for clustering low-dimensional data embedded
in non-Euclidean spaces. Furthermore, even in the Eu-
clidean setting only few algorithms for MMM or HLM
are theoretically guaranteed. To this end, this paper
aims at filling this gap and provides an MMM ap-
proach in non-Euclidean setting with some theoretical
guarantees even when the clusters intersect. In order
to avoid nontrivial theoretical obstacles, the theory as-
sumes that the underlying submanifolds are geodesic;
hence the term multi-geodesic modeling (MGM). A
more practical and robust variant of the theoretical
algorithm is also developed, and its superior perfor-
mance over state-of-the-art clustering techniques is ex-
hibited by extensive validation on synthetic and real
datasets. In this work, we only explored manifolds
whose logarithm maps can be computed efficiently but
have not exhausted all possible applicable spaces. For
example, GCT easily applies to the “space of shapes”,
which arises in computational anatomy [Pennec, 2009].
There are also works dedicated to learn empirically the
logarithm map from a given point cloud [Haro et al.,
2006, Hauberg et al., 2012].

Extentions of the theoretical foundations of this work
to deal with general submanifolds are possible by lever-

aging local geodesic submanifolds (in analogy to Arias-
Castro et al. [2013]). However, this will significantly
increase the complexity of our proofs, which are al-
ready not simple. In practice, the proposed method
applies directly to the more general setting (without
theoretical guarantees). Indeed, numerical tests show
that the proposed method works well in real practical
scenarios that deviate from the MGM model.

2 Theoretical Preliminaries

This section formulates the generic clustering prob-
lem which relates to MGM, and reviews the necessary
background from Riemannian geometry.

2.1 Multi-Geodesic Modeling (MGM)

Given a prescribed number K of clusters, MGM as-
sumes that each point in a given data-set X = {xi}Ni=1

lies in the tubular neighborhood of some unknown
geodesic submanifold Sk, 1 ≤ k ≤ K, of a Rieman-
nian manifold, M .1 The MGM problem refers to clus-
tering X into K groups X1, . . . , XK ⊂ M such that
(s.t.) points in Xk are located close to the submani-
fold Sk. Note that if M is a Euclidean space, geodesic
submanifolds are affine subspaces, MGM boils down to
HLM, and the MGM problem becomes equivalent to
subspace clustering [Elhamifar and Vidal, 2009, Vidal,
2011, Zhang et al., 2012].

For theoretical purposes, the uniform MGM is
adopted: Data points are i.i.d. sampled with respect
to (w.r.t.) the uniform distribution on a fixed tubular
neighborhood of ∪Kk=1Sk. The radius τ of the tubular
neighborhood is also termed the noise level. Fig. 1 il-
lustrates data generated from uniform MGM with two
underlying submanifolds (K = 2).

Figure 1: Uniform MGM with K = 2.

MGM serves only the theoretical justification of this
paper. Numerical tests show that the proposed algo-
rithm works well under general MMM settings, such
as not necessarily geodesic submanifolds, non-uniform
sampling, as well as different kinds and levels of noise.

1The tubular neighborhood with radius τ > 0 of Sk
in M (with metric tensor g and induced distance distg) is
Sτk = {x ∈M : distg(x, s) < τ for some s ∈ Sk}.
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3 Algorithmic Solutions for the MGM
(MMM) Problem

This section proposes solutions for the general MMM
problem with theoretical guarantees for the MGM
case. Section 3.1 defines two key quantities that are in-
strumental in quantifying directional information: Es-
timated local tangent subspaces and geodesic angles.
Section 3.2 presents two algorithmic solutions for the
MMM/MGM problem and discusses their properties.

3.1 Directional Information

Estimated Local Tangent Subspace TExiS. Let

x
(i)
j := logxi(xj) denote the image of xj under the log-

arithm map at xi. For the sake of illustration, assume
a data-set X = {xj}Nj=1 ⊂ M generated by uniform
MGM with a single geodesic submanifold S (K = 1).
The dataset is thus contained in a tubular neighbor-
hood, Sτ , of a d-dimensional geodesic submanifold S.

Since S is geodesic, for any 1 ≤ i ≤ N the set {x(i)
j }Nj=1

of images by the logarithm map is contained in a tubu-
lar neighborhood of the d-dimensional subspace TxiS
(possibly with a different radius than τ). Since the
true tangent subspace TxiS is unknown, an estimation
of it, TExiS, is needed. If B(xi, r) ⊂M is the neighbor-
hood centered at xi with radius r > 0, then let

J(x, r) := {j : xj ∈ B(x, r) ∩X}. (1)

Moreover, let Cxj denote the local sample covariance

matrix of the dataset {x(i)
j }j∈J(xi,r) on TxiM , and

‖Cxj‖ the spectral norm of Cxj , i.e., its maximum

eigenvalue. Since {x(i)
j }Nj=1 is in a tubular neighbor-

hood of a d-dimensional subspace, estimates of the
intrinsic dimension d of the local tangent subspace,
which is also the dimension of S, can be formed by
identifying principal eigenvalues of Cxj . We adopt
this strategy of dimension estimation and define the
estimated local tangent subspace, TExiS, as the span in
TxiM of the top eigenvectors of Cxj . In our theoretical
inquiries, the number of top eigenvectors is the num-
ber of eigenvalues of Cxi that exceed η‖Cxj‖ for some
fixed 0 < η < 1 (cf. Theorem 3.1). On the practical
side, the top eigenvectors correspond to those eigen-
values of Cxi that are maximally separated (largest
margin) from the rest of them.

Empirical Geodesic Angles. Let l(xi, xj) be the
shortest geodesic (global length minimizer) connecting
xi and xj in (M, g). Let vij ∈ TxiM be the tangent
vector of l(xi, xj) at xi, i.e., the “velocity” of l(xi, xj)
at xi. Given X = {xj}Nj=1, the empirical geodesic
angle θij is the elevation angle between the vector vij
and the subspace TExiS in the Euclidean space TxiM
(cf. (9) of Lerman and Whitehouse [2009]).

3.2 Proposed Solutions

In Section 3.2.1, we propose a theoretical solution for
data sampled according to uniform MGM. We start
with its basic motivation, then describe the proposed
algorithm and at last formulate its theoretical guaran-
tees. A more practical solution, tailored to the MMM
problem, is detailed in Section 3.2.2.

3.2.1 Algorithm 1: Theoretical Geodesic
Clustering with Tangent information

The crux of the proposed solution for the MGM prob-
lem is the application of spectral clustering with care-
fully chosen weights for the affinity or adjacency ma-
trix. Specifically, given a data-set, a similarity graph is
constructed whose vertices are data points and whose
edges represent the similarity between data points.
The main challenge is to construct a graph s.t. two
points are locally connected only when they are associ-
ated with the same cluster. In this way, the application
of spectral clustering recovers exactly the underlying
clusters.

For illustration, assume only two geodesic submani-
folds S1 and S2. Assume also that the data were
sampled from S1 ∪ S2 according to uniform MGM.
Given a point x0 ∈ S1 one wishes to associate it with
points from the same submanifold within a neighbor-
hood B(x0, r), for some r > 0. It is not realistic to
assume that all points in B(x0, r) stem from the same
submanifold. To appreciate these challenges, consider
Figs. 2a and 2b where clusters are closely located or
intersect in a neighborhood B(x0, r) of x0.

Assuming first no cluster intersection at x0 (Fig. 2a),
we use local tangent information at x0 to identify
points in B(x0, r) from the same submanifold with
which x0 is associated. If x ∈ B(x0, r) belongs to S2,
then the geodesic l(x0, x) has a large angle with the
tangent space Tx0S1 at x0. On the other hand, if such
x belongs to S1, then the geodesic has an angle close
to zero. Therefore, thresholding empirical geodesic an-
gles may become beneficial for eliminating neighboring
points from a different submanifold.

If x0 is at or near the intersection, it is hard to esti-
mate correctly the tangent spaces of each submanifold
and the geodesic angles may not be reliable. Instead,
one may compare the dimensions of estimated local
tangent subspaces. The estimated dimensions of local
neighborhoods of data points which are close to inter-
sections are larger than the estimated dimensions of
local neighborhoods of data points located away from
intersections (cf. Fig. 2b). The subsequent algorithm
thus connects x0 to other neighboring points only when
their “local dimensions” (linear-algebraic dimension of
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(a) Angle Filtering (b) Intersection

Figure 2: Challenges in the construction of data-
similarity graphs.

the estimated local tangent) are the same. In this way,
points at the intersection of submanifolds will not be
connected with other clusters.

The dimension difference criterion, together with the
angle filtering procedure, guarantee that there is no
false connection between different clusters (rigorous ar-
guments are under the hood of Theorem 3.1). These
two simple ideas are leveraged together with spectral
clustering to form the following theoretical geodesic
clustering with tangent information (TGCT) algo-
rithm.

Algorithm 1 Theoretical geodesic clustering with
tangent information (TGCT)

Input: Number of clusters: K ≥ 2, data-set X of
cardinality N , neighborhood radius r, threshold η
for estimating tangent subspaces, distance threshold
σd, and angle threshold σa.

Output: Index set {Idi}Ni=1 ⊂ {1, . . . ,K} s.t. Idi is
the cluster label assigned to xi.
Steps:
• Compute the following geometric quantities per
data point:
for i = 1, . . . , N do

◦ For j ∈ J(xi, r) [cf. (1)], compute x
(i)
j =

logxi(xj).
◦ Compute the sample covariance matrix Cxi of

{x(i)
j }j∈J(xi,r).

◦ Compute the eigenvectors of Cxi with eigenval-
ues exceeding η · ‖Cxi‖ (their span is TExiS).
◦ For all j = 1, . . . , N , compute the empirical
geodesic angles θij (see Section 3.1).

end for
• Form the following N ×N affinity matrix W:

Wij = 1distg(xi,xj)<σd1dim(TExi
S)=dim(TExj

S)1(θij+θji)<σa

• Apply spectral clustering to the affinity matrix W
to determine {Idi}Ni=1.

The following theorem asserts that TGCT achieves
correct clustering with high probability. Its proof is
in [Wang et al., 2014, Sec. 5], where constants {Ci}6i=0

and C ′0 are clarified and depend only on the underlying
geometry of M . For simplicity, the theorem assumes
that there are only two geodesic submanifolds and that
they are of the same dimension. However, the theo-
rem can be extended to K geodesic submanifolds of
different dimensions.

Theorem 3.1 Consider two smooth compact d-
dimensional geodesic submanifolds, S1 and S2, of a
Riemannian manifold M , and let X be a data-set gen-
erated according to uniform MGM w.r.t. S1 ∪ S2 with
noise level τ . If the parameters (r, σd, σa, η) of the
TGCT algorithm satisfy the inequalities

η < C
− d+2

2
2 , σd < C4

− 1
2 , σa < π/6,

σa < sin−1(r

√
1− C2η

2
d+2 /(2σd))− C3η

d
d+2 − C3r

and τ/C5 < r < min(η, σd, σa)/C1,

then with probability at least 1−C0N exp[−Nrd+2/C ′0],
the TGCT algorithm can cluster correctly a sufficiently
large subset of X, whose relative fraction (over X) has
expectation at least 1− C6(r + τ)d−dim(S1∩S2).

3.2.2 Algorithm 2: Geodesic Clustering with
Tangent information

A practical version of the TGCT algorithm, referred
to as geodesic clustering with tangent information
(GCT), is described in Algorithm 2. This is the al-
gorithm implemented in Section 4, and the choice of
its parameters is clarified in [Wang et al., 2014, Ap-
pendix A]. GCT differs from TGCT in three ways.
First, hard thresholds in TGCT are replaced by soft
ones, which are more flexible. Second, the dimension
indicator function is dropped from the affinity matrix
W . Indeed, numerical experiments indicate that the
algorithm works properly without the dimension indi-
cator function, whenever there is only a small portion
of points near the intersection. This numerical ob-
servation makes sense since the dimension indicator
is only used in theory to avoid connecting intersec-
tion points to points not in intersection. At last, pair-
wise distances are replaced by weights resulting from
sparsity-cognizant optimization tasks. Sparse coding
takes advantage of the low-dimensional structure, re-
sulting into larger weights for points coming from the
same submanifold [Elhamifar and Vidal, 2011].

Algorithm 2 solves a sparse coding task in (2). The
penalty used is non-standard since the scalar-valued

terms |Sij | are multiplied by e‖x
(i)
i −x

(i)
j ‖2/σd (where,

e.g., in Cetingul et al. [2014], these latter terms are all
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1). These weights were chosen to increase the effect of
nearby points (in addition to their sparsity). In par-
ticular, it avoids sparse representations via far-away
points that are unrelated to the local manifold struc-
ture. Similarly to Cetingul et al. [2014], clustering
weights in (3) exponentiate the sparse-coding weights.

Algorithm 2 Geodesic clustering with tangent infor-
mation (GCT)

Input: Number of clusters: K ≥ 2, dataset X of car-
dinality N , neighborhood radius r, distance thresh-
old σd (default value: σd = 1), and angle threshold
σa (default value: σa = 1).

Output: Index set {Idi}Ni=1 ⊂ {1, . . . ,K} s.t. Idi is
the cluster label assigned to xi.
Steps:
for i = 1, . . . , N do

◦ For j ∈ J(xi, r), compute x
(i)
j = logxi(xj).

◦ Compute weights {Sij}j∈J(xi,r) that minimize

‖x(i)
i −

∑
j∈J(xi,r)

j 6=i

Sijx
(i)
j ‖

2
2 +

∑
j∈J(xi,r)

j 6=i

e
1
σd
‖x(i)
i −x

(i)
j ‖2 |Sij | (2)

among all {Sij}j∈J(xi,r) s.t. Sii = 0 and∑
j∈J(xi,r); j 6=i Sij = 1. Moreover, set Sij = 0

for j /∈ J(xi, r).
◦ Compute the sample covariance matrix Cxi of

{x(i)
j }j∈J(xi,r).

◦ Find the index m that results into the largest
gap between eigenvalues λm and λm+1 of Cxi , and
identify the top m eigenvectors of Cxi (their span
is TExiS).
◦ For all j = 1, . . . , N , compute the empirical
geodesic angles θij (cf. Section 3.1).

end for
• Form the following N ×N affinity matrix W:

Wij = e|Sij |+|Sji|e−
1
σa

(θij+θji). (3)

• Apply spectral clustering to the affinity matrix W
to determine {Idi}Ni=1.

4 Numerical Tests

To assess performance on both synthetic and real data-
sets, GCT is compared with the following algorithms:
(i) Sparse manifold clustering (SMC) [Elhamifar and
Vidal, 2011, Cetingul et al., 2014], which is adapted
here for clustering on a Riemannian manifold but still
referred to as SMC, (ii) spectral clustering with Rie-
mannian metric (SCR) of Goh and Vidal [2008], and
(iii) embedded K-means (EKM). The choices of param-
eters for all four methods are detailed in [Wang et al.,
2014, Appendix A].

Ground truth labels are known in all experiments. To
measure the accuracy of each method, assigned labels
are first permuted to have the maximal match with
the ground truth labels. Clustering rate or accuracy
is computed as follows:

# of points whose assigned labels equal ground truth

# of total points
.

4.1 Tests on Synthetic Data-sets

Six datasets were generated. Dataset I and II are from
the Grassmannian G(6, 2), i.e., the set of all rank 2
linear subspaces of the 6-dimensional Euclidean space,
datasets III and IV are from 3× 3 symmetric positive-
definite (PD) matrices, and datasets V and VI are from
the sphere S2. Each dataset contains 260 points gener-
ated from two “parallel” or intersecting submanifolds,
cropped by white Gaussian noise (cf. [Wang et al.,
2014, Sec. 4.1]).

Each one of the six datasets is generated according to
the postulated models above, and the experiment is
repeated 30 times. Table 1 shows average clustering
rate per method. GCT, SMC, and SCR are all based
on the spectral clustering scheme. However, when a
dataset has low-dimensional structures, GCT’s unique
procedure of filtering neighboring points yields supe-
rior performance over the rest of the methods. This is
because both SMC and SCR are sensitive to the local
scale σ, and require each neighborhood not to contain
points from different groups. This becomes clear by
the results on datasets I, IV, and V of non-intersecting
submanifolds. SMC only works well in dataset I, where
most of the neighborhoodsB(x0, r) contain only points
from the same cluster, while neighborhoods B(x0, r) in
datasets IV and V often contain points from different
clusters. EKM generally requires that the intrinsic
means of different clusters are located far from each
other. Its performance is not as good as GCT when
different groups have low-dimensional structures.

4.2 Robustness to Noise and Running Time

Section 4.1 illustrated GCT’s superior performance
over SMC, SCR, and EKM on a variety of manifolds.
This section further investigates GCT’s robustness to
noise and computational cost pertaining to running
time. In summary, GCT is shown to be far more ro-
bust than SMC against noise at the price of a small
increase of running time.

4.2.1 Robustness to Noise

The proposed tangent filtering scheme enables GCT
to successfully eliminate neighboring points that origi-
nate from different groups. As such, it exhibits robust-
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Table 1: Average clustering rates on the synthetic data-sets of Section 4.1.

Methods Set I Set II Set III Set IV Set V Set VI

GCT 1.00 ±0.00 0.98 ±0.01 0.98 ±0.00 0.95 ±0.01 0.98 ±0.01 0.96 ±0.01
SMC 0.97 ±0.04 0.66 ±0.08 0.88 ±0.03 0.80 ±0.02 0.55 ±0.06 0.69 ±0.05

SCR 0.51 ±0.00 0.66 ±0.07 0.84 ±0.00 0.80 ±0.00 0.50 ±0.00 0.53 ±0.07

EKM 0.50 ±0.00 0.50 ±0.00 0.67 ±0.00 0.50 ±0.00 0.50 ±0.00 0.67 ±0.06

ness in the presence of noise and/or whenever differ-
ent groups are close or even intersecting. On the other
hand, SMC appears to be sensitive to noise due to
its sole dependence on sparse weights. Figs. 3a and 3b
demonstrate the performance of GCT, SMC, SCR, and
EKM on the Grassmannian and the sphere for various
noise levels (standard deviations of Gaussian noise).

(a) Grassmannian

(b) Sphere

Figure 3: Performance of clustering methods on Rie-
mannian manifolds for various noise levels: (a) the
Grassmannian case, (b) the case of the sphere.

Data-sets in Fig. 3a are generated according to the
model of dataset II in Section 4.1 but with different
noise levels (in Section 4.1 the noise level was 0.025).
Both SMC and SCR appear to be volatile over dif-
ferent datasets, with their best clustering rate perfor-

mance never exceeding 0.75. It is worth noticing that
EKM shows poor clustering accuracy. On the contrary,
GCT exhibits remarkable robustness to noise, achiev-
ing clustering rates above 0.9 even when the standard
deviation of the noise approaches 0.1.

GCT’s robustness to noise is also demonstrated in
Fig. 3b, where datasets are generated on the unit
sphere according to the model of the dataset VI, but
with different noise levels. SMC appears to be volatile
also in this setting; it collapses when the standard de-
viation of noise exceeds 0.05, since its affinity matrix
precludes spectral clustering from identifying eigenval-
ues with sufficient accuracy.

4.2.2 Running time

This section demonstrates that GCT outperforms
SMC at the price of a small increase in computational
complexity. Similarly to any other manifold cluster-
ing algorithm, computations have to be performed per
local neighborhood, where local linear structures are
leveraged to increase clustering accuracy. The over-
all complexity scales quadratically w.r.t. the number
of data-points due to the last step of Algorithm 2,
which amounts to spectral clustering of the N × N
affinity matrix W. Both the optimization task of (2)
and the computation of a few principal eigenvectors of
the covariance matrix Cxi in Algorithm 2 do not con-
tribute much to the complexity since operations are
performed on a small number of points in the neighbor-
hood J(xi, r). The computational complexity of GCT
is detailed in [Wang et al., 2014, Appendix C]. We note
that GCT can be fully parallelized since computations
per neighborhood are independent. Nevertheless, such
a route is not followed in this section.

Compared with SMC, GCT has one additional task
that entails local calculation of a few principal eigen-
vectors. Nevertheless, it is shown in [Wang et al., 2014,
Appendix C.1] that for k neighbors, this task can be
carried out with O(D + k3) operations.

The ratios of running times between GCT and SMC
for all three types of manifolds are illustrated in Ta-
ble 2. It can be readily verified that the extra step of
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Table 2: Ratio of running times of GCT and SMC for
instances of the synthetic data-sets I, IV, and VI.

Running-time ratio G(6, 2) PD3×3 S2

GCT/SMC 1.06 1.05 1.11

identifying tangent spaces in GCT increases running
time by less than 11% of the one for SMC.

Ratios of running times were also investigated for in-
creasing ambient dimensions. More precisely, dataset
VI of Section 4.1, which lies in S2, was embedded via
a random orthonormal matrix into the unit sphere SD,
where D ranged from 100 to 3, 000. Fig. 4 shows the
ratios of the running time of GCT over that of SMC
as a function of D. We observe that the extra cost of
computing the eigendecomposition in GCT is mostly
less than 20% of SMC, and never exceeds 30%, even
when the ambient dimension is as large as 3, 000.

Figure 4: Relative running times of GCT w.r.t. SMC
as the ambient dimension increases.

4.2.3 Clustering Dynamic Patterns.

Spatio-temporal data such as dynamic textures and
videos of human actions can often be approximated by
linear dynamical models [Doretto et al., 2003, Turaga
et al., 2011]. In particular, by leveraging the auto-
regressive and moving average (ARMA) model, we
experiment here with two spatio-temporal databases,
Dyntex++ [Ghanem and Ahuja, 2010] and Ballet
[Wang and Mori, 2009], in the following two-step pro-
cedure: (i) First, the ARMA model is employed to as-
sociate local spatio-temporal patches with linear sub-
spaces of the same dimension, and (ii) manifold clus-
tering is applied on the Grassmannian to partition tex-
tures and Ballet actions, respectively.

ARMA Model. The premise of ARMA modeling
is based on the assumption that the spatio-temporal
dataset under study is governed by a small number
of latent variables. More specifically, if f(t) ∈ Rp is
the observation vector at time t (in our case, it is the
vectorized image frame of a video sequence), then

f(t) = Cz(t) + εεε1(t) εεε1(t) ∼ N (0,ΣΣΣ1)

z(t+ 1) = Az(t) + εεε2(t) εεε2(t) ∼ N (0,ΣΣΣ2)
(4)

where z(t) ∈ R`, ` ≤ p, is the vector of latent variables,
C ∈ Rp×` is the observation matrix, A ∈ R`×` is the
transition matrix, and εεε1(t) ∈ Rp and εεε2(t) ∈ R` are
i.i.d. sampled vector-values r.vs. obeying the Gaussian
distributions N (0,ΣΣΣ1) and N (0,ΣΣΣ2), respectively.

We next explain the idea of Turaga et al. [2011] to asso-
ciate subspaces with spatio-temporal data. Given data
{f(t)}τ2t=τ1 , the ARMA parameters A and C can be
estimated according to the procedure in Turaga et al.
[2011]. Moreover, by arbitrarily choosing z(0), it can
be verified that for any m ∈ N,

E


f(τ1)

f(τ1 + 1)
...

f(τ1 +m− 1)

 =


C
CA

...
CAm−1

 z(τ1).

We then set V := [C>, (CA)>, . . . , (CAm−1)>]> ∈
Rmp×`, which is known as the mth order observability
matrix. If the observability matrix is of full column
rank, which was the case in all of the conducted ex-
periments, the column space of V is a `-dimensional
linear subspace of Rpm. In other words, the ARMA
model estimated from data {f(t)}τ2t=τ1 , τ1 ≤ τ2, gives
rise to a point on the Grassmannian G(mp, `). For a
fixed dataset {f(t)}τt=1, different choices of (τ1, τ2), s.t.
τ1, τ2 ≤ τ , and several local regions within the image
give rise to different estimates of A and C and thus to
different points in G(mp, `).

Dynamic textures. The Dyntex++ database
[Ghanem and Ahuja, 2010] contains 3600 dynamic tex-
tures videos of size 50×50×50, which are divided into
36 categories. It is a hard-to-cluster database due to
its low resolution. Three videos were randomly chosen,
each one from a distinct category.

Per video sequence, 50 patches of size 40× 40× 20 are
randomly chosen. Each frame of the patch is vector-
ized resulting into patches of size 1600×20. To reduce
the size to 30×20, a random projection operator is ap-
plied to each patch. As a result, each patch is reduced
to the set {f(t)}τ1+20

t=τ1 ⊂ R30. We fix ` = 3 and m = 3

and use each such set {f(t)}τ1+20
t=τ1 to estimate the un-

derlying ARMA model. Consequently, 150 points on
G(90, 3) are generated, 50 per video category.
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(a) Dyntex++ (b) Ballet

Figure 6: Visualization of Dyntex++ and Ballet data-
sets via projection onto the space spanned by their
three principal components.

Table 3: Average clustering accuracy rates for the
Dyntex++ And Ballet data-sets.

Methods GCT SMC SCR EKM

Dyntex++ 0.85 0.69 0.77 0.42

Ballet 0.81 0.76 0.68 0.47

We expect that points in G(90, 3) of the same clus-
ter lie near a submanifold of G(90, 3). This is due
to the repeated pattern of textures in space and time
(they often look like a shifted version of each other in
space and time). To visualize the submanifold struc-
ture, we isometrically embedded G(90, 3) into a Eu-
clidean space [Basri et al., 2011], so that subspaces
are mapped to Euclidean points. We then projected
the latter points on their top 3 principal components.
Fig. 6a demonstrates this projection as well as the sub-
manifold structure within each cluster.

Ballet database. The Ballet database [Wang and
Mori, 2009] contains 44 videos of 8 actions from a bal-
let instruction DVD. The frames of all videos are of
size 301 × 301 and their lengths vary and are larger
than 100. Different performers have different attire
and speed. Three videos, each one associated with a
different action, were randomly chosen.

Figure 5: Two samples of Ballet video sequences: The
first and second rows comprise samples from the ac-
tions of hopping and leg-swinging, respectively.

Spatio-temporal patches are generated by selecting 10
consecutive frames of size 301 × 301 from each one of
the following overlapping time intervals: {1, . . . , 10},
{4, . . . , 13}, {7, . . . , 16}, . . . , {91, . . . , 100}. In this
way, for each of the three videos, 31 spatio-temporal
patches of size 301 × 301 × 10 are generated. As in
the case of the Dyntex++ database, video patches are
vectorized and downsized to spatio-temporal patches
of size 30× 10. Following the previous ARMA model-
ing approach, we set ` = 3 and m = 3 and associate
each such patch with a subspace in G(90, 3). Conse-
quently, 93 subspaces (31 per cluster) in the Grass-
mannian G(90, 3) are generated. Fig. 6b visualizes the
3D representation of the subspaces created from three
videos. Clusters indeed intersect, and their intersec-
tion represents still motion.

The procedure described above (for generating data by
randomly choosing 3 videos from the Dyntex++ and
Ballet databases and applying clustering methods on
G(90, 3)) is repeated 30 times. The average clustering
accuracy rates are reported in Table 3. GCT achieves
the highest rates on both datasets.

5 Conclusions

Aiming at efficiently organizing data embedded in
a non-Euclidean space according to low-dimensional
structures, the present paper studied the multi-
manifold modeling (MMM) problem. The paper ad-
vocated the novel geodesic clustering with tangent in-
formation (GCT) algorithm to solve the multi-geodesic
modeling (MGM) problem; a special case of the MMM
task. GCT thoroughly exploits the geometry of the
data to build a similarity matrix that can effectively
cluster the data (via spectral clustering) even when
the underlying submanifolds intersect or have differ-
ent dimensions. In particular, it leverages the novel
idea of exploiting directional information from local
tangent spaces to avoid neighboring points of clus-
ters, different than that of the query point, and to es-
tablish theoretical guarantees for the theoretical GCT
(TGCT) method. Unlike TGCT, GCT combined di-
rectional information from local tangent spaces with
sparse coding aiming at a two-pronged objective: (i)
to improve clustering results by using succinct rep-
resentations of the underlying low-dimensional struc-
tures, and (ii) to enhance robustness against corrup-
tion. Geodesic information is only used locally; hence,
the proposed framework can be applied not only to
MGM but also to the more general MMM context.
Validated against state-of-the-art clustering methods
for the non-Euclidean setting, GCT exhibited superior
performance in clustering accuracy on a wide variety
of data-sets and Riemannian manifolds.
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