
Column Subset Selection with Missing Data via Active Sampling

Appendix A. Analysis of the active norm sampling algorithm

Proof of Lemma 1. This lemma is a direct corollary of Theorem 2 from [15]. First, let Pi = ĉi/f̂ be the probability
of selecting the i-th column of M. By assumption, we have Pi ≥ 1−α

1+α‖xi‖22/‖M‖2F . Applying Theorem 2 3 from

[15] we have that with probability at least 1− δ, there exists an orthonormal set of vectors y(1), · · · ,y(k) ∈ Rn1

in span(C) such that

∥∥∥∥∥∥
M−




k∑

j=1

y(j)y(j)>


M

∥∥∥∥∥∥

2

F

≤ ‖M−Mk‖2F +
(1 + α)k

(1− α)δs
‖M‖2F . (29)

Finally, to complete the proof, note that every column of
(∑k

j=1 y
(j)y(j)>

)
M can be represented as a linear

combination of columns in C; furthermore,

‖M− PC(M)‖F = min
X∈Rk×n2

‖M−CX‖F ≤

∥∥∥∥∥∥
M−




k∑

j=1

y(j)y(j)>


M

∥∥∥∥∥∥
F

. (30)

Proof of Theorem 1. First, set m1 = Ω(µ1 log(n2/δ1)) we have that with probability ≥ 1− δ1 the inequality

(1− α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22
holds with α = 0.5 for every column i, using Lemma 2. Next, putting s ≥ 6k/δ2ε

2 and applying Lemma 1 we
get

‖M− PC(M)‖F ≤ ‖M−Mk‖F + ε‖M‖F (31)

with probability at least 1−δ2. Finally, note that when α ≤ 1/2 and n1 ≤ n2 the bound in Lemma 3 is dominated
by

‖M− M̂‖2 ≤ ‖M‖F ·O
(√

µ1

m2
log

(
n1 + n2

δ

))
. (32)

Consequently, for any ε′ > 0 if m2 = Ω((ε′)−2µ1 log2((n1 + n2)/δ3) we have with probability ≥ 1− δ3

‖M− M̂‖2 ≤ ε′‖M‖F . (33)

The proof is then completed by taking ε′ = ε/
√
s:

‖M−CX‖F = ‖M− PC(M̂)‖F
≤ ‖M− PC(M)‖F + ‖PC(M− M̂)‖F
≤ ‖M−Mk‖F + ε‖M‖F +

√
s‖PC(M− M̂)‖2

≤ ‖M−Mk‖F + ε‖M‖F +
√
s · ε′‖M‖F

≤ ‖M−Mk‖F + 2ε‖M‖F .

Appendix B. Analysis of the active volume sampling algorithm

Proof of Lemma 4. We first prove Eq. (15). Observe that dim(U(C)) ≤ s. Let RC = (R(C(1)), · · · ,R(C(s))) ∈
Rn1×s denote the selected s columns in the noise matrix R and let R(C) = span(RC) denote the span of selected
columns in R. By definition, U(C) ⊆ U ∪R(C), where U = span(A) denotes the subspace spanned by columns
in the deterministic matrix A. Consequently, we have the following bound on ‖PU(C)ei‖ (assuming each entry
in R follows a zero-mean Gaussian distribution with σ2 variance):

‖PU(C)ei‖22 ≤ ‖PUei‖22 + ‖PU⊥∩R(C)ei‖22
3The original theorem concerns random samples of rows; it is essentially the same for random samples of columns.
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≤ ‖PUei‖22 + ‖PR(C)ei‖22
≤ kµ0

n1
+ ‖RC‖22‖(R>CRC)−1‖22‖R>Cei‖22

≤ kµ0

n1
+

(
√
n1 +

√
s+ ε)2σ2

(
√
n1 −

√
s− ε)4σ4

· σ2(s+ 2
√
s log(2/δ) + 2 log(2/δ)).

For the last inequality we apply Lemma 13 to bound the largest and smallest singular values of RC and Lemma
11 to bound ‖R>Cei‖22, because R>Cei follow i.i.d. Gaussian distributions with covariance σ2Is×s. If ε is set as

ε =
√

2 log(4/δ) then the last inequality holds with probability at least 1− δ. Furthermore, when s ≤ n1/2 and

δ is not exponentially small (e.g.,
√

2 log(4/δ) ≤
√
n1

4 ), the fraction
(
√
n1+
√
s+ε)2

(
√
n1−
√
s−ε)4 is approximately O(1/n1). As

a result, with probability 1− n1δ the following holds:

µ(U(C)) =
n1

s
max

1≤i≤n1

‖PU(C)ei‖22

≤ n1

s

(
kµ0

n1
+O

(
s+

√
s log(1/δ) + log(1/δ)

n1

))
= O

(
kµ0 + s+

√
s log(1/δ) + log(1/δ)

s

)
. (34)

Finally, putting δ′ = n1/δ we prove Eq. (15).

Next we try to prove Eq. (16). Let x be the i-th column of M and write x = a + r, where a = PU (x) and
r = PU⊥(x). Since the deterministic component of x lives in U and the random component of x is a vector
with each entry sampled from i.i.d. zero-mean Gaussian distributions, we know that r is also a zero-mean
random Gaussian vector with i.i.d. sampled entries. Note that U(C) does not depend on the randomness over

{M(i) : i /∈ C}. Therefore, in the following analysis we will assume U(C) to be a fixed subspace Ũ with dimension
at most s.

The projected vector x′ = PŨ⊥x can be written as x̃ = ã + r̃, where ã = PŨ⊥a and r̃ = PŨ⊥r. By definition,

ã lives in the subspace U ∩ Ũ⊥. So it satisfies the incoherence assumption

µ(ã) =
n1‖ã‖2∞
‖ã‖22

≤ kµ(U) ≤ kµ0. (35)

On the other hand, because r̃ is an orthogonal projection of some random Gaussian variable, r̃ is still a Gaussian
random vector, which lives in U⊥ ∩ Ũ⊥ with rank at least n1 − k − s. Subsequently, we have

µ(x̃) = n1
‖x̃‖2∞
‖x̃‖22

≤ 3n1
‖ã‖2∞ + ‖r̃‖2∞
‖ã‖22 + ‖r̃‖22

≤ 3n1
‖ã‖2∞
‖ã‖22

+ 3n1
‖r̃‖2∞
‖r̃‖22

≤ 3kµ0 +
6σ2n1 log(2n1n2/δ)

σ2(n1 − k − s)− 2σ2
√

(n1 − k − s) log(n2/δ)
.

For the second inequality we use the fact that
∑

i ai∑
i bi
≤∑i

ai
bi

whenever ai, bi ≥ 0. For the last inequality we use

Lemma 12 on the enumerator and Lemma 11 on the denominator. Finally, note that when max(s, k) ≤ n1/4
and log(n2/δ) ≤ n1/64 the denominator can be lower bounded by σ2n1/4; subsequently, we can bound µ(x̃) as

µ(x̃) ≤ 3kµ0 +
24σ2n1 log(2n1n2/δ)

σ2n1
≤ 3kµ0 + 24 log(2n1n2/δ). (36)

Taking a union bound over all n2 − s columns yields the result.

To prove the norm estimation consistency result in Lemma 5 we first cite a seminal theorem from [20] which
provides a tight error bound on a subsampled projected vector in terms of the norm of the true projected vector.



Column Subset Selection with Missing Data via Active Sampling

Theorem 4. Let U be a k-dimensional subspace of Rn and y = x + v, where x ∈ U and v ∈ U⊥. Fix
δ′ > 0, m ≥ max{ 8

3kµ(U) log
(

2k
δ′
)
, 4µ(v) log(1/δ′)} and let Ω be an index set with entries sampled uniformly

with replacement with probability m/n. Then with probability at least 1− 4δ′:

m(1− α)− kµ(U) β
1−γ

n
‖v‖22 ≤ ‖yΩ − PUΩ

yΩ‖22 ≤ (1 + α)
m

n
‖v‖22, (37)

where α =
√

2µ(v)
m log(1/δ′) + 2µ(v)

3m log(1/δ′), β = (1 + 2
√

log(1/δ′))2 and γ =
√

8kµ(U)
3m log(2k/δ′).

We are now ready to prove Lemma 5.

Proof of Lemma 5. By Algorithm 2, we know that dim(St) = t with probability 1. Let y = M(i) denote the i-th
column of M and let v = PSty be the projected vector. We can apply Theorem 4 to bound the estimation error
between ‖v‖ and ‖yΩ − PSt(Ω)yΩ‖.
First, when m is set as in Eq. (19) it is clear that the conditions m ≥ 8

3 tµ(U) log
(

2t
δ′
)

= Ω(kµ0 log(n/δ) log(k/δ′))
and m ≥ 4µ(v) log(1/δ′) = Ω(kµ0 log(n/δ) log(1/δ′)) are satisfied. We next turn to the analysis of α, β and γ.

More specifically, we want α = O(1), γ = O(1) and tµ(U)
m β = O(1).

For α, α = O(1) implies m = Ω(µ(v) log(1/δ′)) = Ω(kµ0 log(n/δ) log(1/δ′)). Therefore, by carefullying selecting
constants in Ω(·) we can make α ≤ 1/4.

For γ, γ = O(1) implies m = Ω(tµ(U) log(t/δ′)) = Ω(kµ0 log(n/δ) log(k/δ′)). By carefully selecting constants in
Ω(·) we can make γ ≤ 0.2.

For β, tµ(U)
m β = O(1) implies m = O(tµ(U)β) = O(kµ0 log(n/δ) log(1/δ′)). By carefully selecting constants we

can have β ≤ 0.2. Finllay, combining bounds on α, β and γ we prove the desired result.

Before proving Lemma 6, we first cite a lemma from [9] that connects the volume of a simplex to the permutation
sum of singular values.

Lemma 8 ([9]). Fix A ∈ Rm×n with m ≤ n. Suppose σ1, · · · , σm are singular values of A. Then

∑

S⊆[n],|S|=k
vol(∆(S))2 =

1

(k!)2

∑

1≤i1<i2<···<ik≤m
σ2
i1σ

2
i2 · · ·σ2

ik
. (38)

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let Mk denote the best rank-k approximation of M and assume the singular values of M
are {σi}n1

i=1. Let C = {i1, · · · , ik} be the selected columns. Let τ ∈ Πk, where Πk denotes all permutations with
k elements. By Hτ,t we denote the linear subspace spanned by {M(τ(i1)), · · · ,M(τ(it))} and let d(M(i),Hτ,t)
denote the distance between column M(i) and subspace Hτ,t. We then have

p̂C ≤
∑

τ∈Πk

(
5

2

)k ‖M(τ(i1))‖22
‖M‖2F

d(M(τ(i2)),Hτ,1)2

∑n2

i=1 d(M(i),Hτ,1)2
· · · d(M(τ(ik)),Hτ,k−1)2

∑n2

i=1 d(M(i),Hτ,k−1)2

≤ 2.5k ·
∑
τ∈Πk

‖M(τ(i1))‖2d(M(τ(i2)),Hτ,1)2 · · · d(M(τ(ik)),Hτ,k−1)2

‖M‖2F ‖M−M1‖2F · · · ‖M−Mk−1‖2F

= 2.5k ·
∑
τ∈Πk

(k!)2vol(∆(C))2

‖M‖2F ‖M−M1‖2F · · · ‖M−Mk−1‖2F
= 2.5k · (k!)3vol(∆(C))2

∑n1

i=1 σ
2
i

∑n1

i=2 σ
2
i · · ·

∑n1

i=k σ
2
i

≤ 2.5k · (k!)3vol(∆(C))2

∑
1≤i1<i2<···<ik≤n1

σ2
i1
σ2
i2
· · ·σ2

ik

= 2.5k · k!vol(∆(C))2

∑
T :|T |=k vol(∆(T ))2

= 2.5kk!pC .
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For the first inequality we apply Eq. (22) and for the second to last inequality we apply Lemma 8.

To prove the approximation error bound in Lemma 7 we need the following two technical lemmas, cited from
[19, 3].

Lemma 9 ([19]). Suppose U ⊆ Rn has dimension k and U ∈ Rn×k is the orthogonal matrix associated with U .
Let Ω ⊆ [n] be a subset of indices each sampled from i.i.d. Bernoulli distributions with probability m/n1. Then
for some vector y ∈ Rn, with probability at least 1− δ:

‖U>ΩyΩ‖22 ≤ β
m

n1

kµ(U)

n1
‖y‖22, (39)

where β is defined in Theorem 4.

Lemma 10 ([3]). With the same notation in Lemma 9 and Theorem 4. With probability ≥ 1− δ one has

‖(U>ΩUΩ)−1‖ ≤ n1

(1− γ)m
, (40)

provided that γ < 1.

Now we can prove Lemma 7.

Proof of Lemma 7. Let U = U(C) and U ∈ Rn1×k be the orthogonal matrix associated with U (note that with
probability one dim(U) = k). Fix a column i and let x = M(i) = a + r, where a ∈ U and r ∈ U⊥. What we
want is to bound ‖x−U(U>ΩUΩ)−1U>ΩxΩ‖22 in terms of ‖r‖22.

Write a = Uã. By Lemma 10, if m satisfies the condition given in the Lemma then with probability over
1− δ − δ′′ we know (U>ΩUΩ) is invertible and furthermore, ‖(U>ΩUΩ)−1‖2 ≤ 2n1/m. Consequently,

U(U>ΩUΩ)−1U>ΩaΩ = U(U>ΩUΩ)−1U>ΩUΩã = Uã = a. (41)

That is, the subsampled projector preserves components of x in subspace U .

Now let’s consider the noise term r. By Corollary 1 with probability ≥ 1− δ we can bound the incoherence level
of y as µ(y) = O(kµ0 log(n/δ)). The incoherence of subspace U can also be bounded as µ(U) = O(µ0 log(n/δ)).
Subsequently, given m = Ω(kµ0 log(n/δ) log(n/δ′′)) we have (with probability ≥ 1− δ − 2δ′′)

‖x−U(U>ΩUΩ)−1U>Ω(a + r)|22
= ‖a + r −U(U>ΩUΩ)−1U>Ω(a + r)‖22
= ‖r −U(U>ΩUΩ)−1U>Ωr‖22
≤ ‖r‖22 + ‖(U>ΩUΩ)−1‖22‖U>Ωr‖22
≤ (1 +O(1))‖r‖22.

For the second to last inequality we use the fact that r ∈ U⊥. By carefully selecting constants in Eq. (21) we
can make

‖x−U(U>ΩUΩ)−1U>Ωx‖22 ≤ 2.5‖PU⊥x‖22. (42)

Summing over all n2 columns yields the desired result.

Appendix C. Some concentration inequalities

Lemma 11 ([21]). Let X ∼ χ2
d. Then with probability ≥ 1− 2δ the following holds:

−2
√
d log(1/δ) ≤ X − d ≤ 2

√
d log(1/δ) + 2 log(1/δ). (43)

Lemma 12. Let X1, · · · , Xn ∼ N (0, σ2). Then with probability ≥ 1− δ the following holds:

max
i
|Xi| ≤ σ

√
2 log(2n/δ). (44)
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Lemma 13 ([23]). Let X be an n × t random matrix with i.i.d. standard Gaussian random entries. If t < n
then for every ε ≥ 0 with probability ≥ 1− 2 exp(−ε2/2) the following holds:

√
n−
√
t− ε ≤ σmin(X) ≤ σmax(X) ≤ √n+

√
t+ ε. (45)


