Column Subset Selection with Missing Data via Active Sampling

Appendix A. Analysis of the active norm sampling algorithm

Proof of Lemma 1. This lemma is a direct corollary of Theorem 2 from [15]. First, let P; = ¢é;/ f be the probability
of selecting the i-th column of M. By assumption, we have P; > 17%||a;[|3/[M]||%. Applying Theorem 2 ? from
[15] we have that with probability at least 1 — §, there exists an orthonormal set of vectors y® o yB) e Rm
in span(C) such that
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Finally, to complete the proof, note that every column of (Z?Zl y(j)y(j)T) M can be represented as a linear

combination of columns in C; furthermore,
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Proof of Theorem 1. First, set mq = Q(pu; log(na/d1)) we have that with probability > 1 — 4; the inequality

(1= a)llill3 < & < (1+ a) [l |3

holds with a = 0.5 for every column 4, using Lemma 2. Next, putting s > 6k/d2e? and applying Lemma 1 we
get
IM —Po(M)|[r < [[M - M| r+c[M|r (31)

with probability at least 1—0ds. Finally, note that when av < 1/2 and ny < ng the bound in Lemma 3 is dominated

by
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Consequently, for any ¢’ > 0 if mg = Q((¢') " 2p1 log?((n1 + ny)/ds) we have with probability > 1 — d3
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The proof is then completed by taking ¢’ = ¢/4/s:
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Appendix B. Analysis of the active volume sampling algorithm

Proof of Lemma 4. We first prove Eq. (15). Observe that dim(U(C)) < s. Let Rg = (R(€(M) ... R(CG)) ¢
R™*# denote the selected s columns in the noise matrix R and let R(C') = span(R) denote the span of selected
columns in R. By definition, U (C) C U U R(C'), where U = span(A) denotes the subspace spanned by columns
in the deterministic matrix A. Consequently, we have the following bound on ||Py(c)e;|| (assuming each entry
in R follows a zero-mean Gaussian distribution with o2 variance):

[Pucrells < I1Pueill + 1Purnricyeills

3The original theorem concerns random samples of rows; it is essentially the same for random samples of columns.
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For the last inequality we apply Lemma 13 to bound the largest and smallest singular values of R¢ and Lemma

11 to bound ||R/.e;||3, because Rl e; follow i.i.d. Gaussian distributions with covariance 0?Ixs. If € is set as
e = y/2log(4/d) then the last inequality holds with probability at least 1 — §. Furthermore, when s < n;/2 and
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-0?(s + 24/s1og(2/6) + 21og(2/0)).

0 is not exponentially small (e.g., 1/21og(4/0) < ‘/F), the fraction % is approximately O(1/n1). As
a result, with probability 1 — n;d the following holds:
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Finally, putting ¢’ = ny/§ we prove Eq. (15).

Next we try to prove Eq. (16). Let @ be the i-th column of M and write € = a + r, where a = Py(x) and
r = Pyo(x). Since the deterministic component of @ lives in U and the random component of x is a vector
with each entry sampled from i.i.d. zero-mean Gaussian distributions, we know that r is also a zero-mean
random Gaussian vector with i.i.d. sampled entries. Note that U(C) does not depend on the randomness over
{M® : i ¢ C}. Therefore, in the following analysis we will assume ¢(C) to be a fixed subspace U with dimension
at most s.

The projected vector ' = Pgﬁc can be written as € = a + 7, where a = PgLa and 7 = ’Pgir. By definition,
a lives in the subspace U NU*. So it satisfies the incoherence assumption
a3

PRI < k(W) < kpo. (35)
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On the other hand, because 7 is an orthogonal projection of some random Gaussian variable, 7 is still a Gaussian
random vector, which lives in U+ N+ with rank at least n; — k — s. Subsequently, we have
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For the second inequality we use the fact that S < Zz % whenever a;, b; > 0. For the last inequality we use

Lemma 12 on the enumerator and Lemma 11 on the denominator. Finally, note that when max(s, k) < n;/4
and log(ng/8) < n1/64 the denominator can be lower bounded by 02n;/4; subsequently, we can bound u(Z) as

240201 log(2 5
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Taking a union bound over all ny — s columns yields the result.

O

To prove the norm estimation consistency result in Lemma 5 we first cite a seminal theorem from [20] which
provides a tight error bound on a subsampled projected vector in terms of the norm of the true projected vector.
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Theorem 4. Let U be a k-dimensional subspace of R® and y = x + v, where * € U and v € U*+. Fix
& >0, m > max{5kuU)log (% %), 4p(v)log(1/8")} and let Q be an index set with entries sampled uniformly
with replacement with probability m/n. Then with probability at least 1 — 4¢':

m(1 - a) — kp(U) 2

- w3 < lya — Puayels < (1 +a)—||v||2, (37)
where o = 2%10g(1/5’)+2‘§(”) log(1/4"), B = (1 +24/log(1/8))? and v = \/%3“777(11’{) log(2k/&").

We are now ready to prove Lemma 5.

Proof of Lemma 5. By Algorithm 2, we know that dim(S;) = ¢ with probability 1. Let y = M) denote the i-th
column of M and let v = Ps,y be the projected vector. We can apply Theorem 4 to bound the estimation error
between |[|v[| and [y, — Ps,@)¥all-

First, when m is set as in Eq. (19) it is clear that the conditions m > $tu(U)log (3£) = Q(kuo log(n/8)log(k/8"))
and m > 4p(v)log(1/8") = Q(kuolog(n/d)log(1/4")) are satisfied. We next turn to the analysis of «, 5 and +.
More specifically, we want o = O(1), v = O(1) and %B =0(1).

For a, « = O(1) implies m = Q(u(v) log(1/6")) = Q(kuo log(n/6)log(1/6")). Therefore, by carefullying selecting
constants in Q(-) we can make o < 1/4.

For v, v = O(1) implies m = Q(tu(l)log(t/d")) = Q(kug log(n/d)log(k/d")). By carefully selecting constants in
Q(-) we can make v < 0.2.

For 3, t“ )g = O(1) implies m = O(tu(U)B) = O(kuolog(n/d)log(1/46")). By carefully selecting constants we
can have ﬂ < 0.2. Finllay, combining bounds on «, 8 and « we prove the desired result. O

Before proving Lemma 6, we first cite a lemma from [9] that connects the volume of a simplex to the permutation
sum of singular values.

Lemma 8 ([9]). Fiz A € R™*"™ with m < n. Suppose o1, ,0n are singular values of A. Then
1
Z vol(A(S))? = GIE Z 0?1032 e J,?k. (38)
SC[n],|S|=k V1< <ia < <ipg<m

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let My denote the best rank-k approximation of M and assume the singular values of M
are {o;};%,. Let C' = {i1,--- ,ir} be the selected columns. Let 7 € IIj, where II; denotes all permutations with
k elements. By H,; we denote the linear subspace spanned by {M( (1) ... MDY and let d(M®,H, ;)
denote the distance between column M® and subspace H, ;. We then have
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For the first inequality we apply Eq. (22) and for the second to last inequality we apply Lemma 8. O

To prove the approximation error bound in Lemma 7 we need the following two technical lemmas, cited from
(19, 3.

Lemma 9 ([19]). Suppose U C R™ has dimension k and U € R™*¥ is the orthogonal matriz associated with U.
Let Q C [n] be a subset of indices each sampled from i.i.d. Bernoulli distributions with probability m/ny. Then
for some vector y € R™, with probability at least 1 —§:

m ku(U)
Ugyels < 8—-——|yl3, (39)
ny ni
where B is defined in Theorem /.
Lemma 10 ([3]). With the same notation in Lemma 9 and Theorem 4. With probability > 1 — 6 one has
ni

VRV < e

; (40)

provided that v < 1.

Now we can prove Lemma 7.

Proof of Lemma 7. Let U = U(C) and U € R™** be the orthogonal matrix associated with I (note that with
probability one dim(i) = k). Fix a column i and let © = M® = a + 7, where @ € U and r € U*+. What we
want is to bound ||z — U(ULUq) 'ULzq |2 in terms of ||7[3.

Write a = Ua. By Lemma 10, if m satisfies the condition given in the Lemma then with probability over
1— 38— 6" we know (U{,Ugq) is invertible and furthermore, ||(Ug,Ugq) |2 < 2n1/m. Consequently,

U(U,Ug) 'ULaqg = U(ULUq) U, Uga = Ua = a. (41)
That is, the subsampled projector preserves components of x in subspace U.

Now let’s consider the noise term 7. By Corollary 1 with probability > 1 —§ we can bound the incoherence level
of y as u(y) = O(kpolog(n/d)). The incoherence of subspace U can also be bounded as pu(U) = O(uglog(n/d)).
Subsequently, given m = Q(kug log(n/d)log(n/6")) we have (with probability > 1 — § — 26”)

lz — U(UqUq)~'Ug (a + r)f3

la+7 - U(UgUa) "Ug(a +r)|l3

lr = U(U,Ue) ' UGrl3

I3 + 11U Ue) 31013

(1 +O0@)|lr[I3.
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For the second to last inequality we use the fact that » € U+. By carefully selecting constants in Eq. (21) we
can make
lz = U(UqUa) 'Ugz| < 2.5( Py l3. (42)

Summing over all ny columns yields the desired result. O
Appendix C. Some concentration inequalities
Lemma 11 ([21]). Let X ~ x2. Then with probability > 1 — 26 the following holds:

—2\/dlog(1/8) < X — d < 2y/dlog(1/3) + 2log(1/). (43)

Lemma 12. Let Xy,---, X, ~N(0,02). Then with probability > 1 — 6 the following holds:

m?x|Xi| < o+/2log(2n/6). (44)



Column Subset Selection with Missing Data via Active Sampling

Lemma 13 ([23]). Let X be an n x t random matriz with i.i.d. standard Gaussian random entries. If t < n
then for every e > 0 with probability > 1 — 2exp(—€?/2) the following holds:

Vi =Vt — € < omin(X) < omax(X) <V + Vit +e (45)



