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Here we first review the details of the standard LDA clas-
sification rule. Later we present high-level proofs of all
lemmas and theorems in our submission. In a few places
technical details are omitted for brevity.

Classification Rule of LDA

Sparse variants of LDA only differ in how the projection
matrixB is obtained. However, once thisB is fixed, classi-
fication of a new data point proceeds in the same way based
on Fisher’s original analysis.

To begin, we first use B to project all the training data
into a low-dimensional discriminant space. Let ΣBw and
µBk denote the within-class pooled covariance matrix and
the mean of class k respectively for all the projected data.
When given a new observation x?, we assume that it is
draw from a normal distribution with mean given by some
µBk and covariance given by ΣBw . We then assign x? to the
class δB (x?) with maximum posterior probability in the
discriminant space. Assuming that each class has the same
prior distribution, δk (x?) can be computed using

δB (x?) = arg min
k

(
B>x? − µBk

)> (
ΣBw
)−1 (

B>x? − µBk
)
.

Proof of Lemma 1

Under the conditions stipulated by the lemma, we are con-
cerned with finding a single discriminant vector β by solv-
ing

maxβ β>Σbβ − λφ(β)
s.t. β>Σwβ = 1.

(26)

Based on properties of Σw, any feasible β can be de-
composed as β = β1 + β2, where Xβ1 ∈ span[PY ],
Xβ2 ∈ span[I − PY ], and β>2 Σwβ2 = 1. Now consider
optimizing (26) over β1 with β2 fixed at any feasible value
with finite entries. Since Σb = 1

NX
>PYX by construc-

tion, the problem reduces to

maxβ1
β>1 Σbβ1 − λφ(β1 + β2), (27)

which is equivalent to

maxβ1
‖PYXβ1‖22 − λφ(β1 + β2). (28)

Since p > N , we can always find some β′1 with nonzero
entries such that Xβ′1 ∈ span[PY ]. We may then consider
any candidate solution αβ′1, where α > 0 is a scaler, and
compute

maxα α2‖PYXβ′1‖22 − λφ(αβ′1 + β2). (29)

Since φ is a concave, non-decreasing function, it can be
strictly upper-bounded for all α using a linear, first-order
Taylor series approximation, and therefore λφ(αβ′1+β2) ≤
O(α). So clearly then (29) is unbounded from above as
α becomes large since such a linear term will grow much
slower than the O(α2) term. Consequently, β = β1 + β2

will be non-sparse as well with unbounded coefficients.

Proof of Theorem 1

If φ(β) is a concave, non-decreasing function of |β| ,
[|β1|, |β2|, . . .]>, then it can be expressed as φ(β) =
minγ≥0 β

>Γ−1β + z(γ) where Γ = diag(γ) and z(γ) is
a concave and non-decreasing function of γ (Wipf et al.,
2011). Hence, for any fixed γ > 0, (12) is equivalent to

minβ,θ
1
N ‖Y θ −Xβ‖

2
2 + λβ>Γ−1β + z(γ)

subject to θ>Y >Y θ = 1.
(30)

Applying Proof A.6 in (Witten & Tibshirani,
2011), we can show that (30) is equivalent to
minβ −h(β>Σbβ) s.t. β>

(
Σw + λΓ−1

)
β = 1 by

optimizing the objective over θ first. Therefore, (12) is
equivalent to

maxβ,γ≥0 h(β>Σbβ)− λz(γ)
subject to β>

(
Σw + λΓ−1

)
β = 1

(31)

for some concave and non-decreasing function z(γ). Ap-
plying Lagrangian transformation to (31), this is equivalent
to solving

max
β,γ≥0

h
(
β>Σbβ

)
−λz(γ)−µλβ>Γ−1β−µβ>Σwβ (32)

for some non-negative constant µ such that the constraint
is satisfied at the optimal solution. Note that while the
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value of β>
(
Σw + λΓ−1

)
β is monotonically increasing

as µ is decreasing, it is possible that in certain cases there
will not exist a µ such that at the global optimum of (32)
β>
(
Σw + λΓ−1

)
β is equal to one exactly (i.e., this exact

point will be skipped over as µ is varied continuously). In
this circumstance we would then have to go back and mod-
ify slightly our optimal scoring starting point.

Now letting α1 ,
√
µ we have that −φ(α1β) =

maxγ≥0−µλβ>Γ−1β − z(γ). We may then convert
µβ>Σwβ to the constraint form such that β>Σwβ equals
some constant α2 where µ has been absorbed. Finally, the
local minimum condition follows as a special case of The-
orem 2 below.

Proof of Theorem 2

Similar to before, if φ(b) is a concave, non-decreasing
function of b = [‖β1‖2, . . . , ‖βp‖2]>, then φ(b) =
minγ≥0 trace[B>Γ−1B] + Lz(γ), with z(γ) also a con-
cave and non-decreasing function as above. Under these
conditions, if we optimize over B and Θ, then the optimal
scoring problem reduces to

min
γ≥0

L∑
k=1

θ>k∗Y
>(λI +XΓX>)−1Y θk∗ + Lz(γ), (33)

where Θ∗ denotes the optimal value of Θ. Based on (Wipf
et al., 2011) it can be shown that problems of this form
have at most N · rank[YΘ∗] nonzero elements of γ at any
local minimum. Let γ∗ denote any minimizing solution
(either local or global). Then the optimal B satisfies B∗ =
Γ∗X

>(λI + XΓ∗X
>)−1YΘ∗, and hence the number of

nonzero rows will be bounded by the number of nonzero
elements in γ∗. Additionally, for all λ sufficiently large, it
can be shown that any minimizer of must have γ = 0 by
taking derivatives (or subgradients) of (33) and checking
first-order optimality conditions.

We prove the remainder of the theorem by showing that for
any fixed γ ≥ 0, the global optimum of

minB,Θ
∑L
k=1

1
N ‖Y θk −Xβk‖

2
2 + λβ>k Γ−1 βk

subject to Θ>Y >YΘ = I
(34)

is equal to
∑L
k=1−h(ak) where ak is the kth eigenvalue

of Σ̃b =
(
Σw + λΓ−1

)−1/2
Σb
(
Σw + λΓ−1

)−1/2
. Note

that (34) is a standard optimal scoring problem and there-
fore equivalent to (4) with Ω = λΓ−1 and naturally the
sequential version

maxβk
β>k Σbβk

subject to β>k (Σw + λΓ−1)βk = 1
∀i < k, β>k (Σw + λΓ−1)βi = 0.

(35)

We claim that (35) is equivalent to

minθk,βk

1
N ‖Y θk −Xβk‖

2
2 + λβ>k Γ−1 βk

subject to θ>k Y
>Y θk = 1

∀i < k, θ>k Y
>Y θi = 0

(36)

and (36) takes its optimal objective value at −h(ak) where
ak is the k-th largest eigenvalue of Σ̃b. If this claim holds,
due to the equivalence of (36) and (34) which holds be-
cause the latter is separable as discussed in Section 4, then
plugging the optimal objective value of (36) into (34) leads
to the theorem.

We show this claim by induction, noting that the k = 1
case is derived in (Witten & Tibshirani, 2011), although
not in the context of connecting sparse LDA models. To
begin we define θ̂k by θ̂k = (Y >Y )1/2θk. Optimiz-
ing (36) over θ̂k, we derive the optimal θ̂?k by θ̂?k =
c · P⊥k

(
(Y >Y )−1/2Y >Xβi

)
where c is the normalization

constant, and P⊥k is an orthogonal projection matrix to the
orthogonal space of (Y >Y )−1/2Y >Xβi for all i < k. We
plug θ̂?k back to (36) and obtain

min
βk

− 2√
N

√
β>k Σkbβk+β>k Σkbβk+β>k

(
Σw + λΓ−1

)
βk,

(37)
where Σkb = 1

NX
>Y (Y >Y )−1/2P⊥k (Y >Y )−1/2Y >X .

Let β̃k =
(
Σw + λΓ−1

)−1/2
βk. Then (37) becomes

min
β̃k

− 2√
N

√
β̃>k Σ̃kb β̃k + β̃>k

(
Σ̃kb + I

)
β̃k, (38)

where similarly, Σ̃kb is defined by(
Σw + λΓ−1

)−1/2
Σkb
(
Σw + λΓ−1

)−1/2
. Note that the

optimal solution β̃?k for (38) must be such that ∀i <

k, β̃?Tk Σ̃bβ̃i = 0, otherwise by taking orthogonal projec-
tion, the objective value can be reduced because of the
identity matrix term. This observation also implies that
∀i < k, β̃?Tk β̃i = 0 since β̃i is eigenvector of Σ̃b for i < k.
Consequently, (38) is equivalent to

minβ̃k
− 2√

N

√
β̃>k Σ̃bβ̃k + β̃>k (Σ̃b + I)β̃k

subject to ∀i < k, β̃>k β̃i = 0.
(39)

Differentiating over β̃k indicates

Σ̃bβ̃k

1− 1√
Nβ̃>k Σ̃bβ̃k

+ β̃k = 0. (40)

From (40) we deduce that β̃k is an eigenvector of Σ̃b with
eigenvalue

τ =

 1√
Nβ̃>k Σ̃bβ̃k

− 1

−1

=

√
Nτω

1−
√
Nτω
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where ω = β̃>k β̃k. Subsequently, (39) evaluated at the opti-
mal β̃k equals− 2√

N

√
τω+τω+ω. Plugging ω = τ

N(1+τ)2

into this expression leads to −h(τ). Since β̃k is orthogonal
to β̃i for i < k, for minimizing −h(τ), the optimal solu-
tion is the kth eigenvector of Σ̃b and the optimal objective
value becomes −h(ak). Summing over all k then leads to
the stated result.

Proof of Lemma 2

BecauseX is centered, any non-trivial optimal scoring ma-
trix is orthogonal to 1 and any two scoring matrices are
equivalent via an orthogonal projection. Right multiplying
an orthogonal matrix to the scoring matrix Θ will not influ-
ence the cost function (15) since it can be compensated for
by an equivalent inconsequential transformation of B; this
occurs essentially because an `2-norm-based row-sparse
penalty is invariant to rotations.

Proof of Theorem 3

For notational ease we first define S , YΘ. We then note
that with α → 0, by extending the analysis in (Wipf et al.,
2011), the underlying optimization problem and local min-
ima profile is equivalent to minimizing

L(γ) = tr
[
S>Σ−1

s S
]

+ L log |Σs|, (41)

over γ ∈ Rp+, where Σs , XΓX> and Γ , diag[γ],
and then computing B̂ = ΓX>Σ−1

s S. Let B̃ denote the
nonzero rows in a maximally row-sparse feasible solution
to S = XB, and X̃ the corresponding columns, such that
S = X̃B̃.

Now at any minimizing solution of (41), S must be an ele-
ment of span[XΓ1/2] or the cost will be driven to infinity.
In this regard for the time being we will assume that Σs is
invertible. Near any candidate local minimum γ̄, we may
express (41) as

L(a, b) = L log |aΣ̄s + bX̃Λ2X̃>|

+tr
[
S>(aΣ̄s + bX̃Λ2X̃>)−1S

]
, (42)

where Σ̄s = XΓ̄X> and Λ is an arbitrary positive diagonal
matrix.

If γ̄ is a local minimum, it should satisfy

∂L(a, b)

∂a

∣∣∣∣
a=1,b=0

= 0,
∂L(a, b)

∂b

∣∣∣∣
a=1,b=0

≥ 0, (43)

otherwise we could alter a (up or down) or increase b from
zero to decrease (41). Let Z = z(a, b) = aΣ̄s+bX̃Λ2X̃>.

Then we have

∂L(a, b)

∂a
= Ltr

[
Z−1Σ̄s

]
− tr

[
S>Z−1Σ̄sZ

−1S
]

∂L(a, b)

∂b
= Ltr

[
Z−1X̃Λ2X̃>

]
−tr
[
S>Z−1X̃Λ2X̃>Z−1S

]
. (44)

Since z(1, 0) = Σ̄s,

∂L(a, b)

∂a

∣∣∣∣
a=1,b=0

= Ltr [IN ]− tr
[
S>Σ̄−1

s S
]
,

∂L(a, b)

∂b

∣∣∣∣
a=1,b=0

= Ltr
[
Σ̄−1
s X̃Λ2X̃>

]
(45)

−tr
[
S>Σ̄−1

s X̃Λ2X̃>Σ̄−1
s S

]
.

Equating the first equation to zero gives tr
[
S>Σ̄−1

s S
]

=
LN . For the second equation, let the singular value de-
composition of X̃ be X̃ = U∆V >. Then the righthand
side of (45) becomes

Ltr
[
∆V >Λ2V∆U>Σ̄−1

s U
]

−tr
[
∆V >Λ2V∆U>Σ̄−1

s SS>Σ̄−1
s U

]
≤ Lλmax(ΛX̃>X̃Λ)tr

[
U>Σ̄−1

s U
]

(46)

−λmin(ΛX̃>X̃Λ)tr
[
U>Σ̄−1

s SS>Σ̄−1
s U

]
,

where the inequality comes from the fact that
λmin(X)tr(Y ) ≤ tr(XY ) ≤ λmax(X)tr(Y ) for any
symmetric, positive semi-definite matrices X and Y .
(Here λmin(X) and λmax(X) correspond with the
smallest and largest eigenvalue of X respectively.)

Because S is orthogonal by virtue of the assumed LDA op-
timal scoring constraint, rank[S] = L. Moreover, because
of the spark assumption, rank[X̃] = D ≤ L. However,
this restricts any feasible B̃ to satisfy rank[B̃] ≥ rank[S],
and therefore B̃ must be invertible. It then follows that
span(U) = span(X̃) = span(X̃B̃) = span(S). To fur-
ther simplify the righthand side of (46), we use the fact that
for any matrices with orthonormal columns X and Y , if
span(X) = span(Y ), then tr(X>WX) = tr(Y >WY ) and
tr(X>WXX>WX) = tr(X>WY Y >WX) for an arbi-
trary symmetric matrix W .

Now given λ1, · · · , λD are the eigenvalues of S>Σ̄−1
s S,

then tr
[
S>Σ̄−1

s S
]

=
∑D
i=1 λi = LN . And with A ,

ΛX̃X̃>Λ, the righthand side of (46) reduces to

Lλmax(A)

D∑
i=1

λi − λmin(A)

D∑
i=1

λ2
i (47)

≤ L2N‖A‖2 −
(LN)2

D‖A−1‖2
. (48)

Consequently, in total we may conclude that, for a local
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minima to occur, it must be that

L2N‖A‖2 −
(LN)2

D‖A−1‖2
≥ ∂L(a, b)

∂b

∣∣∣∣
a=1,b=0

≥ 0. (49)

However, if ‖A‖2‖A−1‖2 < N
D , then L2N‖A‖2 −

(LN)2

D‖A−1‖2 < 0, which means that γ̄ cannot be a local min-
imum. Since Λ can be an arbitrary positive diagonal ma-
trix, we choose Λ = arg minΛ‖A‖2‖A−1‖2 to form the
strongest bound. This rules out as a local minima any γ̄
such that the corresponding Σ̄s is full rank. Similar argu-
ments apply to a general stationary point that may not be a
local minima.

We now only need consider the rare γ values such that both
S is an element of span[XΓ1/2] and Σs is not full rank.
Technically, if Σs is not full rank, the cost function (41)
is not defined. It is here that careful consideration of the
limit of α → 0, where the limit is take outside of the min-
imization, ameliorates the problem. With this in mind, it is
then straightforward to demonstrate that only some γ∗ with
sparsity profile matching the maximally row-sparse feasi-
ble solution is eligible to be a stationary point. However,
for brevity in a short conference paper we defer rigorous
treatment of these details, which are ultimately straightfor-
ward to handle, to a subsequent journal publication. All of
this then guarantees that the associated B̂ estimator will be
maximally row sparse.

Finally, strategic counter-examples can be used to show
that no problem of the form

min
B

p∑
i=1

f(‖βi‖2) s.t. S = XB (50)

can satisfy the same result. For all functions f , there can
exist cases which fulfill the stipulations of the theorem and
yet have one or more local minima that are not maximally
row sparse. Again, we defer details to a subsequent journal
publication.
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