
Minimizing Nonconvex Non-Separable Functions

Supplement for Minimizing Nonconvex and Non-separable Functions

We start with recalling some definitions needed throughout.

For general nonsmooth and nonconvex functions, the usual gradient or subgradient, of course, no longer applies.
Fortunately, a suitable theory from variational analysis is available, e.g. [26]. For any closed function f , its

regular (or Frechét) subdifferential at w, ∂̂f(w), is the collection of vectors v such that

∀ z, f(z) ≥ f(w) + 〈z−w,v〉+ o(‖z−w‖).

The last lower order term implies that the regular subdifferential is a local property of the function (as it should

be in the absence of convexity). Unfortunately, ∂̂f can be empty at certain points even for Lipschitz continuous
functions (e.g. −| · | at the origin). Taking an appropriate closure we can avoid this degeneracy and arrive at
the subdifferential ∂f :

v ∈ ∂f(w) ⇐⇒ ∃wn → w, f(wn)→ f(w),vn ∈ ∂̂f(wn),vn → v.

Clearly, ∂̂f(w) ⊆ ∂f(w) for all w. If f is (resp. continuously) differentiable at w, then ∂̂f(w) (resp. ∂f(w))

coincides with the usual derivative. From the definition it follows that if w is a local minimizer, then 0 ∈ ∂̂f(w)
and 0 ∈ ∂f(w), which generalizes the familiar Fermat’s rule. In the main text, we are interested in finding some
w so that 0 ∈ ∂f(w), i.e., the critical points of f .

We caution that the subdifferential alone no longer characterizes the function (even in the presence of differen-
tiability) [31], although such pathologies cannot happen for definable functions.

For any, not necessarily convex, function f , its Fenchel conjugate

f∗(z) := max
w
〈w, z〉 − f(w)

is always convex.

A Properties of the Moreau envelope and proximal map

Proposition 7 Let µ, λ > 0, f be a closed, proper, and bounded from below function, then

i). (eµf )∗ = f∗ + µ
2 ‖·‖

2
;

ii). eµf ≤ f , infw eµf (w) = infw f(w), argminw eµf (w) = argminw f(w) ⊆ {w : w ∈ Pµf (w)};

iii). z ∈ Pµf (w) =⇒ w ∈ z + µ · ∂f(z), and ∂eµf (w) ⊆ 1
µ (w − Pµf (w));

iv). Up to a (Lebesgue) null set, Pµf is single-valued and ∇eµf (w) = 1
µ (w − Pµf (w)).

v). eµλf (w) = λeλµf (w) and Pµλf (w) = Pλµf (w) = λ · Pµfλ−1(λ−1w) for all w;

vi). eλeµf
(w) = eλ+µ

f (w) and Pλeµf
(w)

⋂[ µ
λ+µw + λ

λ+µP
λ+µ
f (w)

]
6= ∅ for all w;

vii). µeµf + (µf + 1
2 ‖·‖

2
)∗ = 1

2 ‖·‖
2
;

Proof: The first item is the usual duality from infimal convolution to summation, see e.g. [26].

For item ii), setting z = w in the definition of the Moreau envelope, we see eµf (w) ≤ f(w) for all w. Similarly

using the nonnegativity of 1
2 ‖·‖

2
we can prove infw eµf (w) = infw f(w) and argminw eµf (w) = argminw f(w).

Moreover, if w is a global minimizer of f , then we claim w ∈ Pµf (w) for otherwise by choosing any z ∈ Pµf (w)

we have eµf (z) < eµf (w), contradicting the fact that w is also a global minimizer of eµf .

We come to item iii). If z ∈ Pµf (w), then using the (generalized) Fermat’s rule we have 0 ∈ 1
µ (z −w) + ∂f(z).

The fact that ∂eµf (w) ⊆ 1
µ (w − Pµf (w)) follows from the general calculus rule of subdifferentials, see e.g. [26,

Theorem 10.13].
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For item iv), we notice that any Moreau envelope is the difference of two finite-valued convex functions, which
follows from vii) of Proposition 7 (and is proved below). Thanks to the Rademacher theorem (see e.g. [26,
Theorem 9.60]), any Moreau envelope is differentiable up to a (Lebesgue) null set. But if eµf is differentiable at

w, then −∇eµf (w) = ∂̂(−eµf )(w) = 1
µ (conv(Pµf (w))−w), see e.g. [26, Example 10.32]. Thus Pµf (w) is a singleton

and ∇eµf (w) = 1
µ (w − Pµf (w)) up to a null set.

Item v) is the result of simple algebraic manipulations.

For the first claim in vi), use the definition:

eλeµf
(w) = inf

z

1
2λ ‖w − z‖2 + eµf (z)

= inf
z

inf
u

1
2λ ‖w − z‖2 + 1

2µ ‖z− u‖2 + f(u).

Fix u and minimize z we obtain z = µw+λu
µ+λ . Plug it back in and simplify we verify the claim. The second claim

follows from taking the subdifferential on both sides of the first claim:

∂eλeµf
(w) = ∂eλ+µ

f (w).

Indeed, the second result in item iii) implies that there exists some z ∈ ∂eλeµf
(w) = ∂eλ+µ

f (w) such that z ∈
1
λ (w − Pλeµf

(w)) and z ∈ 1
λ+µ (w − Pλ+µ

f (w)). Rearranging we obtain the claim.

For the last item iv), simply note that

µeµf (w) = min
z

1
2 ‖z−w‖2 + µf(z) = 1

2 ‖w‖
2 − supz

{
〈w, z〉 −

[
µf(z) + 1

2 ‖z‖
2 ]}

,

and resort to the definition of the Fenchel conjugate.

The results resemble Proposition 1 of [14], with some equalities replaced by subset containments (which is
necessary as demonstrated in Example 3). The last property in ii) shows in particular that any global minimizer
of f is a fixed point of the proximal map, hinting that the proximal gradient algorithm might still work in the
nonconvex setting. Item iv) reassures that we can still treat the proximal map Pµf (up to a small change) as the

derivative of the Moreau envelope eµf , except perhaps on a null set. The last item vii) is a more general form of

Moreau’s identity, from which the continuity of eµf is apparent.

B Proof of Proposition 1

Proof: We prove the first part, which will imply that eµ : CPB→ SCVµ is onto.

⇒: This is already mentioned in the last item in Proposition 7.

⇐: Let h = 1
2µ ‖·‖

2 − f be convex and finite valued. Then the function j(w) := h∗(µ−1w)− 1
2µ ‖w‖

2
is clearly

closed. Moreover,

eµj (w) = inf
z

1
2µ‖w − z‖2 + h∗(µ−1z)− 1

2µ‖z‖
2

= 1
2µ‖w‖

2 − sup
z

[ 〈
w, µ−1z

〉
− h∗(µ−1z)

]
= 1

2µ‖w‖
2 − h(w) = f(w),

due to the convexity of h.

The rest of the proof follows that of [14]. It is clear that eµ : CPB → SCVµ is increasing w.r.t. the pointwise
order, i.e., f ≥ g =⇒ eµf ≥ eµg .
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Let α ∈]0, 1[, then

eµαf+(1−α)g(w) = inf
z

1
2µ‖w − z‖2 + αf(z) + (1− α)g(z)

= inf
z

α
2µ‖w − z‖2 + αf(z) + 1−α

2µ ‖w − z‖2 + (1− α)g(z)

≥ inf
z

α
2µ‖w − z‖2 + αf(z) + inf

z

1−α
2µ ‖w − z‖2 + (1− α)g(z)

= αeµf (w) + (1− α)eµg (w),

verifying the concavity of eµ.

C Discussion on different notions of the proximal maps

We document in this section some new results about the different notions of proximal maps defined in the main
paper.

Recall that a multi-valued map P : Rp ⇒ Rp is upper semicontinuous and compact valued (usco) iff for all
w ∈ Rp, P(w) is nonempty and for any sequence (wn, zn) with zn ∈ P(wn), wn → w, the sequence zn has a
cluster point in P(w). Note that for a usco map P, P(w) is compact for each w.

Fix µ > 0 and f ∈ CPB, recall the definition of the map P̂µf :

P̂µf (w) =

{
Pµf (w), if Pµf (w) is single-valued

∅, otherwise
.

We record the following result for convenience:

Lemma 1 Pµf (w) is a singleton iff eµf is differentiable at w.

Proof: Suppose first that Pµf (w) is a singleton, then according to [26, Example 10.32] both ∂(−eµf )(w) and

∂(eµf )(w) are singletons. Applying [26, Theorem 9.18] we know eµf is differentiable. Conversely, if eµf is

differentiable at w, so is −eµf . Applying again [26, Example 10.32] together with [26, Exercise 8.8] and [26,

Corollary 8.11] we know Pµf (w) is a singleton.

Thus P̂µf is almost everywhere defined. Our next goal is to extend its domain into the whole space by semicon-

tinuity. Succinctly, we take the closure of its graph and obtain the limiting proximal map Lµf (see Definition 2).

Lemma 2 Lµf is the minimal (in the sense of graph inclusion) usco map that extends P̂µf .

Proof: Clearly for each w, Lµf (w) ⊇ P̂µf (w). Thanks to item iv) of Proposition 7 and [26, Theorem 1.25], we

know ∅ 6= Lµf (w) ⊆ Pµf (w) for all w. In order to prove Lµf is usco, take any sequence (wn, zn) with zn ∈ Lµf (wn)

and wn
n→∞−−−−→ w, and we want to find a cluster point z of {zn} that is in Lµf (w). Using the definition of Lµf

we know there exists (wn,m, zn,m)
m→∞−−−−→ (wn, zn), zn,m = P̂µf (wn,m). Since Pµf is locally bounded [26, Theorem

1.25] and wn,m
m→∞−−−−→ wn

n→∞−−−−→ w, w.l.o.g. we can assume {wn,m} hence also {zn,m} are bounded. For each
n, we choose some mn such that |wn,mn −wn| ≤ 1

n and |zn,mn − zn| ≤ 1
n . Passing to a subsequence if necessary

we can assume the sequence {zn,mn} is convergent. Clearly zn converges to the same limit say z. Thus we

have constructed the sequence (wn,mn , zn,mn) with zn,mn = P̂µf (wn,mn) and wn,mn
n→∞−−−−→ w, therefore the limit

z ∈ Lµf (w), completing the proof for the usco of Lµf .

It is clear from the definition that any usco map that extends P̂µf must also extend Lµf , implying the minimality
of the latter.

Later on we will need some beautiful results about monotone maps hence we recall some definitions here. A
multi-valued map P : Rp ⇒ Rp is monotone if for all w, z and u ∈ P(w),v ∈ P(z) we have 〈w − z,u− v〉 ≥ 0.
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Monotone maps are generalizations of monotone functions. A maximal monotone map is a monotone map whose
graph is not properly included in any other monotone map. According to [26, Proposition 12.19], any proximal

map Pµf is monotone. Clearly, the restriction P̂µf is monotone as well, so is its “closure”:

Lemma 3 Lµf is monotone.

Proof: For any w, z,u ∈ Lµf (w),v ∈ Lµf (z), we find (wn,un) → (w,u) with un ∈ P̂µf (wn) and similarly

(zm,vm)→ (z,v) with vm ∈ P̂µf (zm). Thus 0 ≤ 〈wn − zm,un − vm〉 → 〈w − z,u− v〉.

Lemma 4 ∂̂(eµf )(w) = µ−1(w − P̂µf (w)), ∂(eµf )(w) = µ−1(w − Lµf (w)).

Proof: Simply combine Lemma 1, [26, Corollary 9.21], and [26, Example 10.32].

The µ-proximal hull of f ∈ CPB is defined as hµf := −eµ
(−eµf )

. As shown in [26, Exercise 1.45], eµf = eµg ⇐⇒ hµf =

hµg . Moreover, f agrees with hµf on the (closure of the) range of its proximal map Im(Pµf ). It turns out that the
proximal map of the proxmal hull is simply the convex hull:

Lemma 5 Hµf = Pµ
hµf

.

Proof: Since Pµf is usco and monotone [26, Proposition 12.19], its “convex hull” Hµf is also monotone and usco

[32, Lemma 7.12]. By [32, Lemma 7.7] we know Hµf is maximal monotone. On the other hand, combining

[26, Example 11.26] and [26, Proposition 12.19] we also know Pµ
hµf

is maximal monotone. Since eµf = eµ
hµf

[26,

Example 1.44] and f agrees with hµf on Im(Pµf ), it easily follows that Pµ
hµf

(w) ⊇ Pµf (w) for all w. By construction

Hµf (w) ⊇ Pµf (w) for all w. Therefore we have two maximal monotone maps Pµ
hµf

and Hµf both extending the

monotone map Pµf . Applying [32, Theorem 7.13] completes our proof.

Note that a similar argument around maximal monotonicity reveals that conv(Lµf (w)) = Hµf (w) for all w.

We can now start to characterize when two functions have the same Moreau envelope.

Lemma 6 Fix any µ > 0 and f, g ∈ CPB. Then the following are equivalent:

(i). eµg = eµf + c for some constant c;

(ii). For all w, Pµg (w) ∩ Pµf (w) 6= ∅;

(iii). Lµg = Lµf ;

(iv). Hµg = Hµf .

Proof: (i) =⇒ (ii): Clearly ∂eµf (w) = ∂eµg (w) for all w. For any w, according to item iii) of Proposition 7, we

know there exists some z ∈ Pµf (w) such that 1
µ (w − z) ∈ ∂eµf (w). Similarly, there exists some u ∈ Pµg (w) such

that 1
µ (w − z) = 1

µ (w − u), namely that z = u. Therefore Pµf (w)
⋂
Pµg (w) 6= ∅ for all w.

(ii) =⇒ (i): Observe that for any h ∈ CPB the Moreau envelope eµh, being a difference of two finite-valued convex
functions (see e.g. item vii) of Proposition 7), is locally Lipschitz continuous. Thanks to Rademacher’s theorem,
we thus know eµh is differentiable up to a (Lebesgue) null set. For any w, consider its (open) neighborhood Nw

such that the restrictions of both eµf and eµg are Lipschitz continuous. Clearly eµg − eµf is also differentiable on

Nw up to a null set. On the other hand, according to Lemma 1, if eµh is differentiable at w, then Pµh(w) is a
singleton and ∇eµh(w) = 1

µ (w − Pµh(w)). Thus on Nw, up to a null set, the derivative of eµg − eµf not only exists

but also vanishes, due to the assumption Pµg (w)
⋂

Pµf (w) 6= ∅ for all w. Since a Lipschitz continuous function is

absolutely continuous, using the mean integral theorem we know eµg − eµf = cw on the neighborhood Nw for some
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constant cw. Hence we have proved that the continuous function eµg − eµf is locally constant on the connected

set Rp. A simple topological argument shows that eµg − eµf must be a constant on all of Rp.

(iii) =⇒ (ii): Clear, since Pµf (w) ⊇ Lµf (w) 6= ∅ for all w and f ∈ CPB.

(i) =⇒ (iii): Apply Lemma 4.

(i) =⇒ (iv): eµg = eµf + c implies hµg = hµf + c hence Hµg = Hµf , thanks to Lemma 5.

(iv) =⇒ (iii): Using Lemma 5 we have Pµ
hµg

= Pµ
hµf

hence Lµ
hµg

= Lµ
hµf

. But the already established equivalence (i)

⇐⇒ (iii) implies Lµ
hµf

= Lµf for any f ∈ CPB. Thus Lµg = Lµf .

Lemma 7 Let Pµf be the proximal map of some function f ∈ CPB. Then we can explicitly construct the function

g(w) =

{
hµf (w), w ∈ Im(Pµf )

a(w), otherwise
(11)

with any a(w) ≥ hµf (w) + εw for some εw > 0, such that Pµg = Pµf .

Proof: By definition hµf ≤ g ≤ `
µ
f , see (15). Applying Proposition 2 we have eµg = eµf . Let z ∈ Pµf (w), then

eµf (w) = 1
2µ ‖z−w‖2 + f(z)

= 1
2µ ‖z−w‖2 + hµf (z)

= 1
2µ ‖z−w‖2 + g(z)

= eµg (w),

implying z ∈ Pµg (w). Similarly, any z ∈ Pµg (w) ∩ Im(Pµf ) must be in Pµf (w) as well. If there exists z ∈
Pµg (w)\Im(Pµf ), then

eµg (w) = 1
2µ ‖z−w‖2 + a(z) > 1

2µ ‖z−w‖2 + hµf (z) ≥ eµ
hµf

(w) = eµf (w),

contradiction. Therefore Pµf = Pµg .

The explicit construction of g relies on that of the proximal hull hµf . We first take the convex hull of P at each

point. This recovers Hµf = Pµ
hµf

. Next we recover the proximal hull hµf . It follows from [26] that hµf + 1
2µ‖ · ‖

2 is

convex, thus

eµ
hµf

(w) = min
z

1
2µ ‖w − z‖2 + hµf (z) (12)

= 1
2µ‖w‖

2 − sup
z
〈w/µ, z〉 − (hµf (z) + 1

2µ‖z‖
2) (13)

Thanks to convexity, we have Hµf (w) = ∂(hµf + 1
2µ‖ · ‖

2)∗(w/µ). Integrating Hµf along rays we can recover

(hµf + 1
2µ‖ · ‖

2)∗. Lastly, taking Fenchel conjugate we have hµf hence g explicitly.

Note that the function g in (11) may not be closed, hence can be inconvenient. However, if we choose a(w) −
hµf (w) ≥ ε > 0 (i.e., ε is independent of w), then closedness can be achieved, without harming the conclusion,
by taking the lower semicontinuous hull.

Corollary 1 Im(Pµf ) = Im(Hµf ) ⇐⇒ Im(Pµf ) = Im(Hµf ) ⇐⇒ Pµf = Hµf .

Proof: Apply Lemma 5 and Lemma 7.

On the real line we can completely characterize the proximal map.
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Lemma 8 If P : R⇒ R is maximal monotone, then it is a proximal map.

Proof: It follows from [26, Exercise 12.26, Theorem 12.25] that P is the subdifferential of some convex function

f . Let h = f∗ − 1
2 ‖·‖

2
. We claim that Ph = P. Indeed,

eh(w) = min
z

1
2 ‖w − z‖

2
+ h(z) = 1

2‖w‖
2 − sup

z
〈w, z〉 − f∗(z).

Thus Ph(w) = ∂f(w) = P(w), thanks to the convexity of f .

Proposition 3 P : R⇒ R is a proximal map iff it is (nonempty) compact-valued, monotone, and has a closed
graph. Moreover, P is maximal monotone iff there is a unique function (up to addition of a constant) f such
that Pf = P iff P is also convex-valued.

Proof: If P is a proximal map (of some function f), then it is clearly compact-valued, monotone, and has a
closed graph, see [26]. Conversely, let P : R ⇒ R be compact-valued, monotone and have closed graph, then
its (pointwise) convex hull H is maximal monotone [32, Lemma 7.12, Lemma 7.7]. Applying Lemma 8 we know
there exists a function h ∈ CPB such that Ph = H. We construct the closed function

g(w) =

{
h(w), w ∈ Im(P)

∞, otherwise
. (14)

According to Lemma 7, P is a proximal map iff Pg = P.

Indeed, let q ∈ P(w) ⊆ Ph(w). Then

eh(w) = 1
2 (q − w)2 + h(q) = 1

2 (q − w)2 + g(q) ≥ eg(w) ≥ eh(w),

implying q ∈ Pg(w). Therefore Pg(w) ⊇ P(w) for all w. For the converse, first let q ∈ Pg(w) ∩ Im(P), thus
we know q ∈ P(z) ⊆ Pg(z) for some z ∈ R. If z 6= w, then due to monotonicity, we must have q ∈ Pg(u) for
any (w ∧ z) ≤ u ≤ (w ∨ z). Note that P and Pg agree almost everywhere (since both are single-valued almost
everywhere). Using the closedness of the graph of P we know q ∈ P(w). Therefore P(w) ⊇ Pg(w) ∩ Im(P)
for all w. To complete the proof we need to remove the intersection with Im(P). Let s = sup{Im(P)} and
i = inf{Im(P)}. Let q ∈ Pg(w)\Im(P) (there is nothing to prove if there does not exist such q). We claim that
it is impossible to have i < q < s. Suppose not, then q is sandwiched in the bounded interval ]a, b[ with some
a ∈ P(u), b ∈ P(v). By our definition of g in (14), q ∈ Im(P), thus there exists P(wn) 3 qn → q. W.l.o.g. we can
assume a < qn < b. Due to monotonicity of P, we must have u ≤ wn ≤ v. Therefore we can find a subsequence
of {wn} that converges to, say z. Since P has a closed graph, we must have q ∈ P(z) ⊆ Im(P), contradiction. We
are left with q = s or q = i. Assume the former, which implies s < ∞. For any z ≥ w, using monotonicity and
maximality we must have s ∈ Pg(z). Since Pg agree with P almost everywhere, we must have again q ∈ Im(P).
The case q = i is dealt with similarly. In summary, we have proved that actually Pg(w) ⊆ Im(P) for all w, hence
completes the proof for P = Pg.

Turning to the second claim, we first note that the maximal monotonicity of P clearly implies its convex-
valuedness. The converse follows from [32, Lemma 7.7].

If P is not convex valued at some point w, then the range of P must have a gap around P(w). We construct
the function g in (11) with different a(w). They all have the same proximal map but differ more than just a
(global) constant. Conversely, if P = Pf = Pg is maximal monotone, then Id + ∂f = Id + ∂g and the functions

f + 1
2 ‖·‖

2
and g + 1

2 ‖·‖
2

are convex [26, Proposition 12.19]. Since convex functions are determined by their
subdifferentiable (up to a constant), we have f = g + c for some constant c.

Proposition 3 provides guidance on designing different thresholding rules while Lemma 7 enables the construc-
tion of the corresponding regularization function. Together they consist of a significant generalization of [33,
Proposition 3.2].

Corollary 2 If P : R → R is increasing and continuous, then there is a unique function f (up to the addition
of a constant) such that Pf = P.
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Proof: Simply note that any continuous monotone map is maximal monotone.

Thus, both the SCAD [2] and the MC+ [3] thresholding rules correspond to a unique regularization function. In
contrast, there are infinitely many different regularizers that all lead to the hard thresholding rule, see Example 3.
Note that, unlike the convex case, the proximal map in general need not be non-expansive.

D Proof of Proposition 2

Proof: We define the functions hµf := −eµ
(−eµf )

(namely the µ-proximal hull of f) and

`µf (w) =

{
hµf (w), w ∈ Im(Lµf )

∞, otherwise
. (15)

Due to the closure operation on Im(Lµf ), `µf is closed. We note that f − hµf ≥ 0 with equality on Im(Pµf ), hence

also on Im(Pµf ) due to lower semicontinuity.

First assume that eµg = eµf + c and we prove that hµf ≤ g − c ≤ `µf . As shown in [26], f ≥ hµf for all f ∈ CPB.

Thus g ≥ hµg = −eµ
(−eµg )

= −eµ
(−eµf−c)

= −eµ
(−eµf )

+ c = hµf + c, which is the first inequality to be proved.

For the second inequality, Lemma 6 in Appendix C shows that Lµf = Lµg , thus g agrees with hµg = hµf + c on

Im(Pµg ) ⊇ Im(Lµg ) = Im(Lµf ). Thus g − c ≤ `µf .

Next we prove that eµ
`µf

= eµf , which will certify the converse for the first two claims. By definition, for all w

eµ
`µf

(w) = min
z∈Im(Lµf )

1
2µ ‖w − z‖2 + hµf (z)

= min
z∈Im(Lµf )

1
2µ ‖w − z‖2 + f(z)

≤ eµf (w),

since f agrees with hµf on Im(Pµf ) ⊇ Im(Lµf ) and Lµf (w) 6= ∅. On the other hand, we clearly have `µf ≥ hµf hence

eµ
`µf
≥ eµ

hµf
= eµf , completing the proof for eµ

`µf
= eµf .

From the equality eµ
`µf

= eµf follows Lµf (w) ⊆ Pµ
`µf

(w) for all w. It is then clear from Lemma 6 that Pµ
`µf

(w) ⊆
Pµg (w) ⊆ Hµf (w) for all w implies eµg = eµf + c. We prove its converse. Clearly, we have Pµg (w) ⊆ Hµg (w) = Hµf (w)

for all w, thanks again to Lemma 6. Note that for any z ∈ Im(Lµf ) we have from eµg = eµf + c that hµf (z) =

hµg (z)− c = g(z)− c, since g agrees with hµg on Im(Pµg ) ⊇ Im(Lµg ) = Im(Lµf ). Now take any z ∈ Pµ
`µf

(w). Clearly

z ∈ Im(Lµf ) = Im(Lµg ) hence

eµ
`µf

(w) = 1
2µ ‖w − z‖2 + hµf (z) = 1

2µ ‖w − z‖2 + g(z)− c

= min
u∈Im(Lµf )

1
2µ ‖w − u‖2 + hµf (u)

= min
u∈Im(Lµg )

1
2µ ‖w − u‖2 + g(u)− c

= eµg (w)− c.

Thus z ∈ Pµg (w), proving Pµ
`µf

(w) ⊆ Pµg (w) for all w.

E Proof of Proposition 4

Proof: By Lemma 1, on the domain D of the map
∑
k αkP̂fk ,

∑
k αke

µ
fk

is differentiable, hence any version of

the proximal average Aµ must also be differentiable at points in D. Thus on D, PµAµ =
∑
k αkP̂fk . Since both
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PµAµ and
∑
k αkP

µ
fk

have closed graphs, the closure
∑
k αkP̂fk is in their intersection. Note that

∑
k αkP̂

µ
fk

is
almost everywhere defined, thus its closure is everywhere defined.

F Proof of Proposition 5

Proof: The first part of Proposition 5 is a standard exercise in semi-algebraic geometry. Recall that if the set
A ⊆ Rp ×Rd is definable, then its projection {w ∈ Rp : ∃z, (w, z) ∈ A} is definable too. In the semi-algebraic
setting, this is the well-known Tarski-Seidenberg theorem, while it is a built-in property in general order-minimal
structures [28]. It follows easily from the projection property that all (sub)level sets and (strict) epigraphs of a
definable function is definable. For instance, the strict epigraph {(w, t) ∈ Rp ×R : f(w) < t} is the projection
of the set

[
{(w, t, s) : f(w)− t = s}

]
∩
[
(w, t, s) : s < 0

]
, which is definable since the function h(w, t) = f(w)− t

is definable hence having a definable graph.

To begin our proof, note first that if f is definable, the function g(w, µ, z) = f(z) + 1
2µ ‖z−w‖2 is definable

in the product space Rp × R++ × Rp, since the squared Euclidean norm is definable as well. (Recall that the
squared Euclidean norm is semi-algebraic and we assume all semi-algebraic functions are definable.) Thus the
strict epigraph of eµf , {(w, µ, t) ∈ Rp ×R++ ×R : eµf (w) < t} = {(w, µ, t) ∈ Rp ×R++ ×R : ∃z, g(w, µ, z) < t},
as the projection of the strict epigraph of g, is definable. Similarly one can prove that the strict hypograph
{(w, t) ∈ Rp × R : eµf (w) > t} is definable too. So is thus the graph {(w, µ, t) ∈ Rp × R++ × R : eµf (w) = t}
(since taking union or complement preserves definability). Hence eµf (w) is definable as a joint function of (w, µ).

Conversely, let us assume eµf is definable as a joint function of (w, µ). We use the monotonic property of the

envelope function, that is, eµf (w) ↑ f(w) for all w as µ ↓ 0. It follows that the strict hypograph of f , i.e. the set

{(w, t) : f(w) > t} = {(w, t) : ∃µ > 0, eµf (w) > t}, is definable thanks to the projection property. Similarly the
strict epigraph hence the graph of f is definable, namely f is definable.

Finally, thanks to our particular choice of the proximal average, we know from the previous result that
g(w, µ) =

∑
k αke

µ
fk

(w) is definable as a joint function of (w, µ). Using the previous result once again we know

the proximal average −eµ(−g) is definable as a joint function of (w, µ).

G Proof of Proposition 6

Proof: It is clear that eµf ≤ f for all functions f . Thus we need only prove the first and the last inequalities.

The proof of the last inequality is the same as [14], which we reproduce for completeness. Observe that by the
definition of the proximal average

f̄ − eµAµ =
∑
k

αk(fk − eµfk) ≥ 0,

since f ≥ eµf for any f . On the other hand

sup
w

{
fk(w)− eµfk(w)

}
= sup

w

{
fk(w)−

[
inf
z

1
2µ‖w − z‖2 + fk(z)

]}
= sup

w,z

{
fk(w)− fk(z)− 1

2µ‖w − z‖2
}

≤ sup
w,z

{
Mk‖w − z‖ − 1

2µ‖w − z‖2
}

≤ µM2
k

2 ,

where the first inequality is due to the Lipschitz assumption on fk. Therefore

sup
w

{
f̄(w)− eµAµ(w)

}
≤
∑
k

αk

[
sup
w
fk(w)− eµfk(w)

]
≤ µM2

2 .
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To prove Aµ ≤ f̄ , we first use the concavity of the Moreau envelope map eµ (cf. Proposition 1):

eµ
f̄

= eµ
(
∑
k αkfk)

≥
∑
k

αke
µ
fk
.

Thanks to our choice of the proximal average, using the monotonicity of eµ we have

Aµ = −eµ(
−
∑
k αke

µ
fk

) ≤ −eµ(
−eµ

f̄

) ≤ f̄ ,
where the last inequality is due to [26, Example 1.44].

H Proof of Theorem 1

Proof: It follows from Proposition 4 that Algorithm 1 is the usual proximal gradient (a.k.a. forward-backward
splitting) algorithm, applied to solve the approximate surrogate problem (9). Thanks to Proposition 5 and our
assumption on the definability of ` and {fk}, we know the objective in (9) is definable. All assumptions of [15,
Proposition 3, p. 484] are met, hence follows our claim in Theorem 1.

For completeness, we briefly mention the main idea behind [15, Proposition 3, p. 484]. Basically, one first
exploits the optimality condition of the proximal map to show that Algorithm 1 is making sufficient progress
in each iteration. Thanks to a generalization of the celebrated  Lojasiewicz gradient inequality [34], one then
lower bounds the progress by the minimum norm of the subgradients. Together these allow one to show 0,
asymptotically, is in the subdifferential, i.e., the algorithm converges to a critical point.

We emphasize that in general it is much harder to prove convergence in terms of iterates rather than the function
values. This is not by chance. Indeed, Sard’s celebrated theorem shows that there can only be few (Lebesgue
null measure) possible function values at all critical points, while in contrast, the set of all critical points can be
arbitrarily large. Think of the constant function: The function takes only a single value at all critical points,
which consist of the whole space.

I Proof of Theorem 2

Proof: The proof is a slight generalization of that in [14] to the nonconvex setting.

If Algorithm 1 converges to an ε-local minimizer w̃ of (9), then

`(w̃) + Aµ(w̃) ≤ `(w) + Aµ(w) + ε.

for all w in a neighborhood Nw̃ of w̃. Applying Proposition 6 we have

[`(w̃) + f̄(w̃)]− [`(w) + f̄(w)] = [`(w̃) + Aµ(w̃)]− [`(w) + Aµ(w)]

+ [f̄(w̃)− Aµ(w̃)]− [f̄(w)− Aµ(w)]

≤ ε+ ε+ 0 = 2ε.

Therefore w̃ is an (2ε)-local minimizer. The proof for w̃ being a ε-global minimizer is similar.

J Derivation of the proximal map in Example 1

We derive the proximal map for the truncated graph-`1 norm. Note that the problem can be reduced to R2 by
considering each edge separately.

J.1 Truncated `1

As a warm up, we first repeat the computation for the truncated `1 norm: |w|t = min{|w|, τ} := |w| ∧ τ . We
remark that the explicit form of the proximal map (for µ = τ) has already appeared in [1, Fan’s comment].
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We use the following variational representation:

|w|t = min
0≤η≤1

η|w|+ (1− η)τ. (16)

Therefore the proximal map can be rewritten as

min
z

1
2µ (w − z)2 + |z|t = min

0≤η≤1
min
z

1
2µ (w − z)2 + η|z|+ (1− η)τ. (17)

For fixed η, clearly we have the soft-shrinkage operator

z = sign(w) · (|w| − µη)+. (18)

Plug in back to (17), we obtain

min
0≤η≤1

1
2µ

[
|w| ∧ (µη)

]2
+ η(|w| − µη)+ + (1− η)τ. (19)

Once we find an optimal η, plugging it back to (18) immediately yields the proximal map. Clearly (19) is a
piecewise quadratic function of η, thus we divide our discussion into several cases.

Case 1: |w| ≥ µ. In this case we obviously have |w| ≥ µη since η ∈ [0, 1]. Therefore (19) simplifies to

min
0≤η≤1

− 1
2µη

2 + η(|w| − τ) + τ.

Since µ ≥ 0, we are minimizing a concave quadratic, thus the minimizer must be attained at the extreme points
0 or 1. Comparing the resulting objective values gives us:

η =


0, if |w| > µ

2 + τ

1, if |w| < µ
2 + τ

{0, 1}, if |w| = µ
2 + τ

. (20)

Case 2: |w| ≤ µ. We need to further distinguish two subcases.

min
0≤η≤|w|/µ

− 1
2µη

2 + η(|w| − τ) + τ v.s. min
|w|/µ≤η≤1

1
2µw

2 + (1− η)τ

For the first subcase, again the minimizer is attained at one of the extreme points, namely, η = 0 with objective

τ and η = |w|/µ with objective w2

2µ −
|w|τ
µ + τ . For the second subcase, clearly η = 1 with objective 1

2µw
2. Note

that
w2

2µ −
|w|τ
µ + τ ≥ 1

2µw
2

due to our assumption |w| ≤ µ. Thus η = 0 only when τ ≤ 1
2µw

2, and η = 1 otherwise. To summarize,

η =


0, if |w| >

√
2µτ

1, if |w| <
√

2µτ

{0, 1}, if |w| =
√

2µτ

. (21)

For a quick sanity check, consider when τ = 0, in both cases we would have η = 0, resulting in z = w. Similarly
when τ =∞, in both cases we would have η = 1, resulting in the soft-thresholding operator.

J.2 Truncated graph-`1

Next consider the slightly more complicated problem:

min
z1,z2

1
2µ [(z1 − w1)2 + (z2 − w2)2] + |z1 − z2|t (22)

= min
0≤η≤1

min
z1,z2

1
2µ [(z1 − w1)2 + (z2 − w2)2] + η|z1 − z2|+ (1− η)τ. (23)
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For any fixed η, we know from [14] that

z1 = w1 − sign(w1 − w2)
[
(µη) ∧ |w1−w2|

2

]
(24)

z2 = w2 + sign(w1 − w2)
[
(µη) ∧ |w1−w2|

2

]
. (25)

Therefore, we need only find an optimal η from

min
0≤η≤1

1
µ

[
(µ2η2) ∧ δ2

4

]
+ η(δ − 2µη)+ + (1− η)τ,

where for clarity we let δ := |w1 − w2|. Like before, we will divide the analysis into several cases.

Case 1: δ ≥ 2µ, implying that δ ≥ 2µη. Simplifying to obtain

min
0≤η≤1

−µη2 + η(δ − τ) + τ.

Comparing the objectives at the two extreme points yields

η =


0, if |w1 − w2| > µ+ τ

1, if |w1 − w2| < µ+ τ

{0, 1}, if |w1 − w2| = µ+ τ

. (26)

Case 2: δ ≤ 2µ. Consider further the two subcases:

min
0≤η≤ δ

2µ

−µη2 + η(δ − τ) + τ v.s. min
δ

2µ≤η≤1

δ2

4µ + (1− η)τ

For the first subcase, again the minimizer is attained at one of the extreme points, namely, η = 0 with objective

τ and η = δ
2µ with objective δ2

4µ −
δτ
2µ + τ . For the second subcase, clearly η = 1 with objective δ2

4µ . Note that

δ2

4µ −
δτ
2µ + τ ≥ δ2

4µ

due to our assumption δ ≤ 2µ. Thus η = 0 only when τ ≤ δ2

4µ , and η = 1 otherwise. To summarize,

η =


0, if |w1 − w2| > 2

√
µτ

1, if |w1 − w2| < 2
√
µτ

{0, 1}, if |w1 − w2| = 2
√
µτ

. (27)

Combining the two cases we have

η =


0, |w1 − w2| > 2

√
µτ +

(
(
√
τ −√µ)+

)2
1, |w1 − w2| < 2

√
µτ +

(
(
√
τ −√µ)+

)2
{0, 1}, |w1 − w2| = 2

√
µτ +

(
(
√
τ −√µ)+

)2 . (28)

K Derivation of the proximal map in Example 2

We gives the details on how to compute the proximal map for the truncated hinge loss:

f(w) = min(max(ρ− yŷ, 0), τ), (29)

where ŷ = w>x. For simplicity we do not include the intercept. The margin parameter ρ is usually set to 1; we
keep it variable here for flexibility.
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K.1 The proximal map for the hinge loss

For completeness and ease of derivation, let us first compute the proximal map for the hinge loss (i.e., τ =∞).
By definition,

min
z

1
2µ‖w − z‖2 + max(ρ− yz>x, 0) = min

z
max
α∈[0,1]

1
2µ‖w − z‖2 + α(ρ− yz>x)

= max
α∈[0,1]

min
z

1
2µ‖w − z‖2 + α(ρ− yz>x)

(z = w + µαyx) = max
α∈[0,1]

α(ρ− yw>x)− µ
2 yx

>xyα2

Without the constraint we should take α = ρ−yw>x
µyx>xy

. We have three cases, and we discuss them separately.

Case 1: yw>x ≥ ρ. Then α = 0, z = w, and the objective is 0.

Case 2: yw>x + µyx>xy ≤ ρ. Then α = 1, z = w + µyx, and the objective is ρ− yw>x− µ
2 yx

>xy.

Case 3: ρ− µyx>xy ≤ yw>x ≤ ρ. Then α = ρ−yw>x
µyx>xy

, z = w + ρ−yw>x
yx>xy

yx, and the objective is 1
2µ

(ρ−yw>x)2

yx>xy
.

Of course we can incorporate all three cases into a single formula: z = w +
[
ρ−yw>x
yx>xy

]µ
0
· yx, where [·]µ0 denotes

the projection into the interval [0, µ].

K.2 The proximal map for the truncated hinge loss

Now we are ready for the truncated hinge loss:

min
z

1
2µ‖w − z‖2 + min(max(ρ− yz>x, 0), τ) = min

η∈[0,1]
min
z

1
2µ‖w − z‖2 + η(ρ− yz>x)+ + (1− η)τ

= min
η∈[0,1]

(1− η)τ + η ·
[
min
z

1
2µη‖w − z‖2 + (ρ− yz>x)+

]
,

where the inner minimization is exactly what we have computed before (with the minor change µ→ µη). Using
our previous computation, we again have three cases.

Case 1: yw>x ≥ ρ. Then η = 1, z = w and the objective is 0.

Case 2: yw>x + µηyx>xy ≤ ρ. Note that this gives us the additional constraint η ≤ ρ−yw>x
µyx>xy

. Let a =

min{1, ρ−yw
>x

µyx>xy
}. The objective now is simply

min
η∈[0,a]

(1− η)τ + η(ρ− yw>x− µη
2 yx

>xy).

This is a concave quadratic function and we are minimizing it. Therefore the minimizer must be one of the
extreme points, namely 0 or a. We simply compare their objectives and pick the smaller one. For concreteness,
let us further divide into two subcases.
Case 2.1: ρ−yw>x

µyx>xy
≥ 1. Then a = 1 and

η =

{
0, if τ ≤ ρ− yw>x− µ

2 yx
>xy

1, otherwise
. (30)

And of course z = w + µηyx (recall that α = 1 in this case).

Case 2.2: ρ−yw>x
µyx>xy

≤ 1. Similarly we compare the objectives of the extreme points:

η =

{
0, if τ ≤ blablabla
ρ−yw>x
µyx>xy

, otherwise
. (31)

Note that there is no need to compute blablabla since it will be discarded anyway, as we will see. In the first

case we have z = w while in the second case z = w + 1−yw>x
yx>xy

yx.
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Case 3: ρ − µηyx>xy ≤ yw>x ≤ ρ. This leads to the additional constraint η ≥ ρ−yw>x
µyx>xy

, therefore we must

have ρ−yw>x
µyx>xy

≤ 1 for otherwise this case is vacuous. The objective is simply

min

η∈[
ρ−yw>x
µyx>xy

,1]

(1− η)τ + 1
2µ

(ρ−yw>x)2

yx>xy
. (32)

Thus η = 1 and z = w + ρ−yw>x
yx>xy

yx, which happens to be the same as the second subcase in case 2.2. This

implies that both have the objective shown in (32), which is decreasing in η. Since the second subcase in case

2.2 has η = ρ−yw>x
µyx>xy

while the current case has η = 1, we will always pick the latter.

To be definite, let us summarize the above computations. The proximal map of the truncated hinge loss is given
as follows:

η =



1, if ρ− yw>x ≤ 0

0, if ρ−yw>x
µyx>xy

≥ 1 && τ < ρ− yw>x− µ
2 yx

>xy

1, if ρ−yw>x
µyx>xy

≥ 1 && τ > ρ− yw>x− µ
2 yx

>xy

{0, 1}, if ρ−yw>x
µyx>xy

≥ 1 && τ = ρ− yw>x− µ
2 yx

>xy

0, if 0 ≤ ρ−yw>x
µyx>xy

≤ 1 && τ < 1
2µ

(ρ−yw>x)2

yx>xy

1, if 0 ≤ ρ−yw>x
µyx>xy

≤ 1 && τ > 1
2µ

(ρ−yw>x)2

yx>xy

{0, 1}, if 0 ≤ ρ−yw>x
µyx>xy

≤ 1 && τ = 1
2µ

(ρ−yw>x)2

yx>xy

, (33)

z =



w

w

w + µyx

{w,w + µyx}
w

w + ρ−yw>x
yx>xy

yx

{w,w + ρ−yw>x
yx>xy

yx}

, (34)

eµf (w) =



0, if ρ− yw>x ≤ 0

τ, if ρ−yw>x
µyx>xy

≥ 1 && τ ≤ ρ− yw>x− µ
2 yx

>xy

ρ− yw>x− µ
2 yx

>xy, if ρ−yw>x
µyx>xy

≥ 1 && τ ≥ ρ− yw>x− µ
2 yx

>xy

τ, if 0 ≤ ρ−yw>x
µyx>xy

≤ 1 && τ ≤ 1
2µ

(ρ−yw>x)2

yx>xy

1
2µ

(ρ−yw>x)2

yx>xy
, if 0 ≤ ρ−yw>x

µyx>xy
≤ 1 && τ ≥ 1

2µ
(ρ−yw>x)2

yx>xy

. (35)

For a quick sanity check, let us see what happens when τ →∞: only the 1st, 3rd, and 5th cases survive, which
matches precisely what we had before for the hinge loss.
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