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A Proof for Lemma 1

Using the law of total expectation, we have
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Using Campbell’s theorem (Kingman, 1993), we have
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The proof is completed by further using E[G(Ω)] =
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B MCMC Inference for HGP-EPM

Sample mij. As in Section 2.2, we sample a latent
count for each bij as

(mij |−) ∼ bijPo+
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Sample mik1k2j. Using the relationships between the
Poisson and multinomial distributions, similar to the
derivation in Zhou et al. (2012), we partition the latent
count mij as
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Note that in each MCMC iteration we store mik·· and
m·k1k2· but not necessarily mik1k2j in the memory.
Sample ai. Using (16) and the data augmentation
technique developed in Zhou and Carin (2012, 2015)
for the negative binomial distribution, we sample ai as
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where with a slight abuse of notation, but for added
conciseness, we use x ∼

∑m
t=1 Ber[a/(a + t)] to repre-

sent x =
∑m
t=1 ut, ut ∼ Ber[a/(a+ t)].

Sample φik. Using (14) and the gamma-Poisson con-
jugacy, we have

(φik|−) ∼ Gam
[
ai +mik··, 1/(ci + ωik)

]
. (21)

Sample rk. Similar to the inference of ai, using (17),
we sample rk as
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Sample ξ. We resample the auxiliary variables lkk
using the updated rk and then sample ξ as

(ξ|−) ∼ Gam
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Sample λk1k2. Using (15) and the gamma-Poisson
conjugacy, we have

(λk1k2 |−) ∼ Gam
[
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.
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Sample β, ci and c0. They can be sampled from
gamma distributions using the conjugacy between
gamma distributions, omitted here for brevity.
Sample γ0. As show in Lemma 1, the mass parame-
ter γ0 plays an important role in determining the total
sum of the infinite rate matrix {λk1k2}. Our experi-
ments show that it could be used as a tuning parameter
to impose one’s prior preference on the number of ac-
tive communities to be discovered. In this paper, we
impose a gamma prior as γ0 ∼ Gam(1, 1) to let the
data infer the posterior of γ0. We employ an indepen-
dence chain Metropolis-Hastings algorithm to sample
γ0, with the proposal distribution constructed as
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where (l̃k|−) ∼ Gam
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)
and
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We accept γ∗0 with probability min{1, π}, where π is∏K
k=1Gam(rk; γ∗0/K, 1/c0)Gam(γ∗0 ; 1, 1)Q(γ0)∏K
k=1Gam(rk; γ0/K, 1/c0)Gam(γ0; 1, 1)Q(γ∗0)

,

which is usually greater than 50% for the networks
considered in this paper.

Each iteration of the MCMC for the HGP-EPM pro-
ceeds from (18) to (25).
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C Gamma Process EPM

The gamma process EPM differs from the HGP-EPM
in that it omits inter-community interactions, which
leads to a simpler hierarchical model and faster com-
putation at the expense of reduced ability to model
stochastic equivalence. It is found to have good per-
formance on assortative networks but not necessarily
on disassortative ones.

C.1 Hierarchical Model

The (truncated) gamma process EPM is expressed as

bij = 1(mij ≥ 1),

mij =

K∑
k=1

mijk, mijk ∼ Po (rkφikφjk) ,

φik ∼ Gam(ai, 1/ci), ai ∼ Gam(e0, 1/f0),

rk ∼ Gam(γ0/K, 1/c0), γ0 ∼ Gam(e1, 1/f1), . (26)

where the Gam(1, 1) prior is also imposed on c0 and
ci. As K →∞, we recover the (exact) gamma process
with a finite and continuous base measure. We usually
set K to be large enough to ensure a good approxima-
tion to the truly infinite model.

Note that if we marginalize out both mij and mijk,
then we have

bij ∼ Bernoulli
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]
.

C.2 Gibbs Sampling

Let the latent counts mi·k and m··k be defined as
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Using the Poisson additive property, we have
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Marginalizing out φik from (27), we have

mik·· ∼ NB (ai, p
′
ik) , (29)

where
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.

Marginalizing out rk from (28), we have

m··k ∼ NB (γ0/K, p̃k) , (30)

where

p̃k :=

∑
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2c0 +
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.

Similar to the inference techniques used in Appendix
B, one may exploit (27)-(30) to derive closed-form
Gibbs sampling update equations for all model param-
eters, omitted here for brevity.

D Gamma Process AGM

Closely related to the gamma process EPM, the hi-
erarchical model for the (truncated) gamma process
AGM can be expressed as

bij = 1(mij ≥ 1),

mij = uij +

K∑
k=1

mijk, mijk ∼ Po (rkφikφjk) ,

uij ∼ Po(ε), ε ∼ Gam(a0, 1/b0),

φik ∼ Ber(πi), πi ∼ Beta(a1, b1),

rk ∼ Gam(γ0/K, 1/c0), γ0 ∼ Gam(e1, 1/f1). (31)

We sample rk, γ0 and c0 in the same way we sam-
ple them in the gamma process EPM. To sample φik,
one may use (27) as the likelihood, under which φik
is equal to one a.s. if mi·k > 0 and is drawn from
a Bernoulli distribution if mi·k = 0. Gibbs sampling
update equations for the other model parameters can
be conviniently derived by exploiting conditional con-
jugacies, omitted here for brevity.
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