Infinite Edge Partition Models

Infinite Edge Partition Models for Overlapping
Community Detection and Link Prediction:
Appendix

A  Proof for Lemma 1

Using the law of total expectation, we have
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Using Campbell’s theorem (Kingman, [1993), we have
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The proof is completed by further using E[G(£2)]
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B MCMC Inference for HGP-EPM

Sample m;;. As in Section we sample a latent
count for each b;; as
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Sample My, 1,;. Using the relationships between the
Poisson and multinomial distributions, similar to the
derivation in|Zhou et al.|(2012)), we partition the latent
count m;; as
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Note that in each MCMC iteration we store m;g.. and
M., ky- DUt not necessarily mgx, k,; in the memory.
Sample a;. Using and the data augmentation
technique developed in [Zhou and Carin| (2012, 2015)
for the negative binomial distribution, we sample a; as
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where with a slight abuse of notation, but for added
conciseness, we use z ~ » - Ber[a/(a +t)] to repre-
sent z = > 1, ug, uy ~ Ber[a/(a+1t)].

Sample ¢;;. Using and the gamma-Poisson con-
jugacy, we have

(¢ir|—) ~ Gam[a; +mk.., 1/(c; +wir)].  (21)

Sample r;. Similar to the inference of a;, using 7
we sample 7 as
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Sample £&. We resample the auxiliary variables Iy
using the updated r; and then sample £ as
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Sample A k,. Using and the gamma-Poisson
conjugacy, we have
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Sample 5, ¢; and c¢y. They can be sampled from
gamma distributions using the conjugacy between
gamma distributions, omitted here for brevity.
Sample ~y. As show in Lemma [l the mass parame-
ter 7o plays an important role in determining the total
sum of the infinite rate matrix {Ag, g, . Our experi-
ments show that it could be used as a tuning parameter
to impose one’s prior preference on the number of ac-
tive communities to be discovered. In this paper, we
impose a gamma prior as 79 ~ Gam(1,1) to let the
data infer the posterior of 9. We employ an indepen-
dence chain Metropolis-Hastings algorithm to sample
o, with the proposal distribution constructed as
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where (I|—) ~ Gam (3k, lkka» 70/ K) and
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We accept +§ with probability min{1, 7}, where 7 is
[T Gam(ri; 6 /K, 1/c0) Gam (753 1, 1)Q(70)
[T Gam(re; 70/ K, 1/co) Gam(y0; 1, 1)Q(7)

which is usually greater than 50% for the networks
considered in this paper.

Each iteration of the MCMC for the HGP-EPM pro-

ceeds from to .
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C Gamma Process EPM

The gamma process EPM differs from the HGP-EPM
in that it omits inter-community interactions, which
leads to a simpler hierarchical model and faster com-
putation at the expense of reduced ability to model
stochastic equivalence. It is found to have good per-
formance on assortative networks but not necessarily
on disassortative ones.

C.1 Hierarchical Model

The (truncated) gamma process EPM is expressed as

bij = 1(mij Z 1),
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¢'L’k ~ Gam(ai, 1/Ci>, a; ~ Gam(eo, 1/f0),

ri ~ Gam(yo/K,1/co), v0 ~ Gam(ey,1/f1),. (26)
where the Gam(1,1) prior is also imposed on ¢y and
¢i. As K — oo, we recover the (exact) gamma process
with a finite and continuous base measure. We usually
set K to be large enough to ensure a good approxima-
tion to the truly infinite model.

Note that if we marginalize out both m;; and myjp,
then we have
K
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C.2 Gibbs Sampling

Let the latent counts m;., and m.., be defined as
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Using the Poisson additive property, we have

m;., ~ Po (Tkéf)ik Z ¢jk)a (27)
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Marginalizing out ¢;; from 7 we have
Mik.. ~ NB (ai, i) , (29)

where
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Marginalizing out rj from , we have
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Similar to the inference techniques used in Appendix
B, one may exploit (27)-(30) to derive closed-form
Gibbs sampling update equations for all model param-
eters, omitted here for brevity.

D Gamma Process AGM

Closely related to the gamma process EPM, the hi-
erarchical model for the (truncated) gamma process
AGM can be expressed as

bij = l(mij Z 1),
K

mij = Wi + Zmijkv mij ~ Po (Tkgikdjk) ,
k=1

ui; ~ Po(e), € ~ Gam(ag,1/bo),

¢ik ~ Ber(m—)7 T ~ Beta(al,bl),

rr ~ Gam(yo/K,1/co), 70 ~ Gam(e1, 1/f1). (31)

We sample 7, 7o and ¢y in the same way we sam-
ple them in the gamma process EPM. To sample ¢;,
one may use as the likelihood, under which ¢;x
is equal to one a.s. if m;.,; > 0 and is drawn from
a Bernoulli distribution if m;., = 0. Gibbs sampling
update equations for the other model parameters can
be conviniently derived by exploiting conditional con-
jugacies, omitted here for brevity.
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