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Abstract

Sparse Gaussian graphical models characterize
sparse dependence relationships between random
variables in a network. To estimate multiple re-
lated Gaussian graphical models on the same set
of variables, we formulate a hierarchical model,
which leads to an optimization problem with a
nonconvex log-shift penalty function. We show
that under mild conditions the optimization prob-
lem is convex despite the inclusion of a noncon-
vex penalty, and derive an efficient optimization
algorithm. Experiments on both synthetic and
real data show that the proposed method is able
to achieve good selection and estimation perfor-
mance simultaneously, because the nonconvexity
of the log-shift penalty allows for weak signals to
be thresholded to zero without excessive shrink-
age on the strong signals.

1 INTRODUCTION AND BACKGROUND

For a set of variables X1, . . . , Xp, a graphical model
is commonly used to reflect sparse dependence structure
among the variables. The presence of an edge (i, j) re-
flects that variables Xi and Xj are dependent even after
controlling for the effects of the remaining variables. If
X = (X1, . . . , Xp) ∼ N(µ,Σ), the resulting model is
known as a Gaussian graphical model (GGM), and in this
case the edges (i.e. conditional dependencies) correspond
to nonzero entries in the precision matrix, Ω = Σ−1. The
log-likelihood for Ω after observing n i.i.d. draws of X is
given by

L(Ω) =
n

2
log det(Ω)− n

2
〈S,Ω〉 ,

where S is the sample covariance of the n i.i.d. observa-
tions. These types of models arise in a wide range of appli-
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cations, including genetics (modeling interactions among
gene expression levels), finance (finding interactions be-
tween different stock prices), and social networks (mod-
eling relationships among people, spread of information or
disease, etc).

In a high-dimensional setting, where we observe n i.i.d. re-
alizations of X for a sample size n < p, the sparsity of the
precision matrix allows us to accurately estimate the dis-
tribution of X even though Σ = Cov(X) is in general not
identifiable from n < p samples. A well-studied convex
approach to finding Ω = Σ−1 is the graphical Lasso [5],
which calculates1

Ω̂glasso = arg min
Ω�0

{
− L(Ω) + γ

∑
i<j

|Ωij |
}
. (1)

The penalty term promotes sparsity—due to the shrinkage
on the off-diagonal entries of Ω, many of the Ωij’s (for
i 6= j) will be zero when γ is sufficiently large. Under
some conditions, the graphical Lasso is consistent for edge
selection in sparse models, even at sample size n� p [13].

Multiple graphs In some applications, we may have
multiple sets of observations with related (but not neces-
sarily identical) covariance structures, for instance when
the same variables are measured across different settings
(such as gene expression levels in healthy vs in cancer-
ous tissues [3] or across different phases of an organism’s
life cycle [9]). Suppose that we observe data from K dif-
ferent GGMs with similar sparsity structures, and would
like to estimate the K precision matrices Ω(1), . . . ,Ω(K)

jointly. Let Lk(Ω(k)) be the log-likelihood for the kth data
set given by

Lk(Ω(k)) =
nk
2

log det(Ω(k))− nk
2
〈S(k),Ω(k)〉

1 In some works in the literature, ‖Ω‖1 =
∑

ij |Ωij | is penal-
ized, i.e. the diagonal elements are not excluded from the penalty,
but we exclude them to facilitate comparison with our work.
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for kth sample size nk and kth sample covariance matrix
S(k). Danaher et al. [3] propose the group graphical Lasso:

Ω̂GGL = arg min
Ω∈Sp{

−
∑
k

Lk(Ω(k)) + γ
∑
i<j

[
ν‖Ωij‖1 + (1− ν)‖Ωij‖2

]}
,

(2)

where Sp is the feasible set of positive semidefinite matrix
sequences,

Sp =
{

Ω = (Ω(1), . . . ,Ω(K)) : Ω(k) ∈ Rp×p,Ω(k) � 0
}
,

and Ωij = (Ω
(1)
ij , . . . ,Ω

(K)
ij ) is the vector of coefficients at

position (i, j) across the K settings. If ν = 1, the solu-
tion Ω̂GGL reduces to performing a graphical Lasso on each
data set k = 1, . . . ,K; no information is shared across
the K tasks. At the other extreme, for ν = 0, the penalty∑
i<j ‖Ωij‖2 ensures identical sparsity patterns across the

K estimated precision matrices.

A nonconvex approach For the single graph setting
(K = 1), recent work by Wong et al. [15] proposes an
adaptive, nonconvex approach, defined by a hierarchical
model for each Ωij :

τij ∝ 1/τij for all i < j (an improper prior), (3)
Ωij |τij ∼ N (0, τij) for all i < j,

X|µ,Ω ∼ N
(
µ,Ω−1

)
i.i.d. for each observation.

This hierarchical model can be viewed as a graphical
model version of the Bayesian Lasso introduced by Park
and Casella [11]. Marginalizing over τij , this induces a
marginal (improper) density ∝ 1/|Ωij |2, leading to the
MAP estimation problem

Ω̂adaptive = arg min
Ω�0

{
− L(Ω) +

∑
i<j

log(|Ωij |2)
}
. (4)

This procedure is adaptive because, due to the concavity
of the log penalty, large entries Ωij suffer less shrinkage
when estimated, as compared to an `1-norm penalty like the
graphical Lasso. Empirically, Wong et al. [15] find that the
adaptive nonconvex penalty leads to improvements relative
to the graphical Lasso (1) in terms of accurate estimation
and support recovery. However, the optimization problem
(4) is in general nonconvex and may have local minima.

Contributions In the work presented here, we formulate
a hierarchical model for multiple graphs, and derive an op-
timization problem corresponding to finding the maximum
a posteriori (MAP) estimate for Ω. The resulting optimiza-
tion problem combines a likelihood term with a nonconvex
penalty, leading to reduced shrinkage on edges with strong
signals (thus improving over convex-penalty methods).

Crucially, even with the nonconvex penalty, our optimiza-
tion problem is convex under some mild conditions, thus
avoiding issues with local minima. Furthermore, we find
that the optimization speedup results of Danaher et al. [3]
extend to our method. Empirically, our method is able to si-
multaneously identify the nonzero edges in a graph (model
selection) and estimate the parameters on these edges—this
is a strong advantage of our nonconvex penalty, which is
able to produce a sparse solution while not imposing strong
shrinkage on large nonzero estimated values, while convex-
penalty methods generally cannot achieve both at the same
tuning parameter value.

Outline The remainder of this paper is organized as fol-
lows. We introduce our method in Section 2, which gives a
hierarchical model for the K linked GGMs, and derives an
objective function to find the maximum a posteriori (MAP)
estimate for Ω = (Ω(1), . . . ,Ω(K)). We discuss the spar-
sity and shrinkage properties of our method, in particular as
compared to the group graphical Lasso, in Section 2.2. In
Section 3 we discuss optimization for the objective func-
tion defined by our method, and in particular find condi-
tions that lead to a convex optimization problem that can
be split into smaller subproblems (connected components
of the graphs); proofs for the results in this section can be
found in the Supplementary Materials. We present exper-
iments on simulated data and on two real data sets (stock
price data and bikeshare data) in Section 4. Finally, we
conclude with a brief discussion of our work and of future
directions in Section 5.

2 METHODOLOGY

2.1 A Hierarchical Model for Multiple GGMs

Consider the following hierarchical models forK Gaussian
graphical models with p nodes each:

τij ∼ InverseGamma(α, β) for all i < j, (5)

Ω
(k)
ij |τij ∼ Laplace (τij) for all k, for all i < j,

X(k)|µ(k),Ω(k) ∼ N
(
µ(k), (Ω(k))−1

)
for all k.

We place a flat (improper) prior on µ(k) and on the diagonal
entries Ω

(k)
ii . Of course, we must require Ω(k) � 0 for each

k. We may also choose to allow improper priors for τij by
allowing α and/or β to be zero.

This hierarchical model characterizes our prior belief re-
garding shared structure across the K graphs. The com-
mon structure across the graphs is governed by the shared
parameter τij for the weights on the same edge in different
graphs. The hyperparameters α and β control the mag-
nitude and the variation of the τij’s and thus the sparsity
pattern of the graphs.
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Marginal distribution of Ω given τ We now calculate
the marginal prior density of Ω:

p(Ω) ∝ 1Ω∈Sp ·
∏
i<j

∫
τij

[
K∏
k=1

p(Ω
(k)
ij |τij)

]
p(τij) dτij

∝ 1Ω∈Sp ·
∏
i<j

∫
τij

[
K∏
k=1

τ−1
ij e

−
|Ω(k)
ij

|
τij

]
τ−α−1
ij e

− β
τij dτij

= 1Ω∈Sp ·
∏
i<j

∫
τij

τ−K−α−1
ij e−(β+‖Ωij‖1)/τij dτij

∝ 1Ω∈Sp ·
∏
i<j

(1 + ‖Ωij‖1/β)−(α+K) , (6)

where the last step is obtained by marginalizing over τij
and dividing by the constant β−(α+K). When K = 1,
even though our hierarchical model takes a different form
than the model (3) proposed by [15], we obtain the same
marginal distribution of Ω when we take α = 1 and β → 0.
However, we will show later on that choosing nonzero β
will allow for a convex optimization problem.

The posterior MAP Combining the marginal prior on
Ω (6) with the log-likelihoods Lk(Ω(k)) from the K data
sets, we would like to calculate the maximum a posteriori
(MAP) estimate:

Ω̂ = arg min
Ω∈Sp

{
−
∑
k

Lk(Ω(k))+γ
∑
i<j

β log
(
1+
‖Ωij‖1
β

)}
,

(7)
where γ = α+K

β (we introduce this reparametrization
for later convenience). This penalized likelihood func-
tion combines a convex negative-log-likelihood term with a
nonconvex “log-shift” penalty. While the underlying hier-
archical model requires γβ ≥ K by construction, we relax
this to γ ≥ 0.

A generalization We can also consider replacing ‖Ωij‖1
in (7) with any convex regularizer f(Ωij), which leads to
the optimization problem

Ω̂ = arg min
Ω∈Sp

F (Ω) (8)

where

F (Ω) := −
∑
k

Lk(Ω(k)) + γ
∑
i<j

β log(1 + f(Ωij)/β) .

As an important example, we can consider a (sparse) group
Lasso penalty on each Ωij :

f(Ωij) = ν‖Ωij‖1 + (1− ν)‖Ωij‖2 .

In fact, the penalized likelihood optimization problem in
(8) can be motivated by a generalization of our hierarchical

model in (5). Consider

τij ∼ InverseGamma(α, β) for all i < j, (9)

Ωij |τij ∝ τ−Kij e−f(Ωij)/τij for all i < j,

X(k)|Ω(k) ∼ N
(
µ(k), (Ω(k))−1

)
for all k.

As before, we place a flat prior on µ(k) and on the diagonal
entries Ω

(k)
ii , and require Ω(k) � 0. Next, marginalizing

over τ

p(Ω) ∝ 1Ω∈Sp ·
∏
i<j

∫
τij

p(Ωij |τij)p(τij) dτij

∝ 1Ω∈Sp ·
∏
i<j

∫
τij

τ−Kij e−f(Ωij)/τij · τ−α−1
ij e−β/τij dτij

∝ 1Ω∈Sp ·
∏
i<j

(1 + f(Ωij)/β)−(α+K) .

Combining this with the likelihood terms, and setting γ =
α+K
β as before, yields the optimization problem (8).

2.2 Sparsity and Shrinkage of Ω

We next examine the effects of the parameters γ and β in
the log-shift objective function (8), which arise from α and
β in the hierarchical model (9). To understand their role in
inducing sparsity and shrinkage in Ω, we first consider the
function

gβ(x) = β log(1 + |x|/β) .

In a sparse regression setting, this type of penalty func-
tion has been studied by Candès et al. [1] and others in
the context of reweighted `1 minimization, and was found
to preserve the desirable sparsity properties of `1 regular-
ization while reducing the amount of shrinkage on large
coefficients.

The penalty function gβ(x) behaves like a `1 penalty when
|x|/β ≈ 0, which we can see by taking a local linear ap-
proximation to the log function:

log(1 + |x|/β) ≈ |x|/β ⇒ gβ(x) ≈ |x| .

On the other hand, as |x|/β grows large, the concavity of
the log function becomes apparent, and therefore there is
less shrinkage on large values of x (see Figure 1).

Next, we return to our prior distribution on Ω. Comparing
the penalized likelihood function (8) with our calculations
with gβ(·) above, we can interpret the parameters β and γ
in (8) as follows:

• γ controls the amount of penalization on Ω, and thus
the sparsity level of the solution.

• β controls the nonconvexity of the penalty, with small
β yielding reduced shrinkage in the estimate of Ω
(but possible nonconvexity of the objective function),
while β → ∞ causes the penalty term to approach
γ
∑
i<j f(Ωij).
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Figure 1: Sparsity and shrinkage behavior of the solution
x̂ = arg min

{
1
2 (y − x)2 + γgβ(x)

}
. Note that γ affects

the point at which the solution is thresholded to zero, while
β controls the nonconvexity (and therefore, the shrinkage)
for nonzero solutions.

2.3 Other Related Work

The graphical Lasso [5] and group graphical Lasso [3]
methods, discussed above in (1) and (2), both propose es-
timation of Ω via a convex penalty. Our method may be
viewed as a generalization of the group graphical Lasso,
which is obtained by setting β = ∞ in our log-shift
penalty.

Turning to nonconvex methods, in addition to Wong et al.
[15]’s model described in (3) above, we are aware of sev-
eral other methods using nonconvex regularization, all of
which allow for reduced shrinkage on large entries, but
may potentially lead to nonconvex optimization problems.
First, for estimation of a single graph, Fan et al. [4] apply
an adaptive Lasso (reweighted `1) penalty to the GGM set-
ting, optimizing

arg min
Ω�0

{
− L(Ω) + γ

∑
i<j

|Ωij |/|Ω̃ij |α
}
,

where Ω̃ is some initial estimate of Ω. In fact, for α = 1,
this reweighted `1 penalty is can be viewed as a single it-
eration towards solving Wong et al. [15]’s MAP estimation
problem (4), although this is not the approach taken in [15]
(see [1] for the sparse regression setting). Fan et al. [4]
also examine a SCAD penalty on each |Ωij |, which behaves
similarly.

In the multiple graph setting, Guo et al. [7] propose the
optimization problem

Ω̂sqrt = arg min
Ω∈Sp

{
−
∑
k

Lk(Ω(k)) + γ
∑
i<j

√
‖Ωij‖1

}
.

(10)
This nonconvex penalty encourages similar sparsity pat-
terns in the K graphs, but does not allow for tuning the
amount of nonconvexity or the balance between shared
support vs different support.

Finally, in a recent work, Zhu et al. [17] propose a noncon-

vex method for simultaneous estimation of multiple GGMs
by penalizing the log likelihood with the following penalty
function

γ1

∑
k

∑
i<j

Jτ (|Ω(k)
ij |) + γ2

∑
k 6=k′

∑
i<j

Jτ (|Ω(k)
ij − Ω

(k′)
ij |) ,

where Jτ (z) = min(|z|, τ) is the truncated `1-norm
penalty. This optimization problem allows for tuning with
the three parameters, but regardless of tuning parameter
values, the objective function is nonconvex due to the shape
of the truncated `1-norm penalty.

3 CONVEXITY AND OPTIMIZATION

In this section, we derive a simple condition on the parame-
ters β and γ in our log-shift method (8) that guarantees the
convexity of the objective function F (Ω) over a bounded
set. We then develop a majorization-minimization algo-
rithm for finding the global minimum, and a preprocess-
ing step where the graphs are split into connected compo-
nents, allowing for smaller optimization problems that can
be solved in parallel. While we are primarily interested in
regularizers of the form f(·) = ν‖·‖1 + (1 − ν)‖·‖2, our
results apply more generally to any convex regularizer f(·).

3.1 Convexity

To ensure that F (Ω) is convex, we will place a bound on
Ω to obtain strong convexity of the likelihood term, while
placing a lower bound on β to control the nonconvexity of
the penalty term. The result below may be viewed as an
application of Loh and Wainwright [10]’s results on non-
convex regularizers.

The condition that we require on Ω is mild. For any b =
(b1, . . . , bK) ∈ RK+ , define

Sp(b) =
{

Ω ∈ Sp : ‖Ω(k)‖op ≤ bk for k = 1, . . . ,K
}
,

where ‖·‖op is the matrix operator norm (i.e. the largest sin-
gular value). This is a reasonable nondegeneracy condition
on the K graphical models underlying the data.
Theorem 1. If f(·) is convex, nonnegative, and L-
Lipschitz, and if

β ≥ γL2

2
·max

k

b2k
nk

, (11)

then F (Ω) is convex over Ω ∈ Sp(b). If (11) is satisfied
with a strict inequality, then we obtain strict convexity.

We note that when the sample sizes nk are all large, the
condition (11) allows β to be very small, that is, allows the
penalty to be highly nonconvex, as desired to avoid exces-
sive shrinkage on strong signals. The proof of this theorem,
given in the Supplementary Materials, simply shows that
the strong convexity of the likelihood term in F (Ω) is suf-
ficient to counterbalance the concavity of the log penalty.
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3.2 Optimization via Majorization-Minimization

To minimize F (Ω) we use majorization-minimization [8].
Let Ω̃ be our current estimate of Ω̂. Since log(·) is concave,
we bound log(1 + f(Ωij)/β) by the linear approximation
centered at Ω̃ij :

log
(
1 + f(Ωij)/β

)
≤ log

(
1 + f(Ω̃ij)/β

)
+
f(Ωij)/β − f(Ω̃ij)/β

1 + f(Ω̃ij)/β
.

Then the objective function is bounded as

F (Ω) ≤ −
∑
k

Lk(Ω(k)) + γ
∑
i<j

f(Ωij)

1 + f(Ω̃ij)/β︸ ︷︷ ︸
=:F (Ω;Ω̃)

+ C ,

with equality at Ω = Ω̃ (here C stands for the terms that
are constant with respect to Ω). Note that F (Ω; Ω̃) is a
convex function of Ω. Therefore, to find Ω̂,

1. Initialize Ω[0] = (0p×p, . . . ,0p×p) (or any other ini-
tial value).

2. For t = 1, 2, . . . , solve the convex optimization prob-
lem

Ω[t] = arg min
Ω∈Sp(b)

F (Ω; Ω[t−1]) . (12)

3. Stop when some convergence criterion has been
reached.

For optimizing (12), if f(·) is chosen to be the sparse group
Lasso regularizer

f(·) = ν‖·‖1 + (1− ν)‖·‖2 ,

then the step (12) is equivalent to a weighted group graphi-
cal Lasso problem [3], but with an additional constraint that
Ω[t] ∈ Sp(b); this constraint can be added to the ADMM
algorithm for group graphical Lasso given in [3] with no
additional computational cost.

If the objective function F (Ω) is convex over Sp(b)—
that is, if our choices of β, γ, and b satisfy the condi-
tion (11) of Theorem 1—then majorization-minimization
is guaranteed to converge to a globally optimal solution
Ω̂ ∈ arg minΩ∈Sp(b) F (Ω) [16]. In practice, we may
choose to remove the bound on the spectral norms, or
equivalently, explore concavity of the penalty beyond what
is allowed in the convexity condition (11), since lower val-
ues of β may perform better empirically.

3.3 Separation into Connected Components

For the graphical Lasso (1), Witten et al. [14] proved
that the connected components of the solution Ω̂glasso

can be identified in a preprocessing step that simply re-
quires screening for sample correlations Sij that exceed the
penalty parameter value γ. This allows for significantly
faster optimization of the graphical Lasso. Theorem 2 of
Danaher et al. [3] extends this result to the group graphical
Lasso setting, by screening for any i < j such that√∑

k

(
nk|S(k)

ij | − γν
)2

+
> γ(1− ν) (13)

and then solving separate optimization problems for each
resulting connected component. Their results prove that
the combined solution yields a global minimizer Ω̂GGL of
the group graphical Lasso (2).

This type of block-wise optimization can be extended to
the nonconvex log-shift penalty:

Theorem 2. Consider any partition A = {A1, . . . , Am}
of [p] into disjoint sets. Suppose that

−γ−1 · diag{n1, . . . , nK} · Sij ∈ ∂f(0) for all i 6∼A j
(14)

where Sij = (S
(1)
ij , . . . , S

(K)
ij ). If the conditions of

Theorem 1 are satisfied, then there exists some Ω̂ ∈
arg minΩ∈Sp(b) F (Ω) such that Ω̂

(k)
ij = 0 for all k and

all i 6∼A j.

In particular, if f(·) = ν‖·‖1 + (1 − ν)‖·‖2, then con-
dition (14) is equivalent to Danaher et al. [3]’s condi-
tion (13) for the group graphical Lasso. Although our
penalty is nonconvex, near zero it is approximately equal
to the group graphical Lasso penalty (or, more generally,
β log

(
1 + f(Ωij)/β

)
≈ f(Ωij) when Ωij ≈ 0). This

allows us to extend the proof techniques of [3] to this non-
convex penalty setting. Theorem 2 is proved in the Supple-
mentary Materials.

Based on this result, we now propose a faster algorithm for
minimizing F (Ω).

1. Partition [p] into sets A1, . . . , AM , the connected
components of the adjacency matrix C, given by

Cij = 1
{
−γ−1 · diag{n1, . . . , nK} · Sij ∈ ∂f(0)

}
.

2. For m = 1, . . . ,M , use majorization-minimization
(Section 3.2) to solve the mth block,

Ω̂m = arg min
Ω∈Spm (b)

Fm(Ω) where pm = |Am| and

Fm(Ω) =

K∑
k=1

−nk
2

[
log det(Ω(k))− 〈Ω(k), S

(k)
Am,Am

〉
]

+ γ
∑
i<j

i,j∈Am

β log(1 + f(Ωij)/β) .
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Figure 2: Experiment results for estimating precision matrices based on simulated data, plotting relative error in estimating
Ω versus the total number of edges selected is plotted. For each method, each line represents estimates with various values
of γ while fixing other tuning parameters. (a) is for the tridiagnoal case and (b) for the blockwise scale free case. For each
model, a held-out validation set was used to select tuning parameter value(s), highlighted in the plot. Plot is best viewed in
color.

3. Ω̂ concatenates the blocks: Ω̂Am,Am = Ω̂m for allm,
and Ω̂Am,Am′ = 0 for all m 6= m′.

If the convexity condition (11) is satisfied, then Theorems 1
and 2 guarantee that the resulting solution Ω̂ is a global
minimizer of F (Ω) over the set Sp(b).

4 EXPERIMENTS

4.1 Simulations

We implement our method on two sets of simulated data
with different graph structures.

Tridiagonal graph data In our first example, we sim-
ulate K = 3 tridiagonal precision matrices of dimension
p = 100, following the autoregressive (AR) process exam-
ple in Fan et al. [4]. Specifically, for each k, the covari-
ance matrix Σ(k) is defined as Σ

(k)
ij = exp(−|s(k)

i − s
(k)
j |),

where 0 = s
(k)
1 < s

(k)
2 < · · · < s

(k)
p and s(k)

i − s(k)
i−1

iid∼
Unif(0.5, 1), i = 2, . . . , p. Each precision matrix Ω(k) =(
Σ(k)

)−1
has the same support (they are each tridiagonal,

due to the AR(1) covariance structure), but different values
at the nonzero entries. For each k, we draw nk = 40 i.i.d.
samples from the distribution N

(
0, (Ω(k))−1

)
.

Scale-free graph data In the second example, we gen-
erate K = 2 graphs on p = 100 nodes. The first graph
has 5 equally-sized scale-free subgraphs. The second graph
shares the same structure in 4 subgraphs, but has no edge
present in the remaining subgraph. The realization of the
networks is depicted in Figure 3. A precision matrix is

generated according to the first graph, with diagonal en-
tries equal to 1, and off-diagonal entry values drawn from
a uniform distribution on [−0.4,−0.1]∪ [0.1, 0.4] when an
edge is present, or otherwise 0. The precision matrix cor-
responding to the second graph is set to be identical to the
first one, except that the off-diagonal entries are all set to
zero for the subgraph where edges were removed.
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Figure 3: The realization of the blockwise scale-free
graphs. The two graphs share the same structure in 4 of
the 5 subgraphs. In the remaining subgraph, all edges are
missing in the second graph.

Methods To implement our proposed method, we take
f(·) = ν‖·‖1 + (1 − ν)‖·‖2 and minimize the objec-
tive function (8) for different values of tuning parame-
ters (γ, β, ν). We also test the group graphical Lasso [3],
the graphical Lasso [5], and Guo et al. [7]’s square-root
method, for comparison.2

2 Computations for simulations and for the real data exper-
iment were performed in R [12] and used the glasso [6] and
JGL [2] packages. Code for Guo et al. [7]’s method was obtained
from the online supplementary material for [3], available at
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Figure 4: Experiment results for estimating precision matrices based on stock price data and bikeshare data. Negative log
likelihood on held-out data is plotted versus the total number of edges selected. For each method, each line represents
estimates with various values of γ while fixing other tuning parameters. Plot is best viewed in color.

Results Figure 2 displays results from the simulations.
We plot the Frobenius norm of estimation error (normal-
ized by the Frobenius norm of the true precision matrix)
against the number of edges that are selected. Plots would
be similar if the KL divergence between the estimator and
the true precision matrix were plotted instead.

The graphs illustrate comparison on estimation and selec-
tion. In both experiments, among the methods considered,
the log-shift method attains the lowest error in recovering
Ω and simultaneously selects an appropriately low number
of edges, when tuning parameters are chosen judiciously
(typically with a lower value of β, i.e. with high noncon-
vexity in the penalty). This suggests that the method is able
to achieve relatively good estimation and selection with a
single set of tuning parameters. As β increases, the perfor-
mance of our method approaches that of the group graphi-
cal Lasso. In order to select appropriate tuning parameters
for each method in a data-driven way, we generate a valida-
tion data set of same size and compute the log likelihoods
of the validation data using the estimated precision matri-
ces. For our model, the estimate selected by the validation
score achieves the minimum error measure, and yields a
total number of selected edges that is close to the number
of true edges. We also notice that when tuning parameters
are chosen such that the objective function is convex, the
running time of our method is comparable to other convex
methods. It becomes much slower when the objective func-
tion turns nonconvex.

4.2 Real Data

We next test our method on two sets of real data, stock price
data and bikeshare data.

http://onlinelibrary.wiley.com/journal/10.
1111/(ISSN)1467-9868/homepage/76_2.htm.

Stock price data We collect daily stock closing prices
from Yahoo! Finance,3 for p = 432 stocks that were con-
sistently in the S&P 500 index from January 1, 2003 to
December 31, 2012. Let Si,j be the closing price for stock
j on day i, and Xi,j = log(Si,j/Si−1,j) be the log return.
We marginally transform the log returns of each stock to
a normal distribution. Denoting the transformed data still
as Xi,j , we treat the daily data Xi,· ∈ Rp as independent
observations, although they in fact form a time series. We
divide the data into two time periods, one for before (2003–
2007) and one for after (2009–2012) the 2008 financial cri-
sis, and remove the data from 2008. The two sample sizes
are nbefore = 1257 and nafter = 1005. In the belief that
the relationship between stocks might have changed during
the financial crisis, we model the data as two GGMs (i.e.
K = 2) with similar but non-identical precision matrices.

Capital bikeshare data We collect data from the Cap-
ital Bikeshare system,4 a bike rental program in the D.C.
area. It has a network of over 300 kiosk stations, where
customers may rent a bike from a one location and return it
to a different place on an as-needed basis, either as a “ca-
sual” user (paying for a single day) or a “registered” user
(purchasing a membership). In the year 2012, there are
n = 366 days and p = 123 high-activity stations. For
i = 1, 2, . . . , n and j = 1, 2, . . . , p, let X(1)

ij and X(2)
ij be

the number of casual and registered rentals, respectively,
initiated at station j on day i. After correcting for seasonal
trend, we marginally transform each station’s data to a nor-
mal distribution, and then model the data with two GGMs
(i.e. K = 2, representing the casual rentals and the regis-
tered rentals), which we believe to have similar precision

3Data available at http://finance.yahoo.com
4Data available at https://www.capitalbikeshare.

com/trip-history-data
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matrix structure.

Methods For each of the data set, we select 20% of the
data in each category as training data, and hold out the re-
maining 80% as the validation set. We implement our log-
shift method withK = 2, and compare to the same existing
methods as before. For an additional comparison, we also
fit a single graphical Lasso to the combined data set (cor-
responding to the simple scenario that the two precision
matrices have identical values in addition to identical edge
structure).

Results To evaluate the results, we calculate the likeli-
hood of the held-out data under the fitted models for each
method. Results are displayed in Figure 4. For the stock
price data, while the various methods’ best scores are sim-
ilar for the log-shift, group graphical Lasso, and single
graphical Lasso, the log-shift method is able to attain this
best validation score with a substantially smaller number
of selected edges relative to the convex methods, demon-
strating the benefit of the nonconvex penalty. For the bike-
share data, both the log-shift method and group graphical
lasso achieve the best validation score with a same number
of edges selected. However, when moving from the opti-
mal choice to a model with less edges, the convex meth-
ods suffer a large decline in performance on the validation
set, while the log-shift method is able to maintain a nearly-
optimal validation score.

5 DISCUSSION

In this paper, we introduce a family of nonconvex penalty
functions, called the log-shift function, for estimating mul-
tiple related GGMs. It arises from a simple hierarchical
model and generalizes existing methods for learning mul-
tiple GGMs, such as the group graphical Lasso [3]. Com-
pared with methods that use a convex penalty function, the
nonconvexity of the penalty function leads to less bias on
strong signals and thus makes it possible to obtain good
selection and estimation result at the same time. The log-
shift penalty can also be applied to estimating other mod-
els, such as undirected graphical models with non-Gaussian
distributions, time-varying GGMs, etc., which we leave to
future work.
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