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Abstract

Bilinear models of count data with Poisson distribution are popular in applications such as
matrix factorization for recommendation systems, modeling of receptive fields of sensory
neurons, and modeling of neural-spike trains. Bayesian inference in such models remains
challenging due to the product term of two Gaussian random vectors. In this paper, we
propose new algorithms for such models based on variational Gaussian (VG) inference.
We make two contributions. First, we show that the VG lower bound for these models,
previously known to be intractable, is available in closed form under certain non-trivial
constraints on the form of the posterior. Second, we show that the lower bound is bi-
concave and can be efficiently optimized for mean-field approximations. We also show
that bi-concavity generalizes to the larger family of log-concave likelihoods, that subsume
the Poisson distribution. We present new inference algorithms based on these results and
demonstrate better performance on real-world problems at the cost of a modest increase in
computation. Our contributions in this paper, therefore, provide more choices for Bayesian
inference in terms of a speed-vs-accuracy tradeoff.

Keywords: Variational Gaussian inference, bilinear models, Poisson likelihood, matrix
factorization, latent Gaussian models

1. Introduction

Latent Gaussian factor models, such as probabilistic principal component analysis (PPCA)
and factor analysis (FA), are very commonly used density models for continuous-valued
data. They are extensively employed in various applications such as latent factor discovery,
dimensionality reduction, missing-data imputation, and data fusion.

Such latent factor models can be easily extended to handle non-Gaussian data using
the generalized linear model framework (McCullagh and Nelder, 1989) where Gaussian like-
lihoods are replaced by other distributions (see e.g. Mohamed et al. (2008); Seeger and
Bouchard (2012); Khan et al. (2010)). In this paper, we focus on the modeling of count
data using latent factor models with Poisson likelihoods. This is motivated by the fact,
that counting the occurence of events is a natural mode of observing phenomena. Gather-
ing such data leads to the problem of analysing non-negative and discrete-valued random
processes, for which the use of Gaussian likelihoods for computational convenience can lead
to inaccuracies, due to undesirable properties, such as symmetry and the distribution of
mass over the whole real line. Therefore, latent Gaussian factor models endowed with Pois-
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son likelihoods have been successfully used in various real-world applications, examples of
which are given in what follows. In neuroscience, (Park and Pillow, 2013) model the recep-
tive field of a sensory neuron by a low-rank latent Gaussian field serving as the intensity
function of an inhomogeneous Poisson process, and demonstrate, that Poisson likelihoods
model neural spike counts, much more accurately than Gaussians. (Buesing et al., 2012)
analyse multi-electrode recordings of neural activity using a similar model for neural spike
trains, where the latent Gaussian field captures temporal dependencies.. (Krishnamurthy
et al., 2010) analyse counts of newly infected individuals over space and time by describing
the spatio-temporal dynamics as a latent Gaussian field. (Seeger and Bouchard, 2012; Zhou
et al., 2012) apply such models to the task of imputing incomplete count matrices from
different sources, ranging from transportation data to telecommunications to corpora of
scientific publications.

Such applications often routinely rely on Bayesian posterior inference for robustness
and uncertainty quantification. Bayesian inference, however, is intractable in latent factor
models with Poisson likelihoods, due to the non-conjugacy of the Poisson distribution to the
Gaussian prior over the latent factors. A variety of approximation methods can be used.
One of the most common and computationally attractvive methods, is to approximate the
posterior by a maximum-a-posteriori (MAP) point estimate, although being known to be
prone to overfitting and thus requiring careful regularization (Welling et al., 2008; Salakhut-
dinov and Mnih, 2008a). Obtaining exact posterior samples is the goal of Markov-Chain
Monte-Carlo (MCMC) (Zhou et al., 2012). But this method can be slow and is notoriously
hard to diagnose in terms of convergence (Salakhutdinov and Mnih, 2008a). Naive deter-
minstic approaches such as the Laplace approximation do not capture skewed posteriors
well (Kuss and Rasmussen, 2005), while approaches, such as expectation-propagation, can
pose numerical challenges, often requiring accurate quadrature methods for convergence
(Yu et al., 2006).

In this paper, we focus on a variational Gaussian (VG) approach that assumes the
posterior to be Gaussian (Opper and Archambeau, 2009) and therefore extend the work
of (Lim and Teh, 2007) by dealing with the complications arising due to non-Gaussian
likelihoods.. The Gaussian posterior can be found by optimizing a lower bound on the
marginal likelihood. For non-conjugate models, this lower bound is generally intractable,
requiring quadrature or other approximation techniques, that can lead to a loss in accuracy
(e.g. discussed in Seeger and Bouchard (2012) for the Poisson distribution).

Our first contribution is to show that the lower bound can be, in fact, computed
tractably. We obtain an analytical expression for the lower bound and show that it im-
plies non-trivial constraints on posterior parameters. Our second contribution is to show
that the lower bound is bi-concave w.r.t. to the posterior distribution of individual latent
factors. This allows us to design fast, convergent algorithms. We show empirically, that
the proposed approach performs better than other approximation methods at the cost of
a modest increase in computation. Our approach, therefore, offers a set of alternatives,
that trade off speed versus accuracy, from which practitioners can choose according to their
requirements.
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2. The Latent Factor Model

We consider the count matrix Y of size M × N , where M is the data-dimensionality and
N is the number of data-observations. For example, in recommendation systems, N is
the number of users and M is the number of songs, available to the users. Each entry of
Y, denoted by yin, then represents the number of times the n’th user has listened to the
i’th song. We allow for entries of Y to be missing and denote the set of observed indices
by O ⊆ {1, . . . ,M} × {1, . . . , N}, and generally assume that Y is observed sparsely, i.e.
|O| � MN . We will denote the count vector for the n’th user by yn = {yin : (i, n) ∈ O},
and the count vector for the i’th song by yi, accordingly. For illustrative purposes, we will
sometimes use the terminology of recommendation systems and refer to data-dimensions as
items and data-examples as users. Furthermore, we denote the set of songs, that the user n
has listened to, by On = {i ∈ {1, . . . ,M} : (i, n) ∈ O} and, with a slight abuse of notation,
the set of users who have listened to the i’th song by Oi = {n ∈ {1, . . . , N} : (i, n) ∈ O}.

Each yin is modeled as a Poisson random variable governed by a latent intensity λin >
0. Heavily underdetermined due to the sparse-observation assumption, an information-
sharing mechanism needs to be imposed on these intensities, to be able to reason about
missing values. This is achieved by postulating a generalized bilinear latent factor model,
introducing log-bilinear predictor variables ηin = log(λin). Specifically, the predictor for
each pair (i, n) is modeled by the inner product of two D-dimensional real-valued vectors
wi and zn, as shown in Eq. (1). Such a bilinear representation underlies many models
for matrix factorization and dimensionality reduction, such as probabilistic PCA/factor
analysis (Tipping and Bishop, 1999) or Bayesian Matrix Factorization (Salakhutdinov and
Mnih, 2008a). For simplicity, we have ignored the user- and item-bias terms, which can be
easily added and were included in our implementation.

Given the vector of linear predictors ηn for the n’th user, the data vector yn is sampled
from a Poisson distribution as shown in Eq. (2), independently for each user.

ηin = wT
i zn (1)

p(yn|ηn) =
∏
i∈On

1

yin!
exp (ηinyin − eηin) (2)

Note, that λin is parameterized as exp(ηin) to fulfill the requirement that λin > 0.
For dimensionality-reduction, we assume that D � min{M,N} and that wi and zn

follow Gaussian prior distributions, defined below.

p(zn) = N (zn|0, σ2zID) , p(wi) = N (wi|0, σ2wID) (3)

We define matrices Z ∈ RD×N and W ∈ RD×M , whose columns consist of the latent vectors
zn and wi, respectively, and denote the set of parameters by θ = {σ2z , σ2w, D}.

Bayesian inference, where the goal is to get a handle on objects, such as the poste-
rior distribution (Eq. 4) or the marginal likelihood (Eq. 5), is based on high-dimensional
integration, intractable in this context due to non-conjugacy.

p(Z,W|Y, θ) =
p(Y|W,Z)p(W|θ)p(Z|θ)

p(Y|θ)
(4)

p(Y|θ) =

∫
Z

∫
W
p(Y|W,Z)p(W|θ)p(Z|θ)dWdZ (5)
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Next, we describe the variational Gaussian approximation method and show the feasibility
of the key computational element required to drive this method.

3. Tractable Variational Gaussian (VG) Inference

Dropping the dependence on the parameters θ for notational convenience, let q(Z,W)
denote the approximate posterior. Given this posterior, we can obtain a lower bound on
the marginal likelihood by introducing q(Z,W) as shown on the right hand side of Eq. (6),
and then using Jensen’s inequality, as shown in Eq. (7). In Eq. (8), it is rewritten in terms
of the Kullback-Leibler (KL) divergences between the posterior and prior and sum over
posterior expectations of data-log-likelihoods of the observed yin.

log p(Y) = log

∫
Z

∫
W

p(Y|W,Z)p(W)p(Z)

q(Z,W)
q(Z,W) dWdZ (6)

≥ Eq(Z,W )

[
log

p(Y|W,Z)p(W)p(Z)

q(Z,W)

]
(7)

= −DKL [q(W,Z)||p(W)p(Z)] +

N∑
n=1

∑
i∈On

Eq(zn,wi)[log p(yin|ηin)] (8)

The VG approximation assumes the variational distribution q(Z,W) to be Gaussian,
rendering the first term tractable, because the KL divergence between two Gaussian distri-
butions has an analytic expression. Additionally, we focus on distributions of the following
form.

q(Z,W) =
N∏
n=1

N (zn|mn,Vn)
M∏
i=1

N (wi|µi,Σi) (9)

Given this factorizaion, the KL term (up to a constant) decomposes in the following way.

1
2

N∑
n=1

[
log |Vn| −

1

σ2z
Tr(Vn)−mT

nmn

]
+ 1

2

M∑
i=1

[
log |Σi| −

1

σ2w
Tr(Σi)− µTi µi

]
(10)

The difficulty with non-conjugate models stems from the likelihood terms in Eq. (8). We
now show that, for our model, this term has a closed-form expression. The likelihood terms
can be simplified, as shown in Eq. (11), by first substituting the definition of the Poisson
distribution from Eq. (2), and then applying the identity E[exp

(
tTx

)
] = exp(tTm+ 1

2tTVt)
for x ∼ N (m,V) and a given vector t (shown in Appendix A), to get Eq. (12).

Eq(zn,wi)[log p(yin|ηin)] = Eq(wi)

[
Eq(zn)

(
yinw

T
i zn − ew

T
i zn

)]
+ cnst (11)

= Eq(wi)

[
yinw

T
i mn − em

T
nwi+

1
2wT

i Vnwi

]
+ cnst (12)

We show in Appendix A, that the expectation in Eq. (12) can be written as

yinµ
T
i mn − |Sin|−

1
2 exp

(
1
2ν

T
inB

−1
in νin − 1

2µ
T
i Σ−1i µi

)
(13)
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where Sin = I−ΣiVn, Bin =
(
Σ−1i −Vn

)
and νin = mn + Σ−1i µi.

Note, that the expression is symmetric with respect to the posterior of zn and wi, as
expected. More importantly, the identity only holds under the constraint that Sin is positive
definite, i.e. the expectation is real-valued if I − ΣiVn � 0. For illustration, consider the
mean-field approximation assuming diagonal Vn and Σi. In this case, the constraints imply
that Vn,ddΣi,dd < 1 for all diagonal elements d. This is not a convex set for (Vn,dd,Σi,dd), but
given Vn,dd, the constraint on Σi,dd is simply a bound constraint, and vice-versa. Similarly,
for full covariance matrices, these become positive-definite constraints.

The final lower bound can be written as follows:

φ(ξ) =1
2

N∑
n=1

[
log |Vn| −

1

σ2z
Tr(Vn)−mT

nmn

]
+ 1

2

M∑
i=1

[
log |Σi| −

1

σ2w
Tr(Σi)− µTi µi

]
(14)

+

N∑
n=1

∑
i∈On

yinµ
T
i mn − |Sin|−

1
2 exp

(
1
2ν

T
inB

−1
in νin − 1

2µ
T
i Σ−1i µi

)
(15)

where we denote the set of all variational parameters by ξ = {mn,Vn,µi,Σi}n=1,...,N,i=1,...,M .
The variational inference problem is to maximize this lower bound subject to the con-

strained described previously.

max
ξ

φ(ξ) (16)

s.t. I−ΣiVn � 0 ∀(i, n) ∈ O (17)

4. Bi-Concavity of VG Objective

In this section, we discuss concavity of the final lower bound of Eq. (14) and show that this
leads to efficient inference for mean-field aproximations. The following theorem establishes
the bi-concavity of the lower bound.

Theorem 1 The lower bound of Eq. (14) is concave with respect to {mn,Vn} for all n
given {µi,Σi} for all i.

Proof The first line of Eq. (14) is concave since the KL divergence is convex w.r.t. its
arguments. To prove the convexity of the second term we first note that in Eq. (12) the
term inside the expectation is concave w.r.t {mn,Vn} given wi (Khan et al., 2013). Since
convexity is preserved under summation with positive weights, the expectation is also con-
cave, making Eq. (12) concave and proving the concavity of the final lower bound.

The above result can be generalized to a bigger class of models, as shown in the following
theorem.

Theorem 2 Let Tn,Li denote the Cholesky factors of Vn,Σi, respectively. If log p(yin|ηin)
is concave w.r.t. ηin, then Eq. (14) is concave with respect to {mn,Tn} for all n given
{µi,Li} for all i.
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MAP MF EM VB

Storage O(D(M +N)) O(D(M +N)) O(DM +D2N) O(D2(M +N))
Computation O(DNobs) O(DNobs) O(D2Nobs) O(D3Nobs)

Table 1: Complexity comparison of methods. Complexity increases from left to right. MAP
and EM are existing methods, while MF and VB are proposed methods. Nobs =

∑
n |On|

is the total number of observations.

Proof The proof is analogous to the previous theorem. The KL term is also convex w.r.t.
the Cholesky factor. The convexity of the likelihood term follows from the results of Challis
and Barber (2011), who show that the following is concave wrt (mn,Tn) for each wi.

Eq(zn)

[
log p

(
yin|wT

i zn
)]

(18)

Given this, the expectation w.r.t. q(wi) is also concave since it is an integral with positive
weights.

As a consequence, we can write the variational problem in Eq. (16) in terms of ξ̂ =
{mn,Tn,µi,Li}n=1,...,N,i=1,...,M , which retains the bi-convexity, but simplifies the log-determinant
terms due to the prior.

5. Summary of Methods and Implementation Details

We consider two variants of the proposed VG method. The first method is the approxima-
tion described in Eq. (9), which we refer to as the variational-Bayes (VB) approximation.
The second variant is the mean-field (MF) approximation where the covariances Vn and
Σi are all assumed to be diagonal.

We compare these methods to two existing methods. The first method is the maximum-
a-posterior (MAP) estimate where the posterior distribution is approximated by a dirac-
delta distribution (Welling et al., 2008), that places all its mass at the mode of the poste-
rior (or equivalently the mode of the joint distribution p(Y,W,Z)). Such an estimate is
non-Bayesian since no uncertainty is represented. Comparing with this method therefore
illustrates the benefits of being Bayesian.

The second method is a “partially” Bayesian method that treats one set of factors as
latent variables and the other as parameters. This corresponds to the probabilistic PCA
model (Tipping and Bishop, 1999), where the item factors W are treated as parameters,
while Z is marginalized out. We expect this method to perform better than MAP, but
not as good as the VB method. For learning, we use the expectation-maximization (EM)
algorithm, similar to (Tipping and Bishop, 1999). We will refer to this approach as EM.

For all other methods, we will use a coordinate ascent approach, that alternates be-
tween optimizing q(Z) given q(W) and q(W) given q(Z). Due to their concavity, these
subproblems can be solved robustly with reliable convergence diagnostics and fast conver-
gence rates. We use an L-BFGS optimizer in our implementation. Both of our methods
have constraints associated with them. In the case of MF, the contraints reduce to sim-
ple bound constraints that can be easily incorporated in a quasi-Newton method such as
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L-BFGS (Bertsekas, 1999). For VB, the constraints are more complex, so we resort to a
simple implementation where we augment the objective with a barrier for infeasible points,
and let the line search back away from such solutions. In practice, our line search never
encountered such infeasible points. We leave a careful implementation for the future.

We compare these algorithms in terms of their complexity in Table 1. There, the
complexity increases from left to right. The storage complexity directly reflects the amount
of posterior uncertainty, that is represented. MAP only keeps track of a point estimate
of W,Z. MF additionally represents variances of all variables, effectively doubling the
memory requirement. VB represents covariances over all M + N latent factors, requiring
O(D2) memory per factor. EM lies in between MAP and VB, in that covariances are only
represented for one set of variables.

As all methods rely on first-order non-linear optimization, computational complexity
scales with the number of data-likelihood terms Nobs, each of which being involved in the
accumulation of the gradient. The methods only differ in the cost per term, which is
benign due to the assumption on D being relatively small. For MAP, the contribution
to the gradient of a single likelihood term is linear in D. For EM, likelihoods contribute
terms like Eq. (12) with q(wi) = δ(wi). Thus, the gradient requires dense matrix-vector
multiplication, that scales as O(D2). The fully Bayesian methods deal with terms of the
form presented in Eq. (13). For VB, the dependence on matrix inverses leads to cubic scaling
in D, while the mean-field approximation greatly simplifies these expressions, reducing the
cost back to linear.

Our implementation is based on MATLAB, however we wrote some computational-
demanding gradient-computations in C++ using the Armadillo linear algebra library (Sander-
son, 2010). For our results, we used a linux server equipped with AMD Opteron 6380 CPUs
and 512GB RAM.

6. Results

In this section, we compare all methods on real-world datasets. We focus on count datasets
arising in recommendation systems. We use the posterior-predictive probability as our
performance measure. Specifically, given a test observation y∗in, we compute the (negative)
logarithm of the following predictive distribution:

− log p(y∗in|Y) = − log

∫
p(y∗in|zn,wi)q(zn,wi|Y)dzndwi (19)

Thus, lower values indicate better performances, i.e. the method, that assigns higher prob-
ability to the value at a test location, incurs a lower error.

Since the above integral is intractable, we approximate it by a Monte Carlo estimate
using 105 samples, ensuring a stable estimate. For MAP, the error measure reduces to a
simple plug-in estimates. We report the average of this quantity over all the test examples.

We compare methods on four real-world datasets summarized in Table 2. For each data
set, we randomly select 8000 observations, of which 25% are held out for testing. The
LastFM and Delicious datasets can be downloaded from (grouplens, 2011). The LastFM-
Tags and Million-Songs datasets can be obtained from (Lamere, 2008) and (Kaggle, 2012),
respectively. To avoid numerical instabilities caused by very large counts, we apply the
transformation y 7→ b√y + 0.5c to LastFM and LastFM Tags.
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Figure 1: Effect of prior variance: Strong regularization is necessary for MAP. While EM
already enjoys the benefits of the regularization inherent in Bayesian methods, it does not
perform on par with the fully Bayesian methods.

Name M N Nobs Description

LastFM 17, 632 1, 892 92, 834 Listening counts of songs per user
LastFM Tags 20, 907 100, 784 952, 707 Counts of tags assigned to artists
Delicious 38, 603 1, 867 93, 210 Counts of webpages bookmarked per user
Million Songs 163, 206 110, 000 1, 450, 933 Listening counts of songs per user

Table 2: Details of datasets.

We fix σ2z = 1 and choose σ2w and D that minimize the error on 1500 validation samples.
We present the effect of σ2w in Fig. 1. The MAP estimate overfits, while Bayesian

approaches are more robust. Previous studies have shown similar trends (Salakhutdinov
and Mnih, 2008b). This is holds for almost all of the datasets that we studied.

Fig. 2 compares the speed-accuracy trade-off of all the methods. Accuracy is measured
using the error defined in Eq. (19), while speed is measured by the running time in seconds.
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MAP EM MF VB

LastFM Tags 2.19 (0.06) 2.02 (0.03) 1.99 (0.02) 1.97 (0.02)
LastFM 5.94 (0.24) 4.65 (0.18) 3.89 (0.08) 3.81 (0.07)
Delicious 3.17 (0.06) 2.62 (0.01) 2.60 (0.01) 2.56 (0.02)
Million Songs 3.54 (0.10) 2.69 (0.07) 2.31 (0.05) 2.28 (0.04)

Table 3: Comparison of methods. We report the error measured by Eq. (19). The error
is averaged over all test examples for 10 different train-test splits. The standard error is
shown inside brackets. We clearly see that both of our methods, MF and VB, achieve the
lowest error values.

We select σ2w and D by cross-validation, but to make a reasonable comparison of running
time, we fix D to be the same for all the methods. The value of D that we choose, gives
the same performance as the one chosen by cross-validation. We show the results for 10
different test-train splits in Fig. 2, and summarize them in Table 3 for clarity.

We observe that while VB exhibits the best performance overall, MF is a strong con-
tender due to its speed and competitive performance. It is in the same complexity class as
MAP, but slower due to a larger constant factor. Overall, our proposed method not only
show improvements in both speed and accuracy, but also present more choices for Bayesian
inference in terms of speed-accuracy trade-offs.

7. Conclusion

We showed that the variational Gaussian inference for bilinear latent Gaussian log-concave
models can be written as a, potentially constrained, bi-concave maximization problem.
For Poisson likelihoods, the objective is available in closed form and can be effectively
optimized, rendering fully Bayesian inference feasible. We empirically verified the benefits
of the Bayesian approach over non- or partially Bayesian methods.

Potential future directions include the extension to other datatypes and improved scal-
ability by stochastic versions of the algorithms discussed here.
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Figure 2: Speed-accuracy comparison. X-axis shows the running time, while Y-axis shows
the error. For both, lower is better. We see that for all the datasets MF and VB achieve
the lowest error. MF appears to be a good choice since it is also much faster than other
Bayesian methods.
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Appendix A. Expected Data Log-Likelihood

First, we show that Ep(x)[exp
(
tTx

)
] = exp(tTm+ 1

2tTVt) for p(x) = N (m,V). Expanding
the expectation, we see that the mean is shifted by Vt. Completing the square results in
an unnormalized Gaussian, for which the integral can be easily computed.

Ep(x)[et
Tx] =

∫
N (m,V) exp

(
tTx

)
dx (20)

= C

∫
exp

(
−1

2

(
−2tTx + xTV−1x + mTV−1m− 2mTV−1x

))
dx (21)

= C

∫
exp

(
−1

2

(
xTV−1x + mTV−1m− 2 (m + Vt)T V−1x

))
dx (22)

=

∫
N (m + Vt,V) exp

(
1
2

(
(m + Vt)TV−1(m + Vt)−mTV−1m

))
dx (23)

= exp(tTm + 1
2tTVt) (24)

where C = |2πV|−
1
2 .

Next, we show how to evaluate the expectation in Eq. 13, which we restate here.

Eq(zn,wi)[log p(yin|ηin)] = Eq(wi)

[
yinw

T
i mn − em

T
nwi+

1
2wT

i Vnwi

]
+ cnst (25)

= yinµ
T
i mn − Eq(wi)

[
em

T
nwi+

1
2wT

i Vnwi

]
+ cnst (26)

Dropping all indices, we expand the expectation and examine the exponent in

Eq(w)

[
em

Tw+
1
2wTVw

]
=

∫
N (µ,Σ) em

Tw+
1
2wTVwdw (27)

which is given and simplified by

− 1
2

(
(w − µ)T Σ−1 (w − µ)− 2mTw −wTVw

)
(28)

=− 1
2

(
wT

(
Σ−1 −V

)
w − 2

(
m + Σ−1µ

)T
w + µTΣ−1µ

)
(29)

=− 1
2

(
wTBw − 2νTw + µTΣ−1µ

)
(30)

where we replaced B =
(
Σ−1 −V

)
and ν = m + Σ−1µ. With defining u = B−1ν, we

complete the square

=− 1
2

(
wTBw − 2uTBw + uTBu− uTBu + µTΣ−1µ

)
(31)

=− 1
2 (w − u)T B (w − u) + 1

2ν
TB−1ν − 1

2µ
TΣ−1µ (32)

The part depending on w is a valid Gaussian function if B is positive definite. In that case,
we can evaluate the integral∫

exp
(
−1

2 (w − u)T B (w − u)
)
dw = |2πB−1|

1
2 (33)
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Multiplying this with the the normalizing constant of q(w), |2πΣ|−
1
2 , gives

|2πΣ|−
1
2 |2πB−1|

1
2 = |ΣB|−

1
2 = |I−ΣV|−

1
2 = |S|−

1
2 (34)

Note, that this term is real valued when S is not negative definite, which imposes a constraint
on the posterior covariances V,Σ.

Putting the remaining terms together yields the formulation of Eq. 13.

Eq(w)

[
em

Tw+
1
2wTVw

]
= |S|−

1
2 exp

(
1
2ν

TB−1ν − 1
2µ

TΣ−1µ
)

(35)
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