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Abstract

Recommender Systems heavily rely on numerical preferences, whereas the importance of
ordinal preferences has only been recognised in recent works of Ordinal Matriz Factorisation
(OMF). Although the OMF can effectively exploit ordinal properties, it captures only
the higher-order interactions among users and items, without considering the localised
interactions properly. This paper employs Markov Random Fields (MRF) to investigate the
localised interactions, and proposes a unified model called Ordinal Random Fields (ORF)
to take advantages of both the representational power of the MRF and the ease of modelling
ordinal preferences by the OMF. Experimental result on public datasets demonstrates that
the proposed ORF model can capture both types of interactions, resulting in improved
recommendation accuracy.

Keywords: Ordinal Random Fields, Ordinal Matrix Factorisation, Markov Random Fields,
Collaborative Filtering

1. Introduction

Recommender Systems (RecSys) aim to suggest items that are potentially of interest to
users, where the items can be virtually anything such as movies and attractions for travel.
To identify the appropriate items, RecSys use various sources of information including item
content (Balabanovié¢ and Shoham, 1997) and user preferences (Koren et al., 2009). By far,
Collaborative Filtering (Sarwar et al., 2001; Koren et al., 2009) is one of the most popular
RecSys techniques, which exploits user preferences especially the numerical preferences.
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However, numerical preferences are often difficult to collect as users may find it easier
to tell which item is preferable to others, rather than expressing the precise degree of
liking. Furthermore, researchers argued that numerical preferences may not be completely
trustworthy (Koren and Sill, 2011; Brun et al., 2010). For example, the internal scales of
users can be different, where the rating 4 out of 5 generally indicates high quality, but it
is possible to be just fine for critical users. While users are not good at making consistent
quantitative judgement, ordinal preferences are considered to be more consistent across
like-minded users (Desarkar et al., 2010).

Ordinal preferences is an alternative view of user preferences, in which the relative
orders between items are measured. To adopt ordinal preferences, substantial research
efforts have been made over the past five years (Koren and Sill, 2011; Tran et al., 2012;
Paquet et al., 2012; Sharma and Yan, 2013). While most data collections are still dominated
by numerical preferences, the shift from numerical to ordinal is a slow process. Instead
of going solely ordinal preferences in a sudden, most existing ordinal approaches begin
with exploiting the ordinal properties possessed by numerical preferences. Among them,
Ordinal Matriz Factorisation (OMF) has been suggested as an effective method in recent
developments (Koren and Sill, 2011; Tran et al., 2012; Paquet et al., 2012; Houlsby et al.,
2014). In contrast to the numerical approaches, OMF makes weaker assumptions as the
user preferences are no longer required to be interpreted as numbers, instead, only the
ordering of items matters.

Despite of its effectiveness in modelling ordinal properties, OMF is incapable of exploit-
ing the local structure described as follows. Typical collaborative filtering methods discover
two types of information: the neighbourhoods and the latent factors, which we refer to as
the local and the global structures of the preferences:

Local Structure The local structure (LS) refers to the second-order interactions between
similar users or items. This type of information is often used by mneighbourhood-
based collaborative filtering, in which the predictions are made by looking at the
neighbourhood of users (Resnick et al., 1994) or items (Sarwar et al., 2001). Though
the majority of preferences will be ignored in making predictions, LS-based approaches
are effective when the users/items correlations are highly localised.

Global Structure The global structure (GS) refers to the weaker but higher-order inter-
actions among all users and items. This type of information is often used by latent
factor models such as SVD (Koren et al., 2009) and LDA (Marlin, 2003), which aim
at discovering the latent factor spaces in the preferences. GS-based approaches are
often competitive in terms of accuracy as well as computational efficiency.

Exiting literature has suggested that the LS and the GS are complementary since they
address different aspects of the preferences (Tran et al., 2009; Koren, 2008). In 2008, a
unified framework has been proposed by Koren (Koren, 2008) to capture both structures,
but only for numerical preferences. To the best of our knowledge, there is yet no method
for the OMF to capture both the LS and the GS.

Recent advances in Probabilistic Graphical Models, especially the Markov Random Fields
(MRF), have provided methods of building RecSys capable of exploiting both the LS and
the GS (Tran et al., 2009). However, there has been little attempt to address the ordinal
preferences issue due to the complication of modelling ordinal preferences with the MRF.
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This paper aims to develop a unified model in which the OMF and the MRF are
seamlessly combined to take advantages of both the representational power of the MRF
and the ease of modelling ordinal preferences by the OMF. The proposed Ordinal Random
Fields (ORF) model is not designed for a particular OMF but can incorporate any OMF
model that produces ordinal distributions such as those in (Koren and Sill, 2011; Tran
et al., 2012; Paquet et al., 2012; Houlsby et al., 2014). While this paper primarily focuses
on exploiting the LS, the representational power of the ORF is by no mean limited to
this. For example, the MRF employed in ORF can be extended to Conditional Random
Fields (CRF) (Tran et al., 2007; Lafferty et al., 2001) to fuse auxiliary information such as
the item content (Balabanovi¢ and Shoham, 1997) and social relations (Ma et al., 2011).
These information has been shown helpful in making better recommendations (Basilico and
Hofmann, 2004; Ma et al., 2011), and becomes even more valuable when the preferences
data are highly sparse. Besides the extensibility, the ORF inherits other advantages of the
probabilistic graphical models as well, such as supporting missing data by its nature, and
disciplined learning and inferences techniques.

The remaining part of this paper is organised as follows. Section 2 reviews the basic
concepts of the Matrix Factorisation and the OMF which form the basis of this work.
Section 3 is devoted to the proposed ORF model. In Section 4, experimental results of the
proposed ORF model are presented. Finally, Section 5 concludes this paper by summarising
the main contributions and future works.

2. Preliminaries

Recommender Systems (RecSys) usually predict users’ future interest in items. Let U and
Z, denote the set of all users and the set of all items, respectively. The interest of the user
u € U in the item ¢ € T is encoded as the preference r,; € R, where the rating matrix R
contains all known preferences.

Definition 1 (Recommender System) RecSys aims to identify the item i € T that maa-
imises the interest of the target user u € U (Adomavicius and Tuzhilin, 2005)
i = arg max(ry;) (1)
€L
In the rest of this section, we briefly review two RecSys approaches: Matriz Factorisation
and Ordinal Matrix Factorisation that form a basis of this work For ease of reference,

notations used throughout this paper are summarised in Table 1, and the term preference
and rating will be used interchangeably.

2.1. Matrix Factorisation

Matriz Factorisation (MF) (Koren et al., 2009) is a popular and accurate approach to Rec-
Sys. This approach discovers the latent factor spaces shared between users and items, where
the latent factors can be used to describe both the taste of users and the characteristics of
items. The attractiveness of an item to a user is then measured by the inner product of
their latent feature vectors.

Formally, each user u is associated with a latent feature vector p, € R¥ and each item
i is associated with a latent feature vector q; € RF, where k is the number of factors.
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Table 1: Summary of Major Notations

Notations Mathematical Meanings

U the set of all users

T the set of all items

R the set of known preferences

g an undirected graph which encodes relations of preferences
% the set of vertices each represents a preference

E the set of edges each connects two vertices

ry the set of all preferences by user u

fij the correlation feature between items ¢ and j

Wi the weight associated to the correlation feature f;;

L the number of rating levels, and the ratings are integers from 1 to L

The aim of MF' is then to estimate 7y; = by + pfqi such that 7,; ~ 74. The bias term
bui = p+ by + b; takes the biases into consideration, where u is the overall average rating, b,
is the user bias, and b; is the item bias. The latent feature vectors are learned by minimising
regularised squared error with respect to all known preferences

min Y (rui — bu — Pr i) + AIpul® + llaill?) (2)
Pu7Qi€Rk X
(u,i)eR

where A is the regularisation coefficient. The optimisation can be done with Stochastic
Gradient Descent for the favour of speed on sparse data, or with Alternating Least Squares
for the favour of parallelization on dense data.

Comparing to neighbour-based approaches (Sarwar et al., 2001), MF-based approaches (Ko-
ren, 2008, 2010) have shown advantages in terms of accuracy and computational efficiency.
Nevertheless, all of these approaches treat the preferences as numerical and are incapable
of exploiting ordinal preferences.

2.2. Ordinal Matrix Factorisation

The ordinal nature of preferences has been overlooked in RecSys literature, until recently
Ordinal Matriz Factorisation (OMF) (Koren and Sill, 2011; Tran et al., 2012; Paquet et al.,
2012; Houlsby et al., 2014) has emerged to explore the ordinal properties of ratings.

In general, OMF aims to generate an ordinal distribution Q(ry;|u,) over all possible
rating values for each user/item pair. Predicting the rating for user u on item ¢ is then equiv-
alent to identifying the rating with the greatest mass in the ordinal distribution Q(ry;|u, ).
While traditional RecSys approaches make only a point estimate, the OMF produces a full
distribution and each prediction is associated with a probability as a confidence measure.

Typical OMF approaches assume the existence of a latent utility x,; that captures how
much the user u is interested in the item ¢. The latent utility z,; can be defined in different
ways (Koren and Sill, 2011; Tran et al., 2012; Paquet et al., 2012; Houlsby et al., 2014),
but under the same framework of Random Utility Models (McFadden, 1980)
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where p,; is an internal score represents the interaction between the user v and the item
i. The €, is the random noise normally assumed to follow the logistic distribution in
practice (Koren and Sill, 2011). The latent utility x,; is then generated from a logistic dis-
tribution centred at u,; with the scale parameter s,; proportional to the standard deviation

Tyi ~ Logi(fiis Sui) (4)

In collaborative filtering, the user-item interaction is often captured by MF techniques,
thereby the internal score p,; can be substituted with the MF term by,; + pgqi

Tui = bus + PZ% + €ui (5)

where p, and q; are, respectively, the latent feature vectors of the user u and the item 1.
Modelling the latent utility with MF reflects the name OMF.

Despite how the latent utility is modelled, an ordinal assumption is required to convert
the numerical utility into ordinal values. A common approach is the ordinal logistic regres-
sion originally described by McCullagh (McCullagh, 1980), which assumes that the rating
is chosen based on the interval to which the utility belongs

Twi = 1 if Tui € (9171, 0[] for ] < L and Twi = L if L > 9L—1 (6)

where L is the number of ordinal levels and 6; are the threshold values of interest. Other as-
sumptions (Mare, 1980) are also possible but McCullagh’s model is by far the most popular.
The probability of receiving a rating [ is therefore

0,
Q(rui = lu,i) = ; P(xy;|0) = F(0;) — F(0;-1) (7)

where F'(6;) is the cumulative logistic distribution evaluated at 6,

1
1 + eXp(— Owil—Hui )

Sui

F(mm < l’@l) = (8)

where the thresholds 0; can be parameterised to depend on user or item. This paper employs
the user-specific thresholds parameterisation described in Koren and Sill (2011). Therefore
a set of thresholds {Gul}le is defined for each user u to replace the thresholds 6,; in Eq. 8.

Given the learned ordinal distribution Q(ry;|u,?), not only the ratings can be predicted
but also the confidence for each prediction.

2.3. Summary

Matriz Factorisation has been one of the most popular RecSys approaches, which primarily
focuses on numerical preferences such as ratings. Nevertheless, the nature of user preferences
is often ordinal, and the importance of modelling ordinal properties has been recognised in
recent works on OMF (Koren and Sill, 2011; Tran et al., 2012; Paquet et al., 2012; Houlsby
et al., 2014). Although the OMF enables the modelling of ordinal properties, the employ-
ment of MF makes it only focuses on the higher-order interactions (the GS) regardless of
the localised interactions (the LS), whereas both information are valuable (Koren, 2008;
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Tran et al., 2009). Furthermore, the OMF by its nature cannot model auxiliary information
such as content (Balabanovi¢ and Shoham, 1997) directly.

The powerful representation of Markov Random Fields (MRF) offers an opportunity to
take advantages from all of these information, and have been developed in recent works (Tran
et al., 2007, 2009). Nevertheless, exploiting the ordinal properties is not an easy task for
MRF (Tran et al., 2009), therefore the strengths of the OMF and the MRF are nicely
complementary. This observation leads to a naturally extension of unifying these two ap-
proaches, and motivates the present work.

3. Ordinal Random Fields

In this section, we propose the Ordinal Random Fields (ORF) to model the ordinal prop-
erties and capture both the LS and the GS. Here we exploit the LS of the item-item
correlations only, while the user-user correlations can be modelled in a similar manner. The
rest of this section introduces the concept of the Markov Random Fields followed a detailed
discussion of the ORF' including its feature design, parameter estimation, and predictions.

3.1. Markov Random Fields

Markov Random Fields (MRF) (Tran et al., 2007; Defazio and Caetano, 2012) models a
set of random variables having Markov property with respect to an undirected graph G.
The undirected graph G consists a set of vertices V connected by a set of edges £ without
orientation, where two vertices are neighbourhood of each other when connected. Each
vertex in )V encodes a random variable, and the Markov property implies that a variable is
conditionally independent of other variables given its neighbourhoods.

In this work, we use MRF to model user preferences and their relations respect to a set
of undirected graphs. Specifically for each user u, there is a graph G, with a set of vertices
V., and a set of edges &,. Each vertex in V), represents a preference r,; of user u on item ¢,
and each edge in &, captures a relation between two preferences by the same user.

As we consider only the item-item correlations in this work, two preferences are con-
nected by an edge if and only if they are given by the same user. Fig. 1 shows an example
of two graphs for users u and v. Note that vertices of different graphs are not connected
directly, however, the edges between the same pair of items are associated to the same
item-item correlation. For example, the edge between r,; and r,; and the edge between
Tvi and 7,; are associated to the same item-item correlation between items ¢ and j (see the
green dashed line in Fig. 1).

Formally, let Z(u) be the set of all items rated by user u and r, = {ry|i € Z(u)} be
the joint set of all preferences (the variables) related to user w, then the MRF defines a
distribution P(r,) over the graph G,:

P(r) = - ¥(r.) 9

\I](ru) = H 1%‘ (T’U/L7 Tuj) (10)

(ut,uj)€Ey
where Z, is the normalisation term that ensures ) . P(ry) =1, and ¥(:) is a positive
function known as potential.
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Figure 1: Example of undirected graphs for users v and v

The potential 1;;(ry;, ;) captures the correlation between items ¢ and j

Yij(Tuir Tuj) = exp{wij fij (Tui, Tuj) } (11)

where f;;(-) is the feature function and wj; is the corresponding weight. The correlation
features capture the LS, while the weights realise the importance of each correlation feature.
In ORF, the weights also control the relative importance between the LS and the GS. With
the weights estimated from data, the unknown preference r,; can be predicted as

Tui = argmax P(ry;|ry,) (12)

Tui

where P(ry;|r,) serves as the confidence measure of the prediction.

3.2. ORF: Unifying MRF and OMF

The standard MRF approach captures the LS by modelling item-item correlations under the
framework of probabilistic graphical models. However, it employs the log-linear modelling
as shown in Eq. 11, and therefore does not enable a simple treatment of ordinal preferences.
OMF, on the other hand, can nicely model the ordinal preferences in a probabilistic way
but is weak in capturing the LS. The complementary between these two techniques calls for
the unified ORF model to take all of the advantages.

Essentially, the proposed ORF model promotes the agreement between the GS dis-
covered by the OMF and the LS discovered by the MRF. More specifically, the ORF
model combines the item-item correlations (Eq. 11) and the point-wise ordinal distribution
Q(rui|u, i) obtained from the OMF (Eq. 7)

P(ry) o< Wy(ry) [ Qruslu,i) (13)

Tui € vy
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where U, (r,) is the potential function capturing the interaction among items, and r,, is the
set of preferences from user wu.

The potential function ¥, (r,) can be further factorised into pairwise potentials based
on Eq. 11 and Eq. 10:

Uy(ry) =exp [ > wijfij(ruirug) (14)

TuisTuj Eru

where f;;(-) is the correlation feature between items 7 and j to be defined shortly in Sec-
tion 3.3, and w;; is the corresponding weight controls the relative importance of each corre-
lation feature (LS) to the ordinal distribution (GS). Put all together, the joint distribution
P(r,) for each user u can be modelled as

P(r,) x exp Z Wi fii (Tuis Tuj) H Q(ruilu, 1) (15)

TuisTuj Eru Tui €Ty

where there is a graph for each user but the weights are optimised by all users.
In fact, the user-user correlations can also be captured as

P(R) H U(r;) [] Tulr) H Q(ruilu, ) (16)

but we limit our discussion to item-item correlations in this paper.

3.3. Feature Design

A feature is essentially a function f of n > 1 arguments that maps the (n-dimensional)
input onto the unit interval f : R™ — [0, 1], where the input can be ratings or auxiliary
information such as content (Tran et al., 2007).

The item-item correlation is captured by the following feature

F(ruismug) = g(|(rui — 7i) — (ruj — 75)|) (17)

where g(t) = 1/(1+e™") does normalisation, and 7; and 7; are the average ratings for items
i and j, respectively. This correlation feature captures the intuition that correlated items
should receive similar ratings by the same user after offsetting the goodness of each item.

Though this work focuses on the item-item correlations, the feature for user-user corre-
lations can be designed in a similar manner:

F(ruismvi) = g(|(rui — Tu) — (roi — 7)) (18)

where 7, and 7, are the global average ratings for users v and v respectively.
Although the user and item bias have been modelled by the underlying OMF, the ORF
itself can also model the bias with identity features for item i and for user u

firuis 1) = g(|rui = 7il); fu(rui, w) = g(|rui = 7ul) (19)
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Indeed, auxiliary information such as content (Balabanovi¢ and Shoham, 1997) and
social relations (Ma et al., 2011) can also be modelled by designing corresponding features.
That being said, the ORF is a generic framework with great extensibility to integrate
multiple sub-components such as neighbourhood, content, and ordinal ratings.

Nevertheless, this work focuses on the item-item correlation features only. Since one
correlation feature exists for each possible pair of co-rated items, the number of correlation
features can be large, and this makes the estimation slow to converge and less robust.
Therefore we only keep the correlation features if strong correlation exists between two
items ¢ and j. Specifically, the strong correlation features are extracted based on the Pearson
correlation and a user-specified minimum correlation threshold.

3.4. Parameter Estimation

In general, MRF models cannot be determined by standard maximum likelihood approaches,
instead, approximation techniques such as Markov Chain Monte Carlo (MCMC) (Green,
1995) and Pseudo-likelihood (Besag, 1974) are often used in practice. The pseudo-likelihood
leads to exact computation of the loss function and its gradient with respect to parameters,
and thus faster. The MCMC-based methods may, on the other hand, lead to better estima-
tion given enough time. As the experiments involve different settings and large number of
features, this study employs the pseudo-likelihood technique to perform efficient parameter
estimation by maximising the regularised sum of log local likelihoods

1
L(w) = Z log P(ryilry\rui) — 557 Z WZWU (20)
TuieR ueU

where o is the regularisation coefficient, and w,, is the subset of weights related to user w.
The local likelihood is defined as

P(ryilvy\rui) = ZLQ(TWW,Z’) exp | D wijfij(Tuisrus) (21)

ui
Tuj €y \Tus

where Z,; is the normalisation term.

L
Zi = Z Q(Tui|u7 Z) exp Z wijfij (Tuiy Tuj) (22)

Tui=1 Touj €ECu \Tui

To optimise the parameters, we use the stochastic gradient ascent procedure that up-
dates the parameters by passing through the set of ratings of each user:

Wy — Wy, +VL(wWy,) (23)

where 7 is the learning rate. More specifically, for each 7,; and its neighbour r,; in the set of
ratings r, by user u, update the weight w;; using the gradient of the log pseudo-likelihood

dlogL Z
S~ i (ruisTug) = > P(ruilra\rui) fij(ruis ruj) (24)
v rui=1
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Algorithm 1 Ordinal Random Fields Algorithm

Require: the user preferences R; the ordinal distribution @ from Eq. 7.

Ensure: w: the learned weights for correlation features.
1: Generate strong correlation features: fyong < { fij|Pearson(i,j) > minCorr}
2: Initialise the weights: Vw;; € w, w;; < N(0,0.01);
3: repeat

4 for each u € U do

5 for each ry;,7y; € Ty, 1 # j do

6: if fl'j S fstrong then

T: Compute correlation feature f;; according to Eq. 17

8 Compute normalisation term Z,; according to Eq. 22

9: Compute local likelihood according to Eq. 21

10: Compute the gradient for weight w;; according to Eq. 24
11: Update w;; with the gradient w;; <— wqj + nV.L(wj)

12: end if

13: end for

14:  end for

15: until convergence

16: return w;

17: Predictions:

18: (1) Predict most likely rating with confidence measure using Eq. 26
19: (2) Predict expectation using Eq. 25

3.5. Preference Prediction
The prediction of rating r,; is straightforward, which can be done by identifying the rating

with the greatest mass in local likelihood:

Tui = arg max P(ry;|ry,) (25)

Tui

where the local likelihood is given by Eq. 21. Prediction made in this approach identifies the
most likely rating from discrete values 1 to L, and the local likelihood serves as a confidence
measure. For predictions of scalar values, the expectation can be used instead:

L

rui=1

Finally, Alg. 1 summarises the learning and prediction procedures for the ORF.

4. Experiment and Analysis

To study the performance of the proposed ORF model, comparisons were made with the
following representative algorithms: a) K-Nearest Neighbours (K-NN) (Resnick et al., 1994;
Sarwar et al., 2001), which represents the methods exploiting the LS; b)) OMF (Koren and
Sill, 2011), which exploits the GS and ordinal properties; ¢) and finally the ORF model,
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which takes ordinal properties into account and exploits both the LS and the GS. Details
of the experimental settings and results are presented in this section.

4.1. Experimental Settings

Datasets Experiments were conducted on two public movie rating datasets: the MovieLens-
100K and the MovieLens-1M ! datasets. The MovieLens-1M dataset contains roughly
1 million ratings by 6040 users on 3900 movies. The MovieLens-100K dataset contains
100K ratings by 943 users on 1682 movies. Ratings are on the 1 — 5 scale.

To perform a reliable evaluation, we keep only users who rated at least 30 movies,
and each dataset is shuffled and split into the disjoint training set, validation set
and test set. For each user, 5 ratings are kept in the validation set for tuning the
hyper-parameters, 10 ratings are reserved for testing, and the rest for training.

Evaluation Metric The Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE) are used as the evaluation metric

1 Wi Tui — Tui)?
MAE: Z ‘f‘ui—’)"u”’ RMSE: Z( 7)€Rtest( ) (27)
|Rtest‘ (u i)ERtest ‘Rtest|

where Ryes: is the test set kept aside until all parameters have been tuned. A smaller
MAE or RMSE value indicates better performance. Although both metrics are used,
we consider the MAFE metric to be more suitable for ordinal preferences. The reason
is that it makes more scenes to consider being off by 4 is just twice as bad as being
off by 2 when the preferences are ordinal. The RMSFE metric, on the other hand, can
be skewed to methods that are optimised for numerical preferences.

Parameters To perform a fair comparison, we fix the number of latent factors to the
typical value of 50 for all algorithms, and all weights are randomly initialised from
N(0,0.01). The number of neighbours for K-NN algorithms is set to 10 and 30. The
minimum correlation threshold for the ORF' is set to reasonable values considering
both the prediction performance and computational efficiency. We will also report
the effect of varying the minimum correlation threshold.

4.2. Results

We first compare the performance of the proposed ORF model with related algorithms:
user-based K-NN, item-based K-NN and OMF, where the OMF is the targeted baseline.
Then the impact of parameters is investigated for the ORF model, in particular the regu-
larisation coefficient and the minimum correlation threshold.

4.2.1. COMPARISON WITH OTHER METHODS

The comparison results in terms of prediction accuracy are shown in Table 2. The global
average is used only as a benchmark, which uses the average rating as the predictions. The
following observations can be made based on the results.

1. http://grouplens.org/datasets/movielens
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Table 2: For both the OMF and the ORF, the expectation values (Eq. 26) are used for
RMSE and the most likely values (Eq. 25) are used for MAEF.

MovieLens-100K MovieLens-1M
Method RMSE MAE RMSE MAE

Global Ave. 1.1186  0.9430 1.1123  0.9401
UserKNN, K=10 0.9687 0.7584  0.9350  0.7328
ItemKNN, K=10 0.9372 0.7305 0.9032  0.7041
UserKNN, K=30 0.9463 0.7413 0.9149 0.7173
ItemKNN, K=30 0.9315 0.7295 0.8987 0.70478
OMF 0.9525 0.7226 0.9144 0.6918
ORF, minCorr=0.4 0.9475 0.7185  0.9117  0.6887
ORF, minCorr=0.3 0.9448 0.7148 0.9093 0.6870

Firstly, the K-NN methods, especially the item-based K-INN, perform quite well. As
the K-NN methods exploit only the LS, this result indicates the effectiveness of the LS.
However, the ignorance of the GS makes the K-NN methods not less generalised and thus
highly susceptible to noisy data.

Secondly, the OMF fits the data quite well when predicting the most likely ratings for
the MAFE metric. However, it exploits only the GS and therefore further improvements are
possible by incorporating the LS information.

Finally, the ORF has made further improvements upon the OMF by unifying the mod-
elling of both the LS and the GS, as well as ordinal properties. Note that the performance
of the ORF relies on the ordinal distributions generated by the underlying OMF, which can
be implemented in different ways (Koren and Sill, 2011; Tran et al., 2012; Paquet et al.,
2012; Houlsby et al., 2014). In present work, the improvements over the OMF are soley
based on incorporating the LS information.

Table 3: Paired ¢-test for the ORF and the OMF.
t-test statistics

Methods df t p-value

ORF vs. OMF on MAE 9 6.0163 0.0002
ORF vs. OMF on RMSE 9 4.8586 0.0009

To confirm the improvements, a paired t-test (two-tailed) with a confidence level of 95%
has been applied to the ORF and the OMF. Results shown in Table 3 confirm that the
performance of methods with and without capturing the LS is statistically significant.

4.2.2. IMPACT OF MINIMUM CORRELATION THRESHOLD

As mentioned in Section 3.3, the ORF model requires a minimum correlation threshold to
control the number of correlation features. The reason is that the number of correlation
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features can be very large, which makes the model less robust and slow to converge. Specif-
ically, when this threshold goes to minimum (e.g. —1 for Pearson correlation), the potential
number of correlation features can be as large as n?/2 where n is the number of items. On
the other hand, the number of correlation features goes to zero when the threshold goes to
maximum, and the ORF reduces to the OMF.

B MovieLens 100K
90K|
B Movielens 1M

MovieLens 100K
MovieLens 1M

0035

2

0015

Number of Correlation Features
# of Strong Features / # of Features

2

0.005]

Minimum Correlation Threshold Minimum Correlation Threshold

(a) Number of Correlation Features (b) Coverage of Correlation Features

Figure 2: Impact of Minimum Correlation Threshold on Number of Correlation Features

Fig. 2(a) shows the number of correlation features for different minimum correlation
thresholds. Given that the MovieLens-100K dataset contains less items comparing the
MovieLens-1M dataset, there are even more correlation features remained in the MovieLens-
100K dataset when the threshold becomes larger. This observation implies that the items
in the MovieLens-100K dataset are more correlated with each other. We also show the
coverage of correlation features for both datasets, and the MovieLens-100K has consistently

higher coverage of correlation features.
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Figure 3: Impact of Minimum Correlation Threshold
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Having these statistics result, we further examine the impact of the minimum correlation
threshold on prediction accuracy, as plotted in Fig. 3. It can be observed that the prediction
accuracy improves as the minimum correlation threshold becomes smaller. However, we
notice that the performance on the smaller MovieLens-100K dataset is not as stable as that
on the MovieLens-1M dataset, where the curve of the MovieLens-1M dataset is smoother
and shows better monotonicity. One explanation is that the MovieLens-100K dataset may
not have enough data to make robust estimation for large number of weights. However, given
adequate data and time, the best prediction performance can be achieved by including all
correlation features, i.e., the minimum correclation threshold is set to minimum.

4.2.3. IMPACT OF REGULARISATION COEFFICIENT

While the number of correlation features can be large, the model might be prone to over-
fitting. Therefore we investigate the impact of varying the the regularisation coefficient.
Fig. 4 shows the performance of the ORF under different regularisation settings. We observe

" RMSE-100K
|| b= RMSE-IM

05 1 15 2 05 1 15 2

Regularisation Coefficient Regularisation Coefficient

(a) MAE (b) RMSE
Figure 4: Impact of Regularisation Coefficient

that by varying the regularisation coefficient the prediction performance was not affected
too much. One possible explanation is that the ordinal distribution employed in the ORF
is generated by the underlying OMF with its own regularisation mechanism, whereas the
regularisation term in the ORF controls only the weights for the second-order item-item
correlation features. In other words, the ORF model by itself is unlikely to over-fit the data
given that the underlying OMF model has been properly regularised.

5. Conclusions and Future Works

In this paper we presented the ORF model that takes advantages of both the representa-
tional power of the MRF and the ease of modelling ordinal properties by the OMF. While
the standard OMF approaches exploit only the GS, the ORF captures the LS as well. In
addition, the ORF model defines a uniformed interface for different OMF methods with
various internal implementations. Last but not least, the ORF model is a generic framework
that can be extended to incorporate additional information by designing more features.
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A future extension could take the user-user correlations into account as we modelled only
the item-item correlations in this work. Incorporating the user-user correlations may further
improve the prediction performance. Another future work is to take auziliary information
into consideration by replacing the MRF with the Conditional Random Fields (Lafferty
et al., 2001). Fusing auziliary information such as the item content and social relations
could improve the prediction performance especially when the data is highly sparse.
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