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Abstract
We analyze the minimax regret of the adversarial bandit convex optimization problem. Focusing
on the one-dimensional case, we prove that the minimax regret is Θ̃(

√
T ) and partially resolve

a decade-old open problem. Our analysis is non-constructive, as we do not present a concrete
algorithm that attains this regret rate. Instead, we use minimax duality to reduce the problem to
a Bayesian setting, where the convex loss functions are drawn from a worst-case distribution, and
then we solve the Bayesian version of the problem with a variant of Thompson Sampling. Our
analysis features a novel use of convexity, formalized as a “local-to-global” property of convex
functions, that may be of independent interest.

1. Introduction

Online convex optimization with bandit feedback, commonly known as bandit convex optimization,
can be described as a T -round game, played by a randomized player in an adversarial environment.
Before the game begins, the adversarial environment chooses an arbitrary sequence of T bounded
convex functions f1, . . . , fT , where each ft : K 7→ [0, 1] and K is a fixed convex and compact set
in Rn. On round t of the game, the player chooses a point Xt ∈ K and incurs a loss of ft(Xt). The
player observes the value of ft(Xt) and nothing else, and she uses this information to improve her
choices going forward. The player’s performance is measured in terms of her T -round regret, de-
fined as

∑T
t=1 ft(Xt)−minx∈K

∑T
t=1 ft(x). In words, the regret compares the player’s cumulative

loss to that of the best fixed point in hindsight.
While regret measures the performance of a specific player against a specific loss sequence,

the inherent difficulty of the game is measured using the notion of minimax regret. Informally, the
game’s minimax regret is the regret of an optimal player when she faces the worst-case loss se-
quence. Characterizing the minimax regret of bandit convex optimization is one of the most elusive
open problems in the field of online learning. For general bounded convex loss functions, Flaxman
et al. (2005) presents an algorithm that guarantees a regret of Õ(T 5/6)—and this is the best known
upper bound on the minimax regret of the game. Better regret rates can be guaranteed if additional
assumptions are made: for Lipschitz functions the regret is Õ(T 3/4) (Flaxman et al., 2005), for
Lipschitz and strongly convex losses the regret is Õ(T 2/3) (Agarwal et al., 2010), and for smooth
functions the regret is Õ(T 2/3) (Saha and Tewari, 2011). In all of the aforementioned settings, the
best known lower bound on minimax regret is Ω(

√
T ) (Dani et al., 2008), and the challenge is to
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bridge the gap between the upper and lower bounds. In a few special cases, the gap is resolved
and we know that the minimax regret is exactly Θ̃(

√
T ); specifically, when the loss functions are

both smooth and strongly-convex (Hazan and Levy, 2014), when they are Lipschitz and linear (Dani
et al., 2008; Abernethy et al., 2008), or when they are Lipschitz and drawn i.i.d. from a fixed and
unknown distribution (Agarwal et al., 2011).

In this paper, we resolve the open problem in the one-dimensional case, where K = [0, 1], by
proving that the minimax regret with arbitrary bounded convex loss functions is Θ̃(

√
T ). Formally,

we prove the following theorem.

Theorem 1 (main result). There exists a randomized player strategy that relies on bandit feedback
and guarantees an expected regret of O(

√
T log T ) against any sequence of convex loss functions

f1, . . . , fT : [0, 1] 7→ [0, 1].

The one-dimensional case has received very little special attention, and the best published result
is the Õ(T 5/6) bound mentioned above, which holds in any dimension. However, by discretizing the
domain [0, 1] appropriately and applying a standard multi-armed bandit algorithm, one can prove a
tighter bound of Õ(T 2/3); see Bubeck et al. (2015) for details. It is worth noting that replacing the
convexity assumption with a Lipschitz assumption also gives an upper bound of Õ(T 2/3) (Klein-
berg, 2004). However, obtaining the tight upper bound of Õ(

√
T ) requires a more delicate analysis,

which is the main focus of this paper.
Our tight upper bound is non-constructive, in the sense that we do not describe an algorithm

that guarantees a Õ(
√
T ) regret for any loss sequence. Instead, we use minimax duality to reduce

the problem of bounding the adversarial minimax regret to the problem of upper bounding the
analogous maximin regret in a Bayesian setting. Unlike our original setting, where the sequence of
convex loss functions is chosen adversarially, the loss functions in the Bayesian setting are drawn
from a probability distribution, called the prior, which is known to the player. The idea of using
minimax duality to study minimax regret is not new (see, e.g., Abernethy et al., 2009; Gravin et al.,
2014); however, to the best of our knowledge, we are the first to apply this technique to prove upper
bounds in a bandit feedback scenario.

After reducing our original problem to the Bayesian setting, we design a novel algorithm for
Bayesian bandit convex optimization (in one dimension) that guarantees Õ(

√
T ) regret for any prior

distribution. Since our main result is non-constructive to begin with, we are not at all concerned with
the computational efficiency of this algorithm. We first discretize the domain [0, 1] and treat each
discrete point as an arm in a multi-armed bandit problem. We then apply a variant of the classic
Thompson Sampling strategy (Thompson, 1933) that is designed to exploit the fact that the loss
functions are all convex. We adapt the analysis of Thompson Sampling in Russo and van Roy
(2014) to our algorithm and extend it to arbitrary joint prior distributions over sequences of loss
functions (not necessarily i.i.d. sequences).

The significance of the convexity assumption is that it enables us to obtain regret bounds that
scale logarithmically with the number of arms, which turns out to be the key property that leads to
the desired Õ(

√
T ) upper bound. Intuitively, convexity ensures that a change to the loss value of one

arm influences the loss values in many of the adjacent arms. Therefore, even the worst case prior
distribution cannot hide a small loss in one arm without globally influencing the loss of many other
arms. Technically, this aspect of our analysis boils down to a basic question about convex functions:
given two convex functions f : K 7→ [0, 1] and g : K 7→ [0, 1] such that f(x) < miny g(y) at some
point x ∈ K, how small can ‖f−g‖ be (where ‖·‖ is an appropriate norm over the function space)?
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In other words, if two convex functions differ locally, how similar can they be globally? We give an
answer to this question in the one-dimensional case.

The paper is organized as follows. We begin in Section 2 where we define the setting of Bayesian
online optimization, establish basic techniques for the analysis of Bayesian online algorithms, and
demonstrate how to readily recover some of the known minimax regret bounds for the full informa-
tion case by bounding the Bayesian regret. Then, in Section 3, we prove the key structural lemma by
which we exploit the convexity of the loss functions. Section 4 is the main part of the paper, where
we give our algorithm for Bayesian bandit convex optimization (in one dimension) and analyze its
regret. We conclude the paper in Section 5 with a few remarks and open problems.

2. From Adversarial to Bayesian Regret

In this section, we show how regret bounds for an adversarial online optimization setting can be
obtained via a Bayesian analysis. Before explaining this technique in detail, we first formalize two
variants of the online optimization problem: the adversarial setting and the Bayesian setting.

We begin with the standard, adversarial online optimization setup. As described above, in this
setting the player plays a T -round game, during which he chooses a sequence of points X1:T ,1

where Xt ∈ K for all t. The player’s randomized policy for choosing X1:T is defined by a sequence
of deterministic functions ρ1:T , where each ρt : [0, 1]2(t−1) 7→ ∆(K) (here ∆(K) is the set of
probability distributions over K). On round t, the player uses ρt and her past observations to define
the probability distribution

πt = ρt
(
X1, f1(X1), . . . , Xt−1, ft−1(Xt−1)

)
,

and then draws a concrete pointXt ∼ πt. Even though ρt is a deterministic function, the probability
distribution πt is itself a random variable, because it depends on the player’s past random actions
X1, . . . , Xt−1.

The player’s cumulative loss at the end of the game is the random quantity
∑T

t=1 ft(Xt) and
her expected regret against the sequence f1:T is

R(ρ1:T ; f1:T ) = E

[
T∑
t=1

ft(Xt)

]
− min

x∈K

T∑
t=1

ft(x) .

The difficulty of the game is measured by its minimax regret, defined as

min
ρ1:T

sup
f1:T

R(ρ1:T ; f1:T ) .

We now turn to introduce the Bayesian online optimization setting. In the Bayesian setting, we
assume that the sequence of loss functions F1:T , where each Ft : K 7→ [0, 1] is convex, is drawn
from a probability distribution F called the prior distribution. Note that F is a distribution over
the entire sequence of losses, and not over individual functions in the sequence. Therefore, it can
encode arbitrary dependencies between the loss functions on different rounds. However, we assume
that this distribution is known to the player, and can be used to design her policy. The player’s

1. Throughout the paper, we use the notation as:t as shorthand for the sequence as, . . . , at.
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Bayesian regret is defined as

R(ρ1:T ;F) = E

[
T∑
t=1

Ft(Xt)−
T∑
t=1

Ft(X
?)

]
,

where X? is the point in K with the smallest cumulative loss at the end of the game, namely the
random variable

X? = arg min
x∈K

T∑
t=1

Ft(x) . (1)

The difficulty of online optimization in a Bayesian environment is measured using the maximin
Bayesian regret, defined as

sup
F

min
ρ1:T

R(ρ1:T ;F) .

In words, the maximin Bayesian regret is the regret of an optimal Bayesian strategy over the worst
possible prior F .

It turns out that the two online optimization settings we described above are closely related.
The following theorem, which is a consequence of a generalization of the von Neumann minimax
theorem, shows that the minimax adversarial regret and maximin Bayesian regret are equal.

Theorem 2. It holds that

min
ρ1:T

sup
f1:T

R(ρ1:T ; f1:T ) = sup
F

min
ρ1:T

R(ρ1:T ;F) .

For completeness, we include a proof of this fact in Bubeck et al. (2015). As a result, instead
of analyzing the minimax regret directly, we can analyze the maximin Bayesian regret. That is, our
new goal is to design a prior-dependent player policy that guarantees a small regret against any prior
distribution F .

2.1. Bayesian Analysis with Full Feedback

As a warm-up, we first consider the Bayesian setting where the player receives full-feedback.
Namely, on round t, after the player draws a point Xt ∼ πt and incurs a loss of Ft(Xt), we as-
sume that she observes the entire loss function Ft as feedback. We show how minimax duality can
be used to recover the known O(

√
T ) regret bounds for this setting. For simplicity, we focus on the

concrete setting where K = ∆n (the n-dimensional simplex), and where the convex loss functions
F1:T are also 1-Lipschitz with respect to the L1-norm (with probability one).

The evolution of the game is specified by a filtration H1:T , where each Ht denotes the history
observed by the player up to and including round t of the game; formally, Ht is the sigma-field
generated by the random variables X1:t and F1:t. To simplify notations, we use the shorthand
Et[·] = E[ · | Ht−1] to denote expectation conditioned on the history before round t. The analogous
shorthands Pt(·) and Vart(·) are defined similarly.

Recall that the player’s policy can rely on the prior F . A natural deterministic policy is to
choose, based on the random variable X? defined in Eq. (1), actions X1:T according to

∀ t ∈ [T ] , Xt = Et[X?] . (2)
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In other words, the player uses her knowledge of the prior and her observations so far to calculate
a posterior distribution over loss functions, and then chooses the expected best-point-in-hindsight.
Notice that the sequence X1:T is a martingale (in fact, a Doob martingale), whose elements are
vectors in the simplex.

The following lemma shows that the expected instantaneous (Bayesian) regret of the strategy on
each round t can be upper bounded in terms of the variation of the sequence X1:T on that round.

Lemma 3. Assume that with probability one, the loss functions F1:T are convex and 1-Lipschitz with
respect to some norm ‖ · ‖. Then the strategy defined in Eq. (2) guarantees E[Ft(Xt)− Ft(X?)] ≤
E[‖Xt −Xt+1‖] for all t.

Proof. By the subgradient inequality, we have Ft(Xt) − Ft(X?) ≤ ∇Ft(Xt) · (Xt − X?) for all
t. The Lipschitz assumption implies that ‖∇Ft(Xt)‖∗ ≤ 1, where ‖ · ‖∗ is the norm dual of ‖ · ‖.
Using Eq. (2), noting that Xt, Ft ∈ Ht, and taking the conditional expectation, we get

Et+1

[
Ft(Xt)− Ft(X?)

]
≤ ∇Ft(Xt) · (Xt − Et+1[X

?]) = ∇Ft(Xt) · (Xt −Xt+1) .

Finally, applying Holder’s inequality on the right-hand side and taking expectations proves the
lemma.

To bound the total variation of X1:T , we use a bound of Neyman (2013) on the total variation of
martingales in the simplex.

Lemma 4 (Neyman, 2013). For any martingale Z1, . . . , ZT+1 in the n-dimensional simplex, one
has

E

[
T∑
t=1

‖Zt − Zt+1‖1
]
≤
√

1
2T log n .

Lemma 4 and Lemma 3 together yield a O(
√
T log n) bound on the maximin Bayesian regret

of online convex optimization on the simplex with full-feedback. Theorem 2 then implies the same
bound over the minimax regret in the corresponding adversarial setting, recovering the well-known
bounds in this case (e.g., Kivinen and Warmuth, 1997). We remark that essentially the same tech-
nique can be used to retrieve known dimension-free regret bounds in the Euclidean setting, e.g.,
when K is an Euclidean ball and the losses are Lipschitz with respect to the L2 norm; in this case,
the L2 total variation of the martingale X1:T can be shown to be bounded by O(

√
T ) with no de-

pendence on n.2

2.2. Regret Analysis of Bayesian Bandits

The analysis in this section builds on the technique introduced by Russo and van Roy (2014). While
their analysis is stated for prior distributions that are i.i.d. (namely, F is a product distribution),3 we
show that it extends to arbitrary prior distributions with essentially no modifications.

2. This follows from the fact that a martingale in Rn can always be projected to a martingale in R2 with the same
magnitude of increments; namely, given a martingale Z1, Z2, . . . in Rn one can show that there exists a martingale
sequence Z̃1, Z̃2, . . . in R2 such that ‖Zt − Zt+1‖2 = ‖Z̃t − Z̃t+1‖2 for all t.

3. More precisely, the distributions Russo and van Roy (2014) consider are i.i.d. only when conditioned on the true
outcome distribution, which is itself chosen at random.
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We begin by restricting our attention to finite decision sets K, and denote K = |K|. (When we
get to the analysis of Bayesian bandit convex optimization, K will be an appropriately chosen grid
of points in [0, 1].) In the bandit case, the history Ht is the sigma-field generated by the random
variables X1:t and F1(X1), . . . , Ft(Xt). Following Russo and van Roy (2014), we consider the
following quantities related to the filtrationH1:T :

∀ x ∈ K , rt(x) = Et
[
Ft(x)− Ft(X?)

]
,

vt(x) = Vart
(
Et[Ft(x) | X?]

)
.

(3)

The random quantity rt(x) is the expected regret incurred by playing the point x on round t, condi-
tioned on the history. Hence, the cumulative expected regret of the player equals E[

∑T
t=1 rt(Xt)].

The random variable vt(x) is a proxy for the information revealed aboutX? by choosing the point x
on round t. Intuitively, if the value of Ft(x) varies significantly as a function of the random variable
X?, then observing the value of Ft(x) should reveal much information on the identity ofX?. (More
precisely, vt(x) is the amount of variance in Ft(x) explained by the random variable X?.)

The following lemma can be viewed as an analogue of Lemma 4 in the bandit setting.

Lemma 5. For any player strategy and any prior distribution F , it holds that

E

[
T∑
t=1

√
Et[vt(Xt)]

]
≤
√

1
2T logK .

The proof uses tools from information theory to relate the quantity vt(Xt) to the decrease in
entropy of the random variable X? due to the observation on round t; the total decrease in entropy
is necessarily bounded, which gives the bound in the lemma. For completeness, we give a proof in
Bubeck et al. (2015).

Lemma 5 suggests a generic way of obtaining regret bounds for Bayesian algorithms: first bound
the instantaneous regret Et[rt(Xt)] of the algorithm in terms of

√
Et[vt(Xt)] for all t, then sum the

bounds and apply the lemma. Russo and van Roy (2014) refer to the ratio Et[rt(Xt)]
/√

Et[vt(Xt)]
as the information ratio, and show that for Thompson Sampling over a set of K points (under an
i.i.d. prior F) this ratio is always bounded by

√
K, with no assumptions on the structure of the

functions F1:T . In the sequel, we show that this
√
K factor can be improved to a polylogarithmic

term in K (albeit using a different algorithm) when F1:T are univariate convex functions.

3. Leveraging Convexity: The Local-to-Global Lemma

To obtain the desired regret bound, our analysis must somehow take advantage of some special
property of convex functions. In this section, we specify which property of convex functions is
leveraged in our proof.

To gain some intuition, consider the following prior distribution, which is not restricted to con-
vex functions: draw a point X? uniformly in [0, 1] and set all of the loss functions to be the same
function, Ft(x) = 11x6=X? (the indicator of x 6= X?). Regardless of the player’s policy, she will
almost surely miss the point X?, observe the loss sequence 1, . . . , 1, and incur a regret of T . The
reason for this high regret is that the prior was able to hide the good point X? in each of the loss
functions without modifying them globally. However, if the loss functions are required to be con-
vex, it is impossible to design a similar example. Specifically, any local modification to a convex
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x? x

f(x)

f?

g(x) ≤ f?

Figure 1: An illustration of the local-to-global lemma. The L2 distance between the reference con-
vex function f to a convex function g in the interval [x?, x], where x? is the minimizer of
f and x is a point such that g(x) ≤ f(x?), can be lower bounded in terms of the shaded
area that depicts the energy of the function f in the same interval.

function necessarily changes the function globally (namely, at many different points). This intuitive
argument is formalized in the following lemma; here we denote by ‖g‖2ν =

∫
g2dν the L2-norm of

a function g : [0, 1] 7→ R with respect to a probability measure ν.

Lemma 6 (Local-to-global lemma). Let f, g : [0, 1] 7→ R be strictly convex functions. Denote
x? = arg minx∈[0,1] f(x) and f? = f(x?), and let x ∈ [0, 1] such that g(x) ≤ f? < f(x). Then for
any probability measure ν supported on [x?, x], we have

‖f − g‖2ν
(f(x)− g(x))2

≥ ν(x?) · ‖f − f
?‖2ν

(f(x)− f?)2 .

To understand the statement of the lemma, it is convenient to think of f as a reference convex
function, to which we compare another convex function g; see Fig. 1. If g substantially differs from
f at one point x (in the sense that g(x) ≤ f?), then the lemma asserts that g must also differ from f
globally (in the sense that ‖f − g‖2ν is large).

Proof. Let X be a random variable distributed according to ν. To prove the lemma, we must show
that

E(f(X)− g(X))2

(f(x)− g(x))2
≥ P(X = x?) · E(f(X)− f?)2

(f(x)− f?)2 .

Without loss of generality, we can assume that x > x?. Let x0 be the unique point such that
f(x0) = g(x0), and if such a point does not exist let x0 = x?. Note that x0 < x, and observe that g
is below (resp. above) f on [x0, x] (resp. [x?, x0]).

Step 1: We first prove that, without loss of generality, one can assume that g is linear with g(x0) =
f(x0). Indeed, consider g̃ to be the linear extension of the chord of g between x and x0. Then, we
claim that:

E(f(X)− g(X))2

(f(x)− g(x))2
≥ E(f(X)− g̃(X))2

(f(x)− g̃(x))2
. (4)
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Indeed, the denominator is the same on both side of the inequality, and by convexity g̃ is always
closer to f than g. Thus, in what follows we assume that g is linear and g(x0) = f(x0).

Step 2: We show now that one can assume g(x) = f?. Let g̃ be the linear function such that
g̃(x) = f? and g̃(x0) = f(x0). Similarly to the previous step, we have to show that Eq. (4) holds
true. We will show that h(y) =

(
f(y) − g(y)

)
/
(
f(y) − g̃(y)

)
is non-increasing on [x?, x], which

would imply Eq. (4). A simple approximation argument shows that without of generality one may
assume that f is differentiable, in which case h is also differentiable. Observe that h′(y) has the
same sign as u(y) = f ′(y)(g(y) − g̃(y)) − g′(y)(f(y) − g̃(y)) + g̃′(y)(f(y) − g(y)) . Moreover,
u′(y) = f ′′(y)(g(y)− g̃(y)) since g′′ = g̃′′ = 0, and thus u is decreasing on [x0, x] and increasing
on [x?, x0] (recall that by convexity f ′′(y) ≥ 0). Since u(x0) ≤ 0 (in fact u(x0) = 0 in the case
x0 6= x?), this implies that u is non-positive, and thus h is non-increasing, which concludes this
step.

Step 3: It remains to show that when g is linear with g(x) = f?, then

E(f(X)− g(X))2 ≥ P(X = x?) · E(f(X)− f?)2 . (5)

For notational convenience, we assume f? = 0. By monotonicity of f and g on [x?, x], one has
|f(y)− g(y)| ≥ |f(y)− f(x0)| for all y ∈ [x?, x]. Therefore, it holds that

E(f(X)− g(X))2 ≥ E(f(X)− f(x0))
2 ≥ Var(f(X)) = Ef2(X)− (Ef(X))2. (6)

Now using Cauchy-Schwarz one has Ef(X) = Ef(X)1{X 6= x?} ≤
√

P(X 6= x?) · Ef2(X),
which together with Eq. (6) yields Eq. (5).

4. Algorithm for Bayesian Convex Bandits

In this section we present and analyze our algorithm for one-dimensional bandit convex optimization
in the Bayesian setting, over K = [0, 1]. Recall that in Bayesian setting, there is a prior distribution
F over a sequence F1:T of loss functions over K, such that each function Ft is convex (but not
necessarily Lipschitz) and take values in [0, 1] with probability one.

Before presenting the algorithm, we make the following simplification: given ε > 0, we dis-
cretize the interval [0, 1] to a grid Xε = {x1, . . . , xK} of K = 1/ε2 equally-spaced points and
treat Xε as the de facto decision set, restricting all computations as well as the player’s decisions to
this finite set. We may do so without loss of generality: it can be shown (see Bubeck et al., 2015)
that for any sequence of convex loss functions F1, . . . , FT : K 7→ [0, 1], the T -round regret (of any
algorithm) with respect to Xε is at most 2εT larger than its regret with respect to K, and we will
choose ε to be small enough so that this difference is negligible.

After fixing a grid Xε, we introduce the following definitions. We define the random variable
X? = arg minx∈Xε

∑T
t=1 Ft(x), and for all t and i, j ∈ [K] let

αi,t = Pt(X? = xi) ,

ft(xi) = Et[Ft(xi)] ,
fj,t(xi) = Et[Ft(xi) | X? = xj ] .

(7)

In words, X? is the optimal action in hindsight, and αt = (α1,t, . . . , αK,t) is the posterior distribu-
tion of X? on round t. The function ft : Xε 7→ [0, 1] is the expected loss function on round t given
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Inputs: prior distribution F , tolerance parameter ε > 0

Let K = 1/ε2 and Xε = {x1, . . . , xK} with xi = i/K for all i ∈ [K] ;
For round t = 1 to T :

For all i ∈ [K], compute αi,t, ft(xi) and fi,t(xi) defined in Eq. (7) ;
Find i?t = arg mini ft(xi) and let x?t = xi?t ;
Define the set

St =
{
i ∈ [K] : fi,t(xi) ≤ ft(x?t ) and αi,t ≥ ε

K

}
; (8)

Sample Xt from the distribution πt = (π1,t, . . . , πK,t) over Xε, given by

∀ i ∈ [K] , πi,t = 1
2αi,t · 1{i ∈ St}+ (1− 1

2αt(St)) · 1{i = i?t } , (9)

where we denote αt(S) =
∑

i∈S αi,t ;
Play Xt and observe feedback Ft(Xt) ;

Figure 2: A modified Thompson Sampling strategy that guarantees Õ(
√
T ) expected Bayesian re-

gret for any prior distribution F over convex functions F1, . . . , FT : [0, 1] 7→ [0, 1].

the feedbacks observed in previous rounds, and for each j ∈ [K], the function fj,t : Xε 7→ [0, 1] is
the expected loss function on round t conditioned on X? = xj and on the history.

Using the above definitions, we can present our algorithm, shown in Fig. 2. On each round t
the algorithm computes, using the knowledge of the prior F and the feedback observed in previous
rounds, the posterior αt and the values ft(xi) and fi,t(xi) for all i ∈ [K]. Also, it computes
the minimizer x?t of the expected loss ft over the set Xε, which is the point that has the smallest
expected loss on the current round. Instead of directly sampling the decision from the posterior αt
(as Thompson Sampling would do), we make the following two simple modifications. First, we add
a forced exploitation on the optimizer x?t of the expected loss to ensure that the player chooses this
point with probability at least 1

2 . Second, we transfer the probability mass assigned by the posterior
to points not represented in the set St, towards x?t . The idea is that playing a point xi with i /∈ St
is useless for the player, either because it has a very low probability mass, or because playing xi
would not be (much) more profitable to the player than simply playing x?t on round t, even if she is
told that xi is the optimal point at the end of the game.

The main result of this section is the following regret bound attained by our algorithm.

Theorem 7. Let F1, . . . , FT : [0, 1] 7→ [0, 1] be a sequence of convex loss functions drawn from
an arbitrary prior distribution F . For any ε > 0, the Bayesian regret of the algorithm described in
Fig. 2 over Xε is upper-bounded by

10
√
T log

2K

ε
+ 10εT

√
log

2K

ε
.

In particular, for ε = 1/
√
T we obtain an upper bound of O(

√
T log T ) over the regret.

Proof. We bound the Bayesian regret of the algorithm (with respect to Xε) on a per-round basis, via
the technique described in Section 2.2. Namely, we fix a round t and bound Et[rt(Xt)] in terms of

9
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Et[vt(Xt)] (see Eq. (3)). Since the round is fixed throughout, we omit the round subscripts from our
notation, and it is understood that all variables are fixed to their state on round t.

First, we bound the expected regret incurred by the algorithm on round t in terms of the posterior
α and the expected loss functions f, f1, . . . , fK .

Lemma 8. With probability one, it holds that

Et[rt(Xt)] ≤
∑
i∈S

αi(f(xi)− fi(xi)) + ε . (10)

The proofs of all of our intermediate lemmas are deferred to Bubeck et al. (2015). Next, we turn
to lower bound the information gain of the algorithm (as defined in Eq. (3)). Recall our notation
‖g‖2ν that stands for the L2-norm of a function g : K 7→ R with respect to a probability measure ν
over K; specifically, for a measure ν supported on the finite set Xε we have ‖g‖2ν =

∑K
i=1 νig

2(xi).

Lemma 9. With probability one, we have

Et[vt(Xt)] ≥
∑
i∈S

αi‖f − fi‖2π . (11)

We now set to relate between the right-hand sides of Eqs. (10) and (11), in a way that would
allow us to use Lemma 5 to bound the expected cumulative regret of the algorithm. In order to
accomplish that, we first relate each regret term f(xi) − fi(xi) to the corresponding information
term ‖f − fi‖2π. Since f and the fi’s are all convex functions, this is given by the local-to-global
lemma (Lemma 6) which lower-bounds the global quantity ‖f − fi‖2π in terms of the local quantity
f(xi)− fi(xi).

To apply the lemma, we establish some necessary definitions. For all i ∈ S, define εi =
ε |xi − x?|, and let Si = S ∩ [xi, x

?] be the neighborhood of xi that consists of all points in S lying
between (and including) xi and the optimizer x? of f . Now, define weights wi for all i ∈ S as
follows:

∀ i? 6= i ∈ S , wi =
∑
j∈Si

πj

(
f(xj)− f(x?) + εj
f(xi)− f(x?) + εi

)
2 , and wi? = πi? . (12)

With these definitions, Lemma 6 can be used to prove the following.

Lemma 10. For all i ∈ S it holds that ‖f − fi‖2π ≥ 1
4wi(f(xi)− fi(xi))2 − ε2.

Now, averaging the inequality of the lemma with respect to α over all i ∈ S and using the fact
that
√
a+ b ≤ √a+

√
b for any a, b ≥ 0, we obtain√∑

i∈S
αiwi(f(xi)− fi(xi))2 ≤ 2

√∑
i∈S

αi‖f − fi‖2π + 2ε .

On the other hand, the Cauchy-Schwarz inequality gives

∑
i∈S

αi(f(xi)− fi(xi)) ≤
√∑

i∈S

αi
wi
·
√∑

i∈S
αiwi(f(xi)− fi(xi))2 .

10
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Combining the two inequalities and recalling Lemmas 8 and 9, we get

Et[rt(Xt)] ≤ 2

√∑
i∈S

αi
wi
·
(√

Et[vt(Xt)] + ε
)

+ ε . (13)

It remains to upper bound the sum
∑

i∈S αi/wi. This is accomplished in the following lemma.

Lemma 11. We have ∑
i∈S

αi
wi
≤ 20 log

2K

ε
.

Finally, plugging the bound of the lemma into Eq. (13) and using Lemma 5, yields the stated
regret bound.

5. Discussion and Open Problems

We proved that the minimax regret of adversarial one-dimensional bandit convex optimization is
Õ(
√
T ) by designing an algorithm for the analogous Bayesian setting and then using minimax du-

ality to upper-bound the regret in the adversarial setting. Our work raises interesting open problems.
The main open problem is whether one can generalize our analysis from the one-dimensional case
to higher dimensions (say, even n = 2). While much of our analysis generalizes to higher dimen-
sions, the key ingredient of our proof, namely the local-to-global lemma (Lemma 6) is inherently
one-dimensional. We hope that the components of our analysis, and especially the local-to-global
lemma, will inspire the design of efficient algorithms for adversarial bandit convex optimization,
even though our end result is a non-constructive bound.

The Bayesian algorithm used in our analysis is a modified version of the classic Thompson
Sampling strategy. A second open question is whether or not the same regret guarantee can be
obtained by vanilla Thompson Sampling, without any modification. However, if it turns out that
unmodified Thompson Sampling is sufficient, the proof is likely to be more complex: our analysis
is greatly simplified by the observation that the instantaneous regret of our algorithm is controlled
by its instantaneous information gain on each and every round—a claim that does not hold for
Thompson Sampling.

Finally, we note that our reasoning together with Proposition 5 of Russo and van Roy (2014)
allows to recover effortlessly Theorem 4 of Bubeck et al. (2012), which gives the worst-case min-
imax regret for online linear optimization with bandit feedback on a discrete set in Rn. It would
be interesting to see if this proof strategy also allows to exploit geometric structure of the point set.
For instance, could the techniques described here give an alternative proof of Theorem 6 of Bubeck
et al. (2012)?

Acknowledgements

We thank Jian Ding and Ronen Eldan for helpful discussions during the early stages of this work.
Parts of this work were done while TK was visiting at Microsoft Research, Redmond; partial support
is gratefully acknowledged.

11



BUBECK DEKEL KOREN PERES

References

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for bandit
linear optimization. In Proceedings of the 21st Annual Conference on Learning Theory (COLT),
2008.

J. Abernethy, A. Agarwal, P. Bartlett, and A. Rakhlin. A stochastic view of optimal regret through
minimax duality. In Proceedings of the 22nd Annual Conference on Learning Theory (COLT),
2009.

A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In Proceedings of the 23rd Annual Conference on Learning Theory
(COLT), 2010.

A. Agarwal, D. Foster, D. Hsu, S. Kakade, and A. Rakhlin. Stochastic convex optimization with
bandit feedback. In Advances in Neural Information Processing Systems (NIPS), 2011.

S. Bubeck, N. Cesa-Bianchi, and S. Kakade. Towards minimax policies for online linear optimiza-
tion with bandit feedback. In Proceedings of the 25th Annual Conference on Learning Theory
(COLT), 2012.

S. Bubeck, O. Dekel, T. Koren, and Y. Peres. Bandit convex optimization:
√
T regret in one

dimension. arXiv preprint arXiv:1502.06398, 2015.

V. Dani, T. Hayes, and S. Kakade. The price of bandit information for online optimization. In
Advances in Neural Information Processing Systems (NIPS), 2008.

A. Flaxman, A. Kalai, and B. McMahan. Online convex optimization in the bandit setting: Gradient
descent without a gradient. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2005.

N. Gravin, Y. Peres, and B. Sivan. Towards optimal algorithms for prediction with expert advice.
Arxiv preprint arXiv:1409.3040, 2014.

E. Hazan and K. Levy. Bandit convex optimization: Towards tight bounds. In Advances in Neural
Information Processing Systems (NIPS), 2014.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–63, 1997.

R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in Neural
Information Processing Systems (NIPS), 2004.

A. Neyman. The maximal variation of martingales of probabilities and repeated games with incom-
plete information. Journal of Theoretical Probability, 26(2):557–567, 2013.

D. Russo and B. van Roy. An information-theoretic analysis of thompson sampling. arXiv preprint
arXiv:1403.5341, 2014.

12



BANDIT CONVEX OPTIMIZATION:
√
T REGRET IN ONE DIMENSION

A. Saha and A. Tewari. Improved regret guarantees for online smooth convex optimization with
bandit feedback. In International Conference on Artificial Intelligence and Statistics (AISTAT),
pages 636–642, 2011.

W. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Bulletin of the American Mathematics Society, 25:285–294, 1933.

13


	Introduction
	From Adversarial to Bayesian Regret
	Bayesian Analysis with Full Feedback
	Regret Analysis of Bayesian Bandits

	Leveraging Convexity: The Local-to-Global Lemma
	Algorithm for Bayesian Convex Bandits
	Discussion and Open Problems

