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Abstract
We propose an optimum mechanism for providing monetary incentives to the data sources of a sta-
tistical estimator such as linear regression, so that high quality data is provided at low cost, in the
sense that the weighted sum of payments and estimation error is minimized. The mechanism ap-
plies to a broad range of estimators, including linear and polynomial regression, kernel regression,
and, under some additional assumptions, ridge regression. It also generalizes to several objectives,
including minimizing estimation error subject to budget constraints. Besides our concrete results
for regression problems, we contribute a mechanism design framework through which to design
and analyze statistical estimators whose examples are supplied by workers with cost for labeling
said examples.

1. Introduction

Statistical estimation, from data, of the parameters of a model of reality, is the spirit, essence, and
workhorse of modern science and business. In today’s complex world of science and industry, data
for an estimator deployed by a particular research group or enterprise is often provided by other
entities; furthermore, the quality of the data is crucial for the accuracy of the estimator, and can vary
widely. It is reasonable to assume that, with appropriate effort and cost, the providers of the data can
improve the quality of their data — but of course they may lack incentive to do so. Crowdsourcing
(9) can be seen as a popular and widespread instantiation of the phenomenon.

The situation is not unlike Mechanism Design, a well developed field in Mathematical Eco-
nomics (32), and indeed related problems in connection to crowdsourcing have been recently treated
within this framework; see the references in Appendix A. In Mechanism Design, in order for the
interaction of the designer with several rational strategic agents to be as beneficial as possible, a
game between the agents is created in which the pursuit by the agents of individual advantage leads
to the optimum outcome for the designer. Perhaps the archetypical Mechanism Design problem,
solved in Myerson’s celebrated work (34), is how to auction an item to a number of agents, whose
values for the item are unknown but drawn from known prior distributions. Myerson’s is a power-
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ful, sophisticated, and clean result, and has had tremendous impact—a useful ideal to keep in mind
when venturing into new areas.

Coming back to estimation, suppose that a Statistician has an algorithm which, given appropriate
data points X = {(xi, yi)}, approximates an unknown function f that captures an important aspect
of reality, and can be usefully employed in prediction. For concreteness, let us say that the unknown
function is linear and the context is one-dimensional linear regression (noting that our results are
far more general). The quality of the output of the algorithm, f̂ , depends crucially on the quality of
the data X . If the data is poor, the Statistician’s prediction f̂(x∗)—where x∗ is the unknown test
point where a prediction will have to be made—will be off the mark. Assume that the loss suffered
is (f(x∗)− f̂(x∗))2. How can the Statistician incentivize her data sources — suppose for simplicity
that each of them provides one of the (xi, yi) points, for an xi selected by the Statistician — to work
hard so as to supply high-quality data?

Assume that each data provider is a “worker” who, by expending effort e, achieves a level of
quality of the data; the larger e, the higher the quality. To fix ideas, assume that, by expending
effort e, the ith worker is able to sample a distribution for his target data yi that is centered at
the true value f(xi) and has variance σi(e)2. That is, the variance of the error of the datapoint
is our measure of the worker’s quality (rather, lack thereof), and it is a monotonically decreasing
function of e. Of course there are many workers, and they may have different functions σi(e).
We assume that these functions are common knowledge to the participants, including of course the
Statistician.In fact, as it will become clear, each worker needs to know this information only to
decide whether to participate in the mechanism, and not to decide on his optimum effort level. The
question we explore is this: Can the Statistician create a mechanism—or protocol, or contract—
which incentivizes through appropriate payments the workers to supply high-quality data? We
assume, naturally enough, that each worker acts so as to maximize the expectation of payment
received minus the effort exerted (By rescaling, we can assume that units of loss by the Statistician,
effort by a worker, and currency all coincide). Naturally, this expectation must be nonnegative,
because otherwise the worker will refuse to work.

The Statistician, of course, does not see the effort exerted by the ith worker, but only the result
yi of this effort. Evidently, the payment in the protocol, or contract, being designed should be
determined by comparing each supplied yi to the true value f(xi). But of course this is impossible
because we will never learn f(·). The payments must somehow depend on what we know, which is
the data, the algorithm, the quality functions of the workers, and the prior of the test point x∗, but
importantly not f .

And what should such a mechanism aspire to achieve? Let us define an ideal performance which,
a priori, may seem unreasonably optimistic. The quality of our estimation is going to depend on the
following:

• the set W of workers that we select from the available workers;

• the set {xi : i = 1, . . . , |W |} of the regression points we choose to assign to each of them;

• on the effort ei each worker decides to invest (which is out of our control).

Once these have been determined, then we also know the variance σi(ei)2 of each data point,
and the expectation of the loss to the statistician is a known function L(W, {xi}, {ei}). Define OPT
to be the minimum, over all possible W, {xi}, {ei}, of the quantity L(W, {xi}, {ei}) +

∑
i∈W ei.1

1. We can handle much more than this objective, as discussed later in this section.
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That is, OPT is the optimum of loss plus effort, what is known in Economics as the social optimum
(best possible sum of costs by all participants). But OPT is also a lower bound on the total cost (loss
plus payments) to the Statistician: To achieve total cost OPT, the Statistician must convince each
worker to supply the precise optimum effort, and to do so at zero surplus, that is, by being paid the
smallest possible amount for this effort (recall that the worker will refuse to work if payment minus
effort has negative expectation). But this is hard to achieve, given that the efforts exerted by the
workers are not observable and out of the Statistician’s control.

So, is there such a mechanism? In the light of the difficulties outlined in the last two paragraphs,
the situation may seem quite hopeless.

Very surprisingly, we show that such a mechanism does exist not only for linear regression,
but also for a broad class of estimators satisfying a simple and intuitive condition, and includes,
for example, polynomial regression, finite dimensional kernel regression and many other linear
estimators. The solution engages workers in a game not with the Statistician, but with each other.
The game is constructed in such a way that, in the end, the optimum outcome is achieved, in that
loss plus payments is minimized, and all “surplus” of the workers is extracted (that is, no worker is
paid more than his work).

One important consideration is what we mean above by “in the end,” that is, what are our
assumptions on how workers will behave? What is our solution concept? After all, solution concepts
are known to be delicate and fragile, the subject of endless discussions and controversy in Game
Theory. It turns out that our design can afford a solution concept that is extremely robust and
uncontroversial: Each worker’s decision is a unique dominant strategy, that is, it is the unique
action that optimizes the worker’s objective (payment minus effort) no matter what anybody else
does. Of course, this restricts severely the design space of mechanisms that we can employ, and
despite this restriction we can still design a mechanism that attains the ideal total cost OPT.

One key idea of the mechanism is that, in the game as defined, the payment of each worker
depends on the data supplied by the other workers. To some this may seem unreasonable, while
to others it may seem a bit unsurprising in view of the VCG mechanism, among others, which
has a similar structure (45; 6; 13). That this maneuver works in this instance is an entirely new
phenomenon related to statistical estimation, as opposed to mechanism design, and comes with a
different mathematical justification, even though in a sense it does have the same roots as VCG:
Our design essentially creates a race for accuracy, in which workers compete knowing that they
will fare badly if left behind.

Our mechanism applies to all statistical estimators that satisfy a certain intuitive property: The
expectation of the estimator’s loss depends only on the data points {xi} and the distribution of
the test point x∗, and depends on the yi’s only through their variances. There are two variants of
the problem, depending on how the xi’s are determined. So far, we have assumed that the xi’s
should be optimally chosen by the algorithm/mechanism, and the estimators we can handle already
include, e.g., linear regression, polynomial regression, finite-dimensional kernel regression, and
several other linear estimators. In a model where the xi’s are fixed and given in advance (but the
algorithm should still optimally assign them to workers) the situation is even more favorable: our
technique applies to an even broader class of estimators, including ridge regression (44). This is
discussed in Section 3.2. In the same section, we also discuss several extensions of our results.
Besides a weighted combination of loss plus payments, we can accommodate objectives that aim at
minimizing loss subject to budget constraints, or loss plus a function of the payments, and can also
go beyond mean square error to other loss functions.
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Related work is discussed in Appendix A due to space constraints.

2. Estimation with Strategic Workers: the Model

In this section, we introduce the statistical estimation task that we solve in the next section. We start
with some standard definitions.

Definition 1 (Estimator) LetH be a family of functions f : D → R, whereD ⊆ Rn. An estimator
forH takes as input a collection (xi, yi)

k
i=1 of examples (xi, yi) ∈ D×R and produces an estimated

function f̂(xi,yi)ki=1
∈ H.

For example, H may be the class of linear functions from Rn to R, in which case the estimator
could be linear regression. If the input (xi, yi)ki=1 to the estimator is clear from context, we may
omit it from the subscript of f̂ . Sometimes we use (x,y) as a shorthand for (xi, yi)ki=1, and use
f̂(x,y) to denote the estimator. We may also use the shorthand f̂−j or f̂(x,y)−j for the output of the
estimator when given all examples except (xj , yj); i.e. f̂−j , f̂(xi,yi)i∈{1,...,k}\{j} , f̂(x,y)−j . This
is assuming that our estimator is well-defined with one example omitted. Whenever we use this
notation we assume that our estimator satisfies this property. We call f̂−j the estimator f̂ with one
example less.

In estimation it is usually assumed that the examples are readily available. Here we study the
scenario in which we choose a collection x1, . . . , xk ∈ D of points and assign them to experts, who
then return estimates of the function f at those points. How good will these estimates be? In this
paper we assume that the experts, or workers, are strategic; for example, they will put no effort
into producing good estimates of the function value at their given point, unless they are provided
monetary incentives to exert such effort. We capture the behavior of such strategic experts in the
following definition.

Definition 2 (Strategic Worker) Let f ∈ H be as in Definition 1. A worker for f is a strategic
agent who, given some query x ∈ D, will decide how much effort e ∈ E ⊆ R+ to exert in order to
produce an estimate y(e) of f(x).2 The worker:

• is characterized by some known strictly decreasing convex function σ : E → R+ such that,
whenever effort e is exerted, the estimate produced satisfies:

y(e) = f(x) + ε,

where ε is distributed according to some (potentially unknown) distribution with mean 0 and
variance σ(e)2.

• aims to minimize the amount of exerted effort to produce the estimate of f(x), unless pro-
vided monetary incentives to do otherwise; in particular, if the worker is promised a payment
function p : D × R→ R that assigns to each pair (x, y) of a query point x and estimate y a
dollar amount p(x, y), then the worker will choose to exert an amount of effort

e∗ ∈ argmax
e∈E

E[p(x, y(e))]− e,

where the expectation is taken with respect to the randomness in y and the randomness in the
payment function, if any.3

2. Note that we have omitted the dependence of y on x in our notation to ease notation.
3. Note again that we have omitted the dependence of e∗ on x and the payment function p(·) in our notation.
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The following definition formulates the problem of estimating an unknown function f ∈ H,
when one’s only access to f is through strategic workers for f .

Definition 3 (Estimation with Strategic Workers (ESW)) Suppose that we are given:

• an estimator f̂ for a family of functionsH, as in Definition 1;

• access to a setW of strategic workers for some unknown function f ∈ H, as in Definition 2,
where each worker i ∈ W has a known function σi mapping effort to accuracy; we also
assume that all workers’ estimations are independent;

• a distribution F over D (the distribution of the test point x∗ ∈ D).

Our goal is to:

1. choose some subsetW ′ ⊆ W of workers

2. provide an input xi to each worker i ∈ W ′, requesting an estimate yi of f(xi) from i

3. commit to a payment function pi to each i ∈ W ′, where pi is a (potentially) randomized
mapping pi : (xi, yi)i∈W ′ 7→ R, which may depend not only on the estimate produced by
worker i but also the estimates produced by the other workers.

Subject to our decisions in 1, 2 and 3, we are looking to minimize a weighted average of the mean-
square error of our estimation f̂ and the expected payments made to the workers, namely:

Ex∗,y(e∗)

[(
f̂(x,y(e∗))(x

∗)− f(x∗)
)2

+ η ·
∑
i∈W ′

pi
(
(xj , yj(e

∗
j ))j∈W ′

)]
, (1)

for some η > 0, where the expectation is taken with respect to all the randomness in the setting:
the randomness in x∗ ∼ F , the randomness in the outputs y(e∗) , {yi(e∗i )}i∈W ′ produced by the
workers, and the randomness in the payment functions. For (1) to be a well-defined objective, we
need to be able to predict the efforts (e∗i )i∈W ′ that the workers of our selected set will exert given
our decisions for 1, 2 and 3. We discuss how this can be achieved in Section 2.1 below. At the very
least, our prediction needs to satisfy the individual rationality constraint of Definition 6, i.e. that
the expected payment to each worker i is at least as large as e∗i , otherwise the worker would not
participate.

Remark 4 (Variants)

1. In Definition 3, we assume that the designer optimizes over the selection of the points xi.
Alternatively, it could be that each expert i comes with a point xi, which is “his expertise,”
or that the xi’s are predetermined but the designer can still decide how to assign them to
experts. In Section 3.2, we briefly discuss this variant of our problem, which yields a much
richer class of estimators for which our result, described in the next section, applies.

2. We also assumed that the objective is to minimize a weighted average of mean-square error
and expected payments. While we stick to this objective for the development of our mechanism
in the next section, our techniques go through with minimal modifications to much more gen-
eral objectives. For example, we can accommodate the problem of minimizing mean-square
error subject to a budget constraint, or minimizing the sum of mean-square error and an
arbitrary increasing function of payments. We discuss these extensions in Section 3.2.
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3. Finally, our technique is general enough to even eliminate the use of mean-square error from
the objective, an extension that we also discuss in Section 3.2.

2.1. Incentives

We have already noted inside Definition 3 that for (1) to be a well-defined objective, we need to be
able to predict the efforts (e∗i )i∈W ′ that the workers will exert as a result of our solution to ESW.
It is important to note that the form of the payment functions (Decision 3 in Definition 3) couples
the decision of each worker i about the amount of effort he exerts with the amounts of effort the
other workers exert (since these influence y−i), which themselves depend on yi and hence the effort
that worker i exerts. This cyclical dependence is familiar in Game Theory. Indeed, any solution to
ESW—comprising a subset W ′ of workers, queries (xi)i∈W ′ to them, and payment commitments
(pi)i∈W ′—induces a game among the workers inW ′; the effort levels (e∗j )j∈W ′ eventually chosen
by the workers are the outcome of their strategic interaction in this game. Therefore, to be able to
evaluate (1), we need to predict how agents will behave in this game.

There are numerous solution concepts in Game Theory, whose goal is to close into the possible
behavior of rational players in a game. The prominent ones are Nash equilibrium and its several
refinements. However, Nash equilibria may be randomized and, most problematically, they may be
multiple, which would result into equilibrium selection issues in our setting. To avoid such issues
and guarantee robustness of our solutions, we insist on the most compelling and uncontroversial
solution concept, namely that of Unique Dominant Strategy Equilibrium, defined next.

Definition 5 (Unique Dominant Strategy Equilibrium) A solution to ESW—comprising a subset
W ′ of workers, queries (xi)i∈W ′ , and payment commitments (pi)i∈W ′—induces a unique dominant
strategy equilibrium (e∗i )i∈W ′ iff, for all i ∈ W ′ and all (ej)j∈W ′:

E
[
pi
(
(xi, yi(e

∗
i )), (xj , yj(ej))j∈W ′\{i}

)]
− e∗i ≥ E

[
pi ((xj , yj(ej))j∈W ′

]
− ei,

where the expectation is with respect to everything that is random, with equality only if ei = e∗i .
In words, no matter what effort levels the other workers choose, the unique optimal effort level of
every worker i is e∗i .

Note that, if a unique dominant strategy equilibrium exists in a game it is fairly trivial for agents to
decide what strategy to play. We will insist that our solution to ESW should induce a game that has
a unique dominant strategy equilibrium. Note that, in general, it is very rare for a game to have such
an outcome, and consequently this poses a significant constraint on our design. While our main
result (Theorem 9) satisfies this constraint, it nevertheless does not sacrifice any objective value,
fairing as well as it would without this constraint present; see Remark 7 below and the discussion
following the statement of Theorem 9.

Finally, as we have already noted in Definition 3, not all combinations of solutions to ESW
and predictions of worker behavior are realistic. Since the workers are assumed strategic and their
participation is voluntary, they should not be making a loss when participating. This is captured by
the following definition, adding an additional requirement to our solutions to ESW.

Definition 6 (Individual Rationality) Given a solution to ESW—comprising a subsetW ′ of work-
ers, queries (xi)i∈W ′ , and payment commitments (pi)i∈W ′ , a collection of efforts (e∗i )i∈W ′ satisfies
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individual rationality iff, for all workers i ∈ W ′,

E
[
pi

((
xj , yj(e

∗
j )
)
j∈W ′

)]
− e∗i ≥ 0.

Remark 7 (Robustness vs Optimality Non-Tradeoffs) We have chosen to restrict our attention
to solutions to ESW that induce a game among workers with a unique dominant strategy equilib-
rium that satisfies individual rationality. The worry might be that such a strong requirement might
sacrifice too much objective value. We will show that it does not, in a very strong sense. In partic-
ular, while this requirement is handicapping our solutions to ESW, we still compare our solution’s
performance against any other solution evaluated at the most favorable for that solution collection
(e∗i )i, with the minimum requirement that the (e∗i )i satisfy the individual rationality constraint.

3. Optimal Estimation with Strategic Workers: the Mechanism

Our main contribution in this paper is to establish the existence of an optimal solution to ESW, which
induces a unique dominant strategy equilibrium and which has very strong optimality guarantees,
as discussed later in this section, for a broad class of estimators f̂ , containing several familiar ones:

Definition 8 An estimator f̂ forH, as in Definition 1, is well-behaved iff there exists some function
g 4 such that, for all distributions F over D, functions f ∈ H, and vectors x ∈ D∗ and σ ∈ R∗+ (of
the same dimension as x):5

Ey,x∗

[(
f̂(x,y)(x

∗)− f(x∗)
)2]

= g(x, F,σ),

where for the purposes of the expectation on the left hand side x∗ ∼ F and, independently for all
i, yi = f(xi) + εi, where each εi is sampled from an arbitrary distribution of mean 0 and variance
σ2i , (and when x is such that f̂(x,y) is well-defined).

Note that several common estimators, such as linear regression, polynomial regression, finite-
dimensional kernel estimation, are well-behaved according to our definition.6

Our main result is the existence of an optimal algorithm for ESW, whenever f̂ is well-behaved,
according to Definition 8, and well-defined with one example less.7 We note that the first condition
is a sufficient condition and discuss how to relax it in Section 3.2. The second condition is necessary
for interesting solutions to ESW, and we discuss how it can be removed by broadening the set of
allowable payment functions in Section 3.2. Our algorithm optimally solves ESW in a rather strong
sense, as captured by Properties 2 and 3 in the following theorem.

4. Intuitively, an estimator f̂ is well-behaved iff its expected mean square error does not depend on the function f .
5. We use the shorthand D∗ ,

⋃∞
i=1D

i, and similarly for R∗+.
6. For instance, if f̂ is linear regression then

g(x, F,σ) = Ex∗∼F
[
[(x∗)T, 1] · (XTX)−1XT · diag(σ2) ·X(XTX)−1 · [(x∗)T, 1]T

]
,

where X is the matrix whose rows are [xTi , 1] and diag(σ2) is the diagonal matrix whose (i, i) entry is σ2
i .

7. An estimator is not well-defined with one example less if omitting one example from its input makes the output of
the estimator undefined. For example, if f̂ is linear regression (for linear functions from Rn to R) restricted to take
as input exactly n + 1 examples (xi, yi), then it is not well-defined with one example less, since n examples won’t
suffice to produce an estimate.
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Theorem 9 There exists an optimal algorithm for ESW for all well-behaved estimators f̂ that are
well-defined with one example less. The algorithm:

1. produces a solution to ESW that induces a unique dominant strategy equilibrium that satisfies
individual rationality;

2. under the unique dominant strategy equilibrium the solution achieves objective value (1) that
is optimal; in fact, the achieved objective value matches the following quantity:

min
W ′,(xi,ei)i∈W′

(
Ex∗,y

[(
f̂(x,y)(x

∗)− f(x∗)
)2]

+ η ·
∑
i

ei

)
, (2)

where for the purposes of the expectation we assume that, for all i ∈ W ′, yi = f(xi) + εi,
where εi is sampled according to worker i’s distribution when s/he exerts effort ei (which has
mean 0 and variance σi(ei)2);

3. extracts optimal worker surplus; in particular, the expected utility of every worker is 0 at the
unique dominant strategy equilibrium.

Notice that Quantity (2) clearly provides a lower bound to the objective value (1) of any solution
to ESW (and not just those inducing a unique dominant strategy equilibrium), evaluated at any
(e∗i )i∈W ′ that satisfies individual rationality. Indeed, by individual rationality for all workers com-
bined,

E

[∑
i∈W ′

pi
(
(xj , yj(e

∗
j ))j∈W ′

)]
≥
∑
i

e∗i .

Hence, (1) ≥ (2). In fact, (2) corresponds to the objective value that one would achieve, if one could
dictate the effort level that each worker should exert and only paid workers exactly for the amount
of effort they exerted and not a cent more. So, in fact, Property 2 implies Property 3 in our theorem
above. What our theorem establishes is that there always exist solutions to ESW that induce a unique
dominant strategy equilibrium satisfying individual rationality, and that these solutions achieve the
same objective value that a dictator who could dictate the behavior of each worker would achieve.
Even though we do not assume we have such power, we still achieve the same objective value that
such a powerful dictator would.
Proof of Theorem 9: We design a solution to ESW whose unique dominant strategy equilibrium
e∗ satisfies individual rationality, and achieves objective value (1) that equals Quantity (2). We have
already argued that if we do this, we immediately satisfy Properties 1, 2 and 3 in the statement of
the theorem.

We define our solution to ESW in terms of an arbitrary optimal solutionW ′, (xi, ei)i∈W ′ to the
minimization problem (2). In terms of this solution:

• We choose the same set of workersW ′ and assign to each i ∈ W ′ the point xi.

• It remains to define our payment commitments to the workers. To each worker i ∈ W ′, we
commit to the payment:8

pi((x,y)) = ci − di ·
(
yi − f̂(x,y)−i(xi)

)2
, (3)

8. For compactness, we denote by (x,y) = (xi, yi)i∈W′ .

8
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for some ci, di to be chosen. Notice that the payment to worker i depends also on the reports
of the other workers.

We now choose the constants (ci, di)i∈W ′ so that our solution induces a unique dominant strategy
equilibrium e∗ that satisfies individual rationality (with equality) and also e∗ ≡ e, where e =
(ei)i∈W ′ is as in the solution to (2) that we have fixed. What is the expected payment to worker i if
the workers exert some arbitrary efforts e′? Denoting y(e′) = (yi(e

′
i))i∈W ′ , we have:

Ey(e′)[pi((x,y(e
′)))]

= ci − di · Ey(e′)

[
(yi − f(xi))2 +

(
f(xi)− f̂(x,y)−i(xi)

)2
− 2 (yi − f(xi))

(
f(xi)− f̂(x,y)−i(xi)

)]
= ci − di ·

(
σi(e

′
i)
2 + g(x−i,1xi ,σ−i(e

′
−i))

)
,

where we used that our estimator f̂ is well-behaved, according to Definition 8, and the independence
of the estimation of worker i and the other workers. We denote by σ−i(e′−i) = (σj(e

′
j))j 6=i, and

by 1xi the distribution that samples xi with probability 1. g is a known function determined by the
estimator according to Definition 8.

Since each worker i ∈ W ′ is assumed rational, aiming to maximize his expected payment
minus exerted effort, if the other workers exert effort levels e′−i, worker i’s best response is found
by solving the maximization problem:

max
e′i

(
ci − di ·

(
σi(e

′
i)
2 + g(x−i,1xi ,σ−i(e

′
−i))

)
− e′i

)
. (4)

Taking derivative with respect to e′i and setting to 0 gives the following condition for the optimum
e∗i :

2diσi(e
∗
i ) · σ′i(e∗i ) + 1 = 0.

In order to ensure that e∗i ≡ ei, where ei was the effort level computed by solving (2), we set

di =
−1

2σi(ei)σ′i(ei)
.

Given that σi(·) is convex decreasing, our setting of di ensures that ei is the unique solution to (4).
So our choice of (di)i∈W ′ has made sure that the unique dominant strategy equilibrium of the

game among workers defined by our solution to ESW (regardless of the ci’s) is (ei)i∈W ′ . Now we
set the ci’s so that this equilibrium also satisfies individual rationality tightly. It suffices to choose,
for each i ∈ W ′:

ci = di ·
(
σi(ei)

2 + g(x−i,1xi ,σ−i(e−i))
)
+ ei.

This choice makes sure that the expected payment to each worker equals his effort. Hence, the
unique dominant strategy equilibrium of the game among workers defined by our solution to ESW
is e and it satisfies:

E

[∑
i∈W ′

pi
(
(xj , yj(ej))j∈W ′

)]
=
∑
i

ei.

Hence, the objective value (1) achieved by the unique dominant strategy equilibrium matches (2).
This concludes the proof of the theorem. �
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3.1. The Computational Complexity of Our Algorithms

An important question is, of course, how the Statistician could arrive at the optimum mechanism
in a computationally efficient manner. From the proof of Theorem 9, it is clear that the major
computational overhead is finding an optimal solution to the minimization problem (2). All the
other steps of our algorithm can be executed in polynomial time. In this section, we study the
computational complexity of the minimization problem (2).

A closely related problem to ours, optimal experiment design (ODE), has received lots of at-
tention in the Statistics community (20; 23; 24; 21; 25; 22; 37). In ODE, the goal is also to find
an optimal set of regression vectors {xi} for estimation of their corresponding {f(xi)} such that
a certain objective is optimized. Depending on the objective, different criteria of optimality have
been proposed e.g. A-optimality, C-optimality, D-optimality etc.. However, unlike our model, the
estimation error of f(xi) for any regression vector xi in ODE is assumed to come from a fixed
distribution, independent of the worker’s effort level. Hence, our problem can be viewed as a gen-
eralization of ODE. In particular, it is straightforward to show that the C-optimal ODE problem is
a special case of ours. Unfortunately, even this special case is NP-hard to solve exactly (46). We
propose two different approaches to address this computational intractability.

Robustness to Approximation. The first approach is to use an approximate solution to the mini-
mization problem (2) in our mechanism. It is clear from the proof of Theorem 9 that our mechanism
can set the unique dominant strategy equilibrium to be any feasible solution of the minimization
problem (2). Moreover, the objective value (2) of our mechanism at this unique dominant strategy
equilibrium equals the value of the minimization problem (2) on that particular feasible solution. In
short, our mechanism provides an approximation preserving reduction from the ESW problem to
the minimization problem (2). I.e. whenever an α-factor approximation algorithm exists for (2), our
technique translates that (in a black-box manner) to an α-factor approximation algorithm for ESW.

Optimal Assignment Problem. We may also consider a special case of the minimization prob-
lem (2), where the set of regression vectors are predetermined but not assigned to the workers.
Formally, we restrict (2) to the following minimization problem:

min
W ′,(xi:=sπ(i),ei)i∈W′

(
Ex∗,y

[(
f̂(x,y)(x

∗)− f(x∗)
)2]

+ η ·
∑
i

ei

)
, (5)

where s = (s1, . . . , sk) is a fixed set of regression vectors and π is a bijection from W ′ to [k]. We
show that if the well-behaved estimator f̂ is separable,9 the minimization problem (5) is solvable in
polynomial time via min-cost bipartite matching.

Definition 10 A well-behaved estimator f̂ for H, as in Definition 8, is separable iff there exists a
function h, such that, for all distributions F over D, functions f ∈ H, and vectors x ∈ D∗ and
σ ∈ R∗+ (of the same dimension as x):

Ey,x∗

[(
f̂(x,y)(x

∗)− f(x∗)
)2]

=
∑
i

h(xi, X, F ) · σ2i ,

where X is the set of all xi’s, and for the purposes of the expectation on the left hand side x∗ ∼ F
and, independently for all i, yi = f(xi)+εi, where each εi is sampled from an arbitrary distribution
of mean 0 and variance σ2i , (and when x is such that f̂(x,y) is well-defined).

9. Linear regression, polynomial regression and finite-dimensional kernel regression are all separable.

10
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Theorem 11 Given a set of regression vectors s = (s1, . . . sk), and a separable estimatorf̂ forH,
there is a polynomial time algorithm for finding an optimal solution to the minimization problem (5).

Proof We reduce the minimization problem to the min-cost bipartite matching problem. Let S be
the set of regression vectors in s, (W,T ) be a complete bipartite graph, such that W is the set of all
workers and T is the set of all regression vectors in S plus |W | − k dummy regression vectors. For
any edge (i, j) with j ∈ [k], the cost ci,j is minei h(sj , S, F ) · σi(ei)2 + η · ei. Since σi(ei) is a
convex function, this cost can be computed in polynomial time. For any edge incident to a dummy
regression vector, the cost is 0.

Now consider (5). Since f̂ is a separable estimator, the minimization problem can be simplified
as

min
W ′,(sπ(i),ei)i∈W′

(∑
i

h(sπ(i), S, F ) · σi(ei)2 + η ·
∑
i

ei

)
=min
W ′,π

∑
i∈W ′

min
ei

h(sπ(i), S, F ) · σi(ei)2 + η · ei

=min
W ′,π

∑
i∈W ′

ci,πi .

The formula above wants to find a subset of workers W ′ and match them to the regression
vectors in S, such that the total cost is minimized. Notice that matching any worker to a dummy
regression vector has cost 0, therefore finding an optimal solution to the formula above is equivalent
as finding a min-cost bipartite matching in (W,T ). Given any min-cost bipartite matching M , we
can construct an optimal solution to (5) by assigning regression vector sj to j’s partner i in M .
Since finding a min-cost bipartite matching takes only polynomial time, (5) can also be solved in
polynomial time.

3.2. Discussion and Extensions

One of the conditions in Theorem 9 is that the estimator f̂ is well-defined with one example less.
Without it, we cannot hope for any interesting solutions to ESW. As a trivial example, suppose that
f̂ is the unbiased estimator of constant functions from R to R, which takes as input one example
(x, y) and outputs y. In this case f̂ is not well-defined with one example less, and no interesting
solutions to ESW exist, since the payments to a worker may only depend on his own report, and
hence the worker will put the minimal effort in set E , regardless of our payment, as long as our
payment is at least that minimal effort. (Recall that, since we never learn the unknown function f
we cannot use it to penalize the worker.) In this example, our constraint that f̂ is well-defined with
one example less effectively says that we need to use at least two workers for estimating constant
functions from R to R.

We point out that this requirement can be removed in settings where the test point x∗ and
the function value f(x∗) can be observed by the Statistician and the experts. We can then treat
(x∗, f(x∗)) as an additional example with zero variance, and modify (3) to include that example in
f̂ .

Our condition that f̂ is well-behaved does not contain regularized estimators, such as ridge
regression. As ridge regression is biased, its mean square error also includes a bias term that depends

11



CAI DASKALAKIS PAPADIMITRIOU

on f . This could create two potential problems for our mechanism. (i) As we do not know f , we
can not possibly solve the minimization problem (2) even if we are given infinite computational
power. (ii) This term will also appear in every worker’s expected payment (if we use payments as
in (3)), and, since f is unknown, the workers can’t evaluate their expected utilities exactly, and thus
can’t decide if it’s beneficial for them to participate in the mechanism. We point out that, under the
assumption that the xi’s are fixed in advance (but the Statistician is still allowed to optimally assign
them to workers) our mechanism can address both problems and accommodate ridge regression with
only mild modifications. For problem (i), the mean square error of ridge regression can be separated
into two parts – the bias term and the variance term. The bias term depends on f and the xi’s but is
independent of the σi’s. This means that no matter how the samples are assigned and how they are
estimated, the bias term remains the same. So we only need to consider the variance term. Luckily
the variance does not depend on f , thus we can still find the optimal solution of the minimization
problem (2). For problem (ii), we can modify our payments. Roughly, we can use any unbiased
estimator f̃ and add another term (f̂ − f̃)2 to the payment function (both estimators applied to the
examples from the other workers). The extra term will cancel the bias in expectation and will allow
the workers to reason about their optimal behavior even without knowing f . Note that the new term
will introduce some extra terms in the expected utility, but these only depend on known quantities
such as the variances, and the worker will be able to reason about his optimal behavior.

Although our objective function is stated as the weighted sum of mean square error and the
total payment in ESW, our mechanism can accommodate many variants of that objective function.
In general, we can modify the minimization problem (2) to reflect the new objective function. We
can then apply our same mechanism to enforce that the unique dominant strategy equilibrium is
achieved at the optimal solution of the new minimization problem. Here we list a few variants of
our objective function and show how to modify the minimization problem (2) accordingly.

Worker-specific scaling factor: An easy generalization is to replace the single scaling factor for
the total payment to worker-specific scaling factors in the objective. To accommodate this objective,
we only need to change the scaling factor for the sum of efforts to worker-specific scaling factors
in (2).

Budget Constraints: A possible alternative objective is minimizing the mean square error subject
to a budget constraint for the total payment. For this objective, we update (2) to minimize the mean
square error subject to the constraint that the sum of all workers’ efforts is no greater than the budget.

Replacing the total payment with any increasing function of the payments: Another possible
generalization of our objective is to replace the total payment with any increasing function of the
payments q(p). In this case, we update (2) to minimize the sum of mean square error plus q(e).

Budget on any increasing function of the payments: We can also impose budget constraints on
any increasing function of the payments. For this objective, we modify (2) to minimize the mean
square error subject to the constraint that the increasing function over the workers’ efforts does not
exceed the budgets.

Beyond Mean Square Error: Our techniques can be generalized to accommodate general error
functions beyond mean-square. If the function combined with the estimator are well-behaved, that
is, it is independent of the function f , then our techniques go through. We only need to modify (2)
to minimize the weighted sum of the new error function and the total effort.

12
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Appendix A. Related Work

For background in statistical analysis and estimation see, e.g., (15), and for mechanism design see,
e.g., (32). In the past few years there have been several papers treating crowdsourcing in a frame-
work that is at least superficially similar to ours. (16) gauge through experiments the elasticity of
effort under pay in crowdsourcing, while (14) use learning algorithms to find the optimum crowd-
sourcing contract, and (39) add experts to the crowd so non-experts perform better. Scheduling
mechanisms are used to manipulate the time behavior of the crowd (38; 30), whereas (12) use in-
centives to match workers according to their specialization. Several papers address strategies to
optimize performance keeping within budget (40; 41; 4), while in (1) the online task assignment
problem is treated as a multi-armed bandit under a budget. The optimal design of non-monetary
“prestige” rewards to optimally incentivize the participants is addressed in (18), and in (33; 19; 43)
privacy concerns in data gathering are treated through incentives; also in (42) regret minimization
is used in a crowdsourcing context.

A little closer to our framework, Mechanism Design has been used in (35; 3) to analyze crowd-
sourcing contests—in which all workers submit their work and one is selected to be paid—as all-pay
auctions. These mechanisms also use monetary incentives to create a competition between workers
to enhance performance, but their nature and the problems they address are quite different from
ours—for example, they are by design not individually rational. In (8; 27; 28), mechanism design
is used for regression and classification with strategic data providers. In contrast to our setting, the
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agents are not interested in being paid for producing data for the learning task and have no cost for
exerting effort. Instead, they control a subset of the data for which they already have the correct la-
bels, and want to bias the outcome of the learning process to perform well on their subset of the data.
(2) and follow-up papers design proper scoring rules for principal-agent problems where agents are
asked to predict an outcome, but can also influence the outcome by exerting different levels of effort.
In contrast to our setting, agents only care about rewards and have no cost for effort. More impor-
tantly, the designer only cares about how to incentivize the agents to exert maximum effort, and not
how much money is paid to the agents. Moreover, they use the final outcome to decide rewards (this
is common in scoring rules), while we never learn f(x∗). (7) design mechanisms for crowdsourced
binary labeling, where a collection of agents are asked to provide binary labels to a collection of
tasks, and the designer wants to incentivize them via monetary rewards to exert maximum effort for
each task. The agents’ strategy consists on how much effort to exert for each task they are allocated
(where increased effort increases their cost but also the probability of correct labeling), and whether
to truthfully report the labels of their allocated tasks. Besides being for a different learning task,
the biggest difference to our paper lies in the fact that the designer does not care about how much
money is paid to the agents, or the tradeoff between rewards and accuracy. (29) use scoring rules to
incentivize agents whose private signals are correlated to reveal their private signals. In comparison
to our work, the agents’ decision is whether to report their true private signal or some other signal,
but not how much effort to exert to get better quality signals. Finally, (10) look at a problem close
to ours except they assume that each worker cannot affect their quality (it is sampled from a prior
distribution), but only decide whether to participate in the mechanism; they also only consider the
simple unbiased estimator for constant functions from R to R.

Relation to Optimal Contract Theory (Principal-agent Problem). Our mechanisms achieve
in a unique dominant strategy equilibrium objective value that an omnipotent dictator who could
dictate how much effort each worker exerts would achieve. This is a surprising result that is morally
related to results in optimal contract theory; see, e.g., Chapter 14 of (26). The question, known
as the principal-agent problem, is how to design a contract with a worker whose effort e affects
your revenue π through some conditional density f(π|e). The contract is a mapping w(·) from your
revenue π and the worker’s effort (if it is observable) to the worker’s income w(π). So your utility
is π − w(π), while the worker’s utility is w(π) − g(e), for some function g(·). The problem is
straightforward to formulate when the worker’s effort is observable. The surprising result, which
is reminiscent of our result, is that under appropriate conditions one can design a contract w(·)
resulting in the same utility when the worker’s effort is not observable as if it were observable.
While the two results are related, the setting and techniques are different. Moreover, there are
important qualitative differences in the results. The aforementioned result applies to a single worker,
while ours applies to any number. Also, the worker’s payment, even when his/her effort is not
observable, is still a function of the revenue π, which is exactly observable. Instead, in our setting
we do not observe what mean squared error we achieve as a result of the efforts exerted by the
workers. The use of convexity in the payments, that we employ, has been employed in the design of
non-linear contracts (11). (Many thanks to Preston McAfee for bringing this paper to our attention.)

Comparison to VCG. The guarantees of our mechanism are also reminiscent to those of the
celebrated VCG mechanism (45; 6; 13). VCG optimizes social welfare in a dominant strategy equi-
librium, achieving as high a welfare as that of an omniscient algorithm (who knows the bidders’
valuations and can therefore compute the exactly optimal outcome). While the guarantees of our
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mechanism are similar to those of VCG, the technical reasons underlying the two results are dif-
ferent. Importantly, the VCG mechanism may allow multiple equilibria with worse guarantees.
In contrast, our mechanism achieves optimality in a unique dominant strategy equilibrium. So, in
particular, there are no bad equilibria. Moreover, VCG is very sensitive to the computational com-
plexity of the underlying algorithmic problem. If the algorithmic problem is intractable, then so
is running VCG, and the VCG mechanism is known to fail if the algorithmic problem can only
be approximated. In contrast, our proposed mechanism is approximation preserving, as noted in
Section 3.1.
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