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Abstract
A well-recognized limitation of kernel learning is the requirement to handle a kernel matrix, whose
size is quadratic in the number of training examples. Many methods have been proposed to reduce
this computational cost, mostly by using a subset of the kernel matrix entries, or some form of low-
rank matrix approximation, or a random projection method. In this paper, we study lower bounds
on the error attainable by such methods as a function of the number of entries observed in the
kernel matrix or the rank of an approximate kernel matrix. We show that there are kernel learning
problems where no such method will lead to non-trivial computational savings. Our results also
quantify how the problem difficulty depends on parameters such as the nature of the loss function,
the regularization parameter, the norm of the desired predictor, and the kernel matrix rank. Our
results also suggest cases where more efficient kernel learning might be possible.

1. Introduction

We consider the well-known problem of kernel learning (see, e.g., Scholkopf and Smola (2001)),
where given a training set of labeled examples {(xt, yt)}mt=1 from a product domainX ×Y , our goal
is to find a linear predictor w in a reproducing kernel Hilbert space which minimizes the average
loss, possibly with some regularization. Formally, our goal is to solve

min
w∈W

1

m

m∑
t=1

`(〈w, ψ(xt)〉 , yt) +
λ

2
‖w‖2 , (1)

whereW is a convex subset of some reproducing kernel Hilbert space H, ψ : X 7→ H is a feature
mapping to the Hilbert space, ` is a loss function convex in its first argument, and λ ≥ 0 is a
regularization parameter. For example, in the standard formulation of Support Vector Machines, we
take ` to be the hinge loss, pick some λ > 0, and letW be the entire Hilbert space. Alternatively,
one can also employ hard regularization, e.g., setting λ = 0 and takingW = {w : ‖w‖ ≤ R}.

It is well-known that even if H is high or infinite dimensional, we can solve (1) in poly-
nomial time, provided there is an efficiently computable kernel function k such that k(x,x′) =
〈ψ(x), ψ(x′)〉. The key insight is provided by the representer theorem, which implies that an op-
timum of (1) exists in the span of ψ(x1), . . . , ψ(xm). Therefore, instead of optimizing over w,
we can optimize over a coefficient vector α, which implicitly specifies a predictor via w(α) =
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∑m
j=1 αjψ(xj). In this case, (1) reduces to

min
α :w(α)∈W

1

m

m∑
t=1

`

 m∑
j=1

αj 〈ψ(xj), ψ(xt)〉 , yt

+
λ

2
‖w(α)‖2 .

Defining the m ×m kernel matrix Ki,j = 〈ψ(xi), ψ(xj)〉 = k(xi,xj), we can re-write the above
as

min
α :w(α)∈W

1

m

m∑
t=1

`
(
α>Ket, yt

)
+
λ

2
α>Kα . (2)

This is a convex problem, which can generally be solved in polynomial time. The resulting α
implicitly defines the linear predictorw(α) in the Hilbert space: Given a new point x to predict on,
this can be efficiently done according to

〈w(α), ψ(x)〉 =

〈
m∑
j=1

αjψ(xj), ψ(x)

〉
=

m∑
j=1

αj 〈ψ(xj), ψ(x)〉 =
m∑
j=1

αjk(xj ,x) .

Unfortunately, a major handicap of kernel learning (at least in its standard implementation) is that
it requires computing and handling an m×m matrix, where m is the size of the training data, and
this can be prohibitive in large-data applications. This has led to a large literature on efficient kernel
learning, which attempts to reduce its computational complexity. As far as we know, the algorithms
proposed so far fall into one or more of the following categories (see below for specific references):

• Limiting the number of kernel evaluations: A dominant computational bottleneck in kernel
learning is computing all entries of the kernel matrix. Thus, several algorithms attempt to
learn using a much smaller number of kernel evaluations – either by sampling them or using
other schemes which require “reading” only a small part of the kernel matrix.

• Low-Rank Kernel Approximation: Instead of using the full m × m kernel matrix, one can
use instead a low-rank approximation of it. Learning with a low-rank matrix can be done
in a computationally much more efficient manner than with a general kernel matrix (e.g.,
Scholkopf and Smola (2001); Bach (2013); Alaoui and Mahoney (2014)).

• Projection to a low-dimensional space: Each instance x is mapped to a finite-dimensional
vector φ(x) =

(
φ1(x), . . . , φd(x)

)
where d � m, so that 〈φ(x), φ(x′)〉 ≈ k(x,x′). Note

that this is equivalent to a kernel problem where the rank of the kernel matrix is d, so it can
be seen as a different kind of low-rank kernel approximation technique.

Existing theoretical results focus on performance guarantees for various algorithms. In this work,
we consider a complementary question, which surprisingly has not been thoroughly explored (to the
best of our knowledge): What are the inherent obstacles to efficient kernel learning? For example,
is it possible to reduce the number of kernel evaluations while maintaining the same learning perfor-
mance? Is there always a price to pay for low-rank matrix approximation? Can finite-dimensional
projection methods match the performance of algorithms working on the original kernel matrix?

Specifically, we study information-theoretic lower bounds on the attainable performance, mea-
sured in terms of optimization error on a given training set. We consider two distinct types of
constraints:

2



ON THE COMPLEXITY OF LEARNING WITH KERNELS

• The number of kernel evaluations (or equivalently, the number of entries of the kernel matrix
observed) is bounded by B, where B is generally assumed to be much smaller than m2 (the
number of entries in the kernel matrix).

• The algorithm solves (2), but using some low-rank matrix K̂ instead of K. This can be seen
as using a low-rank kernel matrix approximation.

We make no assumptions whatsoever on which kernel evaluations are used, or the type of low-rank
approximation, so our results apply to all the methods mentioned previously, and any future potential
method which uses these types of approaches. We note that although we focus on optimization error
on a given training set, our lower bounds can also be potentially extended to generalization error,
where the data is assumed to be sampled i.i.d. from an underlying distribution. We discuss this point
further in Section 5.

Our first conclusion, informally stated, is that it is generally impossible to make kernel learning
more efficient in a non-trivial manner. For example, suppose we have a budget B on the number
of kernel evaluations, where B � m2. Then the following “trivial” sub-sampling method turns
out to be optimal in general: Sub-sample

√
B examples from the training data uniformly at random

(throwing away all other examples), compute the full
√
B ×

√
B kernel matrix based on the sub-

sample, and train a predictor using this matrix. This is an extremely näive algorithm, throwing away
almost all of the data, yet we show that there are cases where no algorithm can be substantially
better. Another pessimistic result can be shown for the low-rank matrix approximation approach:
There are cases where any low-rank approximation will impact the attainable performance.

Our formal results go beyond these observations, and quantify the attainable performance as
a function of several important problem parameters, such as the kernel matrix rank, regularization
parameter, norm of the desired predictor, and the nature of the loss function. In particular:

• Given a kernel evaluation budget constraint B:

– For the absolute loss, no regularization (λ = 0), and a constant norm constraint on the domain,
we have an error lower bound of Ω(B−1/4). A matching upper bound is obtained by the sub-
sampling algorithm discussed earlier.

– For soft regularization (with regularization parameter λ > 0 and no norm constraint), we
attain error lower bounds which depend on the structure of the loss function. Some particular
corollaries include:

∗ For the absolute loss, Ω(1/λ
√
B). Again, a matching upper bound is attained by a sub-

sampling algorithm.
∗ For the hinge loss, Ω(1) as long as B < 1/λ2. Although it only applies in a certain budget

regime, it is tight in terms of identifying the kernel evaluation budget required to make the
error sub-constant. Moreover, it sheds some light on previous work (e.g., Cotter et al. (2012))
which considered efficient kernel learning methods for the hinge loss.

∗ For the squared loss, Ω
(

min
{

1, λ
√
B
})−3

, as long as B � m2. Like the result for the

other losses, it implies that no sub-constant error is possible unless B ≥ 1/λ2.

• For learning with low-rank approximation, with rank parameter d, in the case of Ridge Regression
(squared loss and soft regularization), we attain an error lower bound of Ω((λd)−3). Thus, to get
sub-constant error, we need the rank to scale at least like 1/λ.
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The role of the loss function is particularly interesting, since it has not been well-recognized in
previous literature, yet our results indicate that it may play a key role in the complexity of kernel
learning. For example, as we discuss in Section 3, efficient kernel learning is trivial with the linear
loss, harder for smooth and non-linear losses, and appears to be especially hard for non-smooth
losses. Our results also highlight the importance of the kernel matrix rank in determining the dif-
ficulty of kernel learning. While it has been recognized that low rank can make kernel learning
easy (see references below), our results formally establish the reverse direction, namely that (some)
high-rank matrices are indeed hard to learn with any algorithm.

Related Work

The literature on efficient kernel methods is vast and we cannot do it full justice. A few representa-
tive examples include sparse greedy kernel approximations Scholkopf and Smola (2001), Nyström-
based methods, which sample a few rows and columns and use it to construct a low-rank approx-
imation Drineas and Mahoney (2005); Kumar et al. (2009); Alaoui and Mahoney (2014), random
finite-dimensional kernel approximations such as random kitchen sinks Rahimi and Recht (2007,
2008); Dai et al. (2014), the kernelized stochastic batch Perceptron for learning with few kernel
evaluations Cotter et al. (2012), the random budget Perceptron and the Forgetron Cavallanti et al.
(2007); Dekel et al. (2008), divide-and-conquer approaches Zhang et al. (2013); Hsieh et al. (2014),
sequential algorithms with early stopping Yao et al. (2007); Raskutti et al. (2014), other numerical-
algebraic methods for low-rank approximation, e.g., Fine and Scheinberg (2002); Shawe-Taylor
and Cristianini (2004); Bach and Jordan (2005); Mahoney and Drineas (2009); Kumar et al. (2009),
combinations of the above Dai et al. (2014), and more. Several works provide a theoretical analysis
on the performance of such methods, as a function of the rank, number of kernel evaluations, di-
mensionality of the finite-dimensional space, and so on. Beyond the works mentioned above, a few
other examples include Cortes et al. (2010); Yang et al. (2012); Bach (2013); Lin et al. (2014).

In terms of lower bounds, we note that there are existing results on the error of matrix approxi-
mation, based on partial access to the matrix (see Bar-Yossef (2003); Frieze et al. (2004)). However,
the way the error is measured is not suitable to our setting, since they focus on the Frobenius norm
ofK−K̂, whereK is the original matrix and K̂ is the approximation. In contrast, in our setting, we
are interested in the error of a resulting predictor rather than the quality of matrix approximation.
Indeed, as discussed later in the paper, finding such a good approximation of K is a sufficient – but
not necessary – condition for learning a good predictor. Another distinct line of work studies how
to reduce the complexity of a kernel predictor at test time, e.g., by making it supported on a few
support vectors (see for instance Cotter et al. (2013) and references therein). This differs from our
work, which focuses on efficiency at training time.

Paper Organization

Our paper is organized as follows. In Section 2, we introduce the class of kernel matrices which
shall be used to prove our results, and discuss how they can be generated by standard kernels. In
Section 3, we provide lower bounds in a model where the algorithm is constrained in terms of
the number of kernel evaluations used. We consider this model in two flavors, one where there
is a norm constraint and no regularization (Subsection 3.1), and one where there is regularization
without norm constraint (Subsection 3.2). In the former case, we focus on a particular loss, while
in the latter case, we provide a more general result and discuss how different types of losses lead
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to different types of lower bounds. In Section 4, we consider the model where the algorithm is
constrained to use a low-rank kernel matrix approximation. We conclude and discuss open questions
in Section 5. Proofs appear in Appendix A.

2. Hard Kernel Matrices

For our results, we utilize a set Kd,m of “hard” kernel matrices, which are essentially permutations
of block-diagonal m×m matrices with at most d blocks. More formally:

Definition 1 Let K′d,m be the class of all block-diagonal m ×m matrices, composed of at most d
blocks, with entry values of 1 within each block. We define Kd,m to be all matrices which belong to
K′d,m under some permutation π : {1 . . .m} 7→ {1 . . .m} of their rows and columns:

Kd,m =
{
K ∈ {0, 1}m×m : ∃ π,K ′ ∈ K′d,ms.t. ∀i, j ∈ {1 . . .m}, Ki,j = K ′π(i),π(j)

}
.

From the definition, it is immediate that any K ∈ Kd,m is positive semidefinite (and hence is a valid
kernel matrix), with rank at most d. Moreover, the magnitude of the diagonal elements is at most 1,
which means that our data lies in the unit ball in the Hilbert space.

Since our focus is on generic kernel learning, it is sufficient to consider this class in order to
establish hardness results. However, it is still worthwhile to consider which kernels can induce this
class of kernel matrices. A sufficient condition can be quantified via the following lemma.

Lemma 2 Suppose there exist z1, . . . ,zd ∈ X such that k(zi, zj) = I {zi = zj}. Then any
K ∈ Kd,m is induced by some m instances {xt}mt=1 ∈ X .

The proof is immediate: Given any K, for any block i of size ni, create ni copies of zi, and order
the instances according to the relevant permutation.

It is straightforward to see that Lemma 2 holds for linear kernels k(x,x′) = 〈x,x′〉 and for
homogeneous polynomial kernels k(x,x′) = 〈x,x′〉p. It also essentially holds for Gaussian kernels
k(x,x′) = exp(−‖x− x′‖2/γ) if there exist d equi-distant points inX , where the squared distance
is much larger than γ. In that case, instead of 0 outside the blocks, we will have ε where ε is
exponentially small, and can be shown to be negligible for our purposes.

That being said, our proof techniques essentially rely on the block-diagonal structure of the co-
variance matrix, rather the values inside or outside the blocks. Thus, they are potentially applicable
to a much wider class of kernels, which can induce kernel matrices composed of some constant a
inside each block, and a different constant c outside the blocks. This only requires finding d equi-
distant points in the kernel space, and holds for most kernels we are aware of. However, since our
results are technical enough as they are, we will concentrate on the boolean case defined previously,
where a = 1, c = 0, and leave the general case to future work.

Although our formal results and proofs contain many technical details, their basic intuition is
quite simple: When d is sufficiently large, any matrix in Kd,m is of high rank, and cannot be ap-
proximated well by any low-rank matrix. Therefore, under suitable conditions, no low-rank matrix
approximation approach can work well. Moreover, when d is large, then the kernel matrix is quite
sparse, and contains a large number of relatively small blocks. Thus, for an appropriate randomized
choice of a matrix in Kd,m, any algorithm with a limited budget of kernel evaluations will find it
difficult to detect these blocks. With a suitable construction, we can reduce the kernel optimization
problem to that of detecting these blocks, from which our results follow.
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3. Budget Constraints

We now turn to present our results for the case of budget constraints. In this setting, the learning
algorithm is given the target values y1, . . . , ym, but not the kernel matrix K. Instead, the algorithm
may query at most B entries in the kernel matrix (where B is a user-defined positive integer),
and then return a coefficient vector based on this information, either deterministically or by using
additional internal randomness. We denote such an algorithm as a budgeted algorithm. This model
represents approaches which attempt to reduce the computational complexity of kernel learning by
reducing the number of kernel evaluations needed. Standard learning algorithms essentially require
B = Ω(m2), and the goal is to learn to similar accuracy with a budget B � m2. In this section, we
discuss the inherent limitations of this approach.

3.1. Norm Constraint, Absolute Loss

We begin by demonstrating a lower bound using the absolute loss `1(u, y) = |u− y| on the domain
W =

{
w : ‖w‖2 ≤ 2

}
(or equivalently, coefficient vectors α satisfying α>Kα ≤ 2), and our

goal is to minimize the average loss, which equals

min
α :α>Kα≤2

1

m

m∑
t=1

∣∣∣α>Ket − yt∣∣∣ .
Theorem 3 For any rank parameter d, any sample size m ≥ 27d, any budget size B < 3

50d
2,

and for any (possibly randomized) budgeted algorithm, there exists a kernel matrix K ∈ K2d,m and
target values y1, . . . , ym ∈ [−1,+1], such that the returned coefficient vector α satisfies(

1

m

m∑
t=1

∣∣∣α>Ket − yt∣∣∣)− min
α :α>Kα≤2

1

m

m∑
t=1

∣∣∣α>Ket − yt∣∣∣ ≥ 1

70
√
d
. (3)

The proof and the required construction appears in Subsection A.1. Note that the algorithm is al-
lowed to return any coefficient vector (not necessarily one satisfying the domain constraintα>Kα ≤
2).

The theorem provides a lower bound on the attainable error, for any rank parameter d and
assuming the sample size m and budget B are in an appropriate regime. A different way to phrase
this is that if B is sufficiently smaller than m2, then we can find some d on the order of

√
B, such

that Theorem 3 holds. More formally:

Corollary 4 There exist universal constants c, c′ > 0 such that if B ≤ cm2, there is an m ×m
kernel matrix K (belonging to K2d,m for some appropriate d) and target values in [−1,+1] such
that the returned coefficient vector α satisfies(

1

m

m∑
t=1

∣∣∣α>Ket − yt∣∣∣)− min
α :α>Kα≤2

1

m

m∑
t=1

∣∣∣α>Ket − yt∣∣∣ ≥ c′

4
√
B
.

In words, the attainable error given a budget of B cannot go down faster than 1/ 4
√
B. Next, we

show that this is in fact the optimal rate, and is achieved by the following simple strategy:
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1. Given a training set {(xt, yt)}mt=1 of size m, sample b
√
Bc training examples uniformly at

random (with replacement), getting {(xtj , ytj )}
b
√
Bc

j=1 .

2. Compute the kernel matrix K̂ ∈ Rb
√
Bc×b

√
Bc defined as K̂j,j′ = k(xtj ,xtj′ ), using at most

B queries.

3. Solve the kernel learning problem on the sampled set, getting a coefficient vector α̂:

min
α̂ : α̂>K̂α̂≤2

 1

b
√
Bc

b
√
Bc∑

j=1

∣∣∣α̂>K̂ej − ytj ∣∣∣
 .

4. Return the coefficient vector α such that αtj = α̂j for j = 1, . . . , b
√
Bc, and αt = 0

otherwise.

Essentially, this strategy approximately solves the original problem by drawing a subset of the
training data —small enough so that we can compute its kernel matrix in full— and solving the
learning problem on that data. Since we use a sample of size b

√
Bc, then by standard generalization

guarantees for learning bounded-norm predictors using Lipschitz loss functions (e.g., Kakade et al.

(2009)), we get a generalization error upper bound ofO
(

1√
b
√
Bc

)
= O

(
1

4√B

)
which matches the

lower bound in Corollary 4 up to constants.
To summarize, we see that with the absolute loss, given a constraint on the number of kernel

evaluations, there exist no better method than throwing away most of the data, and learning on a
sufficiently small subset. Moreover, any method using a non-trivial budget (significantly smaller
than m2) must suffer a performance degradation.

3.2. Soft Regularization, General Losses

Having obtained an essentially tight result for the absolute loss, it is natural to ask what can be
obtained for more generic losses. To study this question, it will be convenient to shift to the setting
where the domainW is the entire Hilbert space, and we use a regularization term. Following (2),
this reduces to solving

min
α

1

m

m∑
t=1

`
(
α>Ket, yt

)
+
λ

2
α>Kα .

We start by defining the main quantity we are interested in,

∆`(m,α,K, λ, y) =

(
1

m

m∑
t=1

`
(
α>Ket, yt

)
+
λ

2
α>Kα

)
−min

α

(
1

m

m∑
t=1

`
(
α>Ket, yt

)
+
λ

2
α>Kα

)
,

where ` is a loss function.
First, we provide a general result, which applies to any non-negative loss function, and then

draw from it corollaries for specific losses:

Theorem 5 Suppose the loss function ` is non-negative. For any rank parameter d, any sample
size m ≥ 27d, any budget B < 3

50d
2, and for any (possibly randomized) budgeted algorithm,
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there exists a kernel matrix K ∈ K2d,m and target values y1, . . . , ym in Y , such that the returned
coefficient vector α satisfies

∆`(m,α,K, λ, y) ≥ 1

60
λd min

p∈[ 12 ,2]
max
y∈Y

(2u∗1 − u∗2)2 (4)

where
u∗1 = argmin

u
`(u, y) + pλdu2 and u∗2 = argmin

u
`(u, y) +

pλd

2
u2 .

The proof and the required construction appears in Subsection A.1.2.
Roughly speaking, to get a non-trivial bound, we need the loss to be such that when the regular-

ization parameter is order of λd, then scaling it by a factor of 2 changes the location of the optimum
u∗ by a factor different than 2. For instance, this rules out linear losses of the form `(u, y) = yu.
For such a loss, we have

u∗1 = arg min
u

n

m
yu+ λu2 = − ny

2λm
and u∗2 = arg min

u

n

m
yu+

λ

2
u2 = − ny

λm
.

Thus we get that (2u∗1−u∗2)2 = 0 and the lower bound is trivially 0. While this may seem at first like
an unsatisfactory bound, in fact this should be expected: For linear loss and no domain constraints,
we don’t need to observe the kernel matrix K at all in order to find the optimal solution! To see
this, note that the optimization problem in (2) reduces to minα

1
m

∑m
t=1 ytα

>Ket + λ
2α
>Kα, or

equivalently minα α
>Kv+ λ

2α
>Kα, where v is a known vector and K is the partially-unknown

kernel matrix. Differentiating the expression by α and equating to 0, we get Kv + λKα = 0.
Thus, an optimum of this problem is simply − 1

λv, regardless of what is K. This shows that for
linear losses, we can find the optimal predictor with zero queries of the kernel matrix.

Thus, the kernel learning problem is non-trivial only for non-linear losses, which we now turn
to examine in more detail.

3.2.1. ABSOLUTE LOSS

First, let us consider again the absolute loss in this setting. We easily get the following corollary of
Theorem 5:

Corollary 6 Let `1(u, y) = |u− y| be the absolute loss. There exist universal constants c, c′ > 0,
such that if B ≤ cm2, then for any budgeted algorithm there exists an m×m kernel matrix K and
target values y such that ∆`1(m,α,K, λ, y) is lower bounded by c′

λ
√
B

.

Proof To apply Theorem 5, let us compute (2u∗1 − u∗2)2, where we use the particular choice y =
1

2pλd . It is readily verified that u∗1 = u∗2 = y = 1
2pλd , leading to the lower bound

1

60
λd min

p∈[ 12 ,2]
(u∗1)

2 =
1

60
λd min

p∈[ 12 ,2]

(
1

2pλd

)2

=
1

60
λd

(
1

4λd

)2

=
1

960λd
.

In particular, suppose we choose d =
⌈√

100
3 B

⌉
. Then we get a lower bound of c′

λ
√
B

for c′ = 2−13.

The conditions of Theorem 5 are satisfied if m ≥ 27d = 27
⌈√

100
3 B

⌉
and B < 3

50d
2 =

8



ON THE COMPLEXITY OF LEARNING WITH KERNELS

3
50

(⌈√
100
3 B

⌉)2
. The latter always holds, whereas the former is indeed true if B is smaller than

cm2 for c = 2−20.

As in the setting of Theorem 3, this lower bound is tight, and we can get a matching O
(
1/λ
√
B
)

upper bound by learning with a random sub-sample of Θ
(√
B
)

training examples, using general-
ization bounds for minimizers of strongly-convex and Lipschitz stochastic optimization problems
Sridharan et al. (2009).

Note that, unlike our other lower bounds, Corollary 6 is proven using a different choice of y for
each λ. It is not clear whether this requirement is real, or is simply an artifact of our proof technique.

3.2.2. HINGE LOSS

Intuitively, the proof of Corollary 6 relied on the absolute loss having a non-smooth “kink” at
Θ(1/λ

√
B), which prevented the optimal u∗1, u

∗
2 from moving as a result of the changed regulariza-

tion parameter. Results of similar flavor can be obtained with any other loss which has an optimum at
a non-smooth point. However, when we do not control the location of the “kink” the results may be
weaker. A good example is the hinge loss, `h(u, y) = max{0, 1− uy}, which is non-differentiable
at the fixed location p = 1:

Corollary 7 Let `h(u, y) = max{0, 1 − uy} be the hinge loss. There exist universal constants
c, c′, c′′ > 0, such that if λ ≤ 1

4 and B < c
λ2
≤ c′m2, then for any budgeted algorithm, there exist

an m×m kernel matrix K and target values y in {−1,+1} such that ∆`h(m,α,K, λ, y) is lower
bounded by c′′.

Proof To apply Theorem 5, let us compute (2u∗1−u∗2)2, where we use the particular choice y = 1. It
is readily verified that u∗1 = u∗2 = 1, as long as pλd ≤ 1, and is certainly satisfied for any p ∈

[
1
2 , 2
]

by assuming λd ≤ 1
2 . Therefore, if λd ≤ 1

2 , then in Theorem 5, we get u∗1 = u∗2 = 1, and thus a
lower bound of 1

60λd · 1
2 = 1

60λd.
In particular, suppose we pick d =

⌊
1
2λ

⌋
. Since we assume λ ≤ 1

4 , this means that the lower
bound above is 1

60λ
⌊

1
2λ

⌋
≥ 1

240 = c′′. The conditions of Theorem 5 are satisfied if m ≥ 27d =

27
⌊

1
2λ

⌋
and B < 3

50d
2 = 3

50

(⌊
1
2λ

⌋)2
< 3

200
1
λ2

= c
λ2
< c

210
m2 = c′m2, which are indeed implied

by the corollary’s conditions.

Unlike the bound for the absolute loss, here the result is weaker, and only quantifies a regime under
which sub-constant error is impossible. In particular, the condition B = O

(
1
λ2

)
is not interesting

for constant λ. However, in learning problems λ usually scales down as m−q where q ≥ 1/2 and
often q = 1. In that case, we get constant error as long as B � m2q, which establishes that learning
is impossible for a budget smaller than a quantity in the range from Ω(m) to Ω(m2), depending on
the value of q. For q = 1, that is λ = Θ(1/m), learning is impossible without querying a constant
fraction of the kernel matrix.

Moreover, it is possible to show that our lower bound is tight, in terms of identifying the thresh-
old for making the error sub-constant. As before, we consider the strategy of sub-sampling

√
B

training examples and learning with respect to the induced kernel matrix. Since we use
√
B exam-

ples and λ-strongly convex regularization, the expected error scales as 1
λ
√
B

Sridharan et al. (2009).
This is sub-constant in the regime B = ω(1/λ2), and matches our lower bound. We emphasize that
when B is ω(1/λ2), we do not have a non-trivial lower bound, and it remains an open problem to
understand what can be attained for the hinge loss in this regime.
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Another interesting consequence of the corollary is the required budget as a function of the
norm of a “good predictor” we want to compete with. In Cotter et al. (2012), several algorithmic
approaches have been studied, which were all shown to require Ω(‖u‖4) kernel evaluations to be
competitive with a given predictor u, even in the “realizable” case where the predictor attains zero
average hinge loss. An examination of the proof of theorem 2 reveals that the construction is such
that there exists a predictor u which attains zero hinge loss on all the examples, and whose norm1

is O(1/
√
λ). Corollary 7 shows that the budget must be at least Ω(1/λ2) = Ω(‖u‖4) to get sub-

constant error in the worst case. Although our setting is slightly different than Cotter et al. (2012),
this provides evidence that the Ω(‖u‖4) bounds in Cotter et al. (2012) are tight in terms of the norm
dependence.

3.2.3. SQUARED LOSS

In the case of absolute loss and hinge loss, the results depend on a non-differentiable point in the
loss function. It is thus natural to conclude by considering a smooth differentiable loss, such as the
squared loss:

Corollary 8 Let `2(u, y) = (u− y)2 be the squared loss. There exist universal constants c, c′ > 0,
such that

• If 1 ≤ B ≤ 1
λ2
≤ cm2, then for any budgeted algorithm there exists an m×m kernel matrix

and target values in [−1,+1] such that ∆`2(m,α,K, λ, y) is lower bounded by c′.

• If 1
λ2
≤ B ≤ cm2, then for any budgeted algorithm there exists an m×m kernel matrix and

target values in [−1,+1] such that ∆`2(m,α,K, λ, y) is lower bounded by c′(λ
√
B)−3.

This lower bound is weaker than the Ω(1/λ
√
B) lower bound attained for the absolute loss. This

is essentially due to the smoothness of the squared loss, and we do not know if it is tight. In any
case, it proves that even for the squared loss, at least 1/λ2 kernel evaluations are required to get
sub-constant error. In learning problems, where λ often scales down as m−q (where q ≥ 1/2 and
often q = 1), we get a required budget size ofm2q. This is super-linear when p > 1/2, and becomes
m2 when q = 1 – in other words, we need to compute a constant portion of the entire kernel matrix.
Proof To apply Theorem 5, let us compute (2u∗1 − u∗2)2. It is readily verified that u∗1 = y

1+pλd and
u∗2 = y

1+pλd/2 , leading to the lower bound

1

60
λd min

p∈[ 12 ,2]
max
y∈Y

(
2y

1 + pλd
− y

1 + pλd/2

)2

=
1

60
λd min

p∈[ 12 ,2]
max
y∈Y

 y

(1 + pλd)
(

1 + pλd
2

)
2

≥ 1

60
λd min

p∈[ 12 ,2]
max
y∈Y

(
y

(1 + pλd)2

)2

.

Taking in particular y = 1, we get 1
60λd minp∈[ 12 ,2]

(
1

(1+pλd)2

)2
≥ 1

60
λd

(1+2λd)4
.We now consider

two ways to pick d, corresponding to the two cases considered in the corollary:

1. To see this, recall that we use a block-diagonal kernel matrix composed of at most 2d all-ones blocks, and where
y = 1 always. So by picking αt = 1/ni for any index t in block i (where ni is the size of the block), we get zero
hinge loss, and the norm is

√
α>Kα ≤

√∑
i 1 ≤

√
2d. Moreover, in the proof of Corollary 7 we pick d =

⌊
1
2λ

⌋
,

so the norm is O(1/
√
λ).
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• If 1 ≤ B ≤ 1
λ2

, we pick d =
⌈√

100
3λ2

⌉
. Since λ ≤ 1, we have dλ < 7, and this means that

the bound above is bounded below by c′ = 2−18. The conditions of Theorem 5 are satisfied if

m ≥ 27d = 27
⌈√

100
3λ2

⌉
and B < 3

50d
2 = 3

50

(⌈√
100
3λ2

⌉)2
. These are satisfied by assuming

B ≤ 1
λ2
≤ cm2 for c = 2−20.

• IfB ≥ 1
λ2

, we pick d =
⌈√

100
3 B

⌉
. Plugging this into the bound above and using the assumption

B ≥ 1
λ2

(or equivalently, λ
√
B ≥ 1), we get a lower bound of c′ λ

√
B

(λ
√
B)4

= c′(λ
√
B)−3 for an

appropriate constant c′ = 2−18 < 1/960. Moreover, the conditions of Theorem 5 are satisfied

if m ≥ 27d = 27
⌈√

100
3 B

⌉
and B < 3

50d
2 = 3

50

(⌈√
100
3 B

⌉)2
. The latter always holds,

whereas the former indeed holds if B is less than cm2 for c = 2−20.

4. Low-Rank Constraints

In this section, we turn to discuss the second broad class of approaches, which replace the original
kernel matrix K by a low-rank approximation K ′. As explained earlier, many rank-reduction ap-
proaches – including Nyström method and random features – use a low-rank approximationK ′ with
entries defined by K ′t,t′ = 〈φ(xt), φ(xt′)〉, where {(xt, yt)}mt=1 is the training set and φ : X 7→ Rd
is a given feature mapping, typically depending on the data.

The next result shows a lower bound on the error for any such low-rank approximation method
when the algorithm used for learning is kernel Ridge Regression (i.e., when we use the squared loss
and employ soft regularization).

Theorem 9 Given a training set {(xt, yt)}mt=1 ∈
(
X × {−1,+1}

)m with corresponding kernel
matrix K, consider a Ridge Regression algorithm operating on any matrix K ′ of rank at most
d (where 2d divides m), and K ′t,t′ = 〈φ(xt), φ(xt′)〉 for some mapping φ : X 7→ Rd (possi-
bly depending on the training set). Furthermore, suppose there exist v1, . . . ,v2d ∈ X such that
k(vi,vj) = I {vi = vj}. Then there exists a training set such that the coefficient vector α returned
by the algorithm satisfies

∆`2(m,α,K, λ, y) ≥ 1

2(λd)2(1 + λd)

When λd ≥ 1, we get a Ω
(
(λd)−3

)
bound. This bears similarities to the bound in Corollary 8, which

considered the squared loss in the budgeted setting, where d is replaced by
√
B (i.e., Ω

(
(λ
√
B)−3

)
when λ

√
B ≥ 1). The bound implies that to get sub-constant error, the rank required must be larger

than 1/λ. When λ itself scales down with the sample size m, we get that the required rank grows
with the sample size. When λ = 1/m, the required rank is Ω(m), which means that any low-rank
approximation scheme (where d� m) will lead to constant error. As in the case of Corollary 8, we
do not know whether our lower bound is tight.
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5. Discussion and Open Questions

In this paper, we studied fundamental information-theoretic barriers to efficient kernel learning,
focusing on algorithms which either limit the number of kernel evaluations, or use a low-rank kernel
matrix approximation. We provided several results under various settings, highlighting the influence
of the kernel matrix rank, regularization parameter, norm constraint and nature of the loss function
on the attainable performance.

For general losses and kernel matrices, our conclusion is generally pessimistic. In particular,
when the number of kernel evaluations is bounded, there are cases where no algorithm attains per-
formance better than a trivial sub-sampling strategy, where most of the data is thrown away. Also,
no algorithm can work well when the regularization parameter is sufficiently small or the norm con-
straint is sufficiently large. On a more optimistic note, our lower bounds are substantially weaker
when dealing with smooth losses. Although we do not know if these weaker lower bounds are tight,
they may indicate that better kernel learning algorithms are possible by exploiting smoothness of
the loss. Smoothness of the squared loss has been used in Zhang et al. (2013), but perhaps this
property can be utilized more generally.

In our results, we focused on the problem of minimizing regularized training error on a given
training set. This is a different goal than minimizing generalization error in a stochastic setting,
where the data is assumed to be drawn i.i.d. from some underlying distribution. However, we
believe that our lower bounds should also be applicable in terms of optimizing the risk (or expected
error with respect to the underlying distribution). The main obstacle is that our lower bounds are
proven for a given class of kernel matrices, which are not induced by an explicit i.i.d. sampling
process of training instances. However, inspecting our basic construction in Subsection A.1, it can
be seen that it is very close to such a process: The kernel is constructed by pairs of instances sampled
i.i.d. from a finite set {v1i ,v2i }di=1. We believe that all our results would hold if the instances were
to be sampled i.i.d. from {v1i ,v2i }di=1. The reason that we sample pairs is purely technical, since
it ensures that for every i, there is an equal number of v1i and v2i in the training set, making the
calculations more tractable. Morally, the same techniques should work with i.i.d. sampling, as long
as the probability of sampling v1i and v2i are the same for all i.

Our work leaves several questions open. First, while the results for the absolute loss are tight, we
do not know if this is the case for our other results. Second, the low-rank result in Section 4 applies
only to squared loss (Ridge Regression), and it would be interesting to extend it to other losses.
Third, it should be possible to extend our results also to randomized algorithms that query the
kernel matrix a number of times bounded by B only in expectation (with respect to the algorithm’s
internal randomization), rather than deterministically. Finally, our results may indicate that at least
for smooth losses, better kernel learning algorithms are possible, and remain to be discovered.
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Appendix A. Proofs

A.1. Construction properties from Section 3

We consider a randomized strategy, where the kernel matrix is sampled randomly from K2d,m (ac-
cording to a distribution D to be defined shortly), and y1, . . . , ym are fixed deterministically in a
certain way. We will analyze what is the best possible performance using any budgeted algorithm,
in expectation over this strategy.

To define the distributionD, we let e1, . . . , e2d be the standard basis vectors in R2d, and sample
a kernel matrix from D as follows:

• Pick σ ∈ {0, 1}d uniformly at random.

• For all i ∈ {1, . . . , d}, define v1i ,v
2
i as

– v1i = v2i = ei if σi = 1,

– v1i = ei and v2i = ei+d if σi = 0.

• For j = 1, . . . ,m/2, choose (z2j−1, z2j) uniformly at random from {(v1i ,v2i )}di=1.

• Choose a permutation π : {1, . . . ,m} 7→ {1, . . . ,m} uniformly at random.

• Return the kernel matrix K defined as Ki,j =
〈
zπ(i), zπ(j)

〉
for all i, j = 1, . . . ,m.

To understand the construction, we begin by noting that K represents the inner product of a set of
vectors, and hence is always positive semidefinite and a valid kernel matrix. Moreover, z1, . . . ,zm
are all in the set {e1, . . . , e2d}, and therefore the resulting kernel matrix equals (up to permutation
of rows and columns) a block-diagonal matrix of the following form:

1 S1 0 0 · · · 0 0
S>1 1 0 0 · · · 0 0
0 0 1 S2 · · · 0 0
0 0 S>2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 Sd
0 0 0 0 · · · S>d 1

Here, Si is an all-zero block if σi = 0, and an all-ones block if σi = 1. In other words, the matrix
is composed of d blocks, one for each value of i = 1, . . . , d. If σi = 1, then block i is a monolithic
all-ones block (corresponding to ei), and if σi = 0, then block i is composed of two equal-sized
sub-blocks (corresponding to ei and to ed+i). This implies that the kernel matrix is indeed inK2d,m.

Our proofs rely on the following intuition: To achieve small error, the learning algorithm must
know the values of the entries in S1, S2, . . . , Sd (i.e., the values of σ). However, when d is large,
these blocks are rather small, and their entries are randomly permuted in the matrix. Thus, any
algorithm with a constrained query budget is likely to “miss” many of these blocks.

To simplify the presentation, we will require a few auxiliary definitions. First, given a kernel
matrix K ∈ K2d,m constructed as above, let

Ti,1 = {π(t) : zt = v1i } and Ti,2 = {π(t) : zt = v2i }
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denote the set of row/column indices in the kernel matrix, corresponding to instances which were
chosen to be v1i (respectively v2i ). Note that {Ti,1, Ti,2}di=1 is a disjoint partition of all indices
{1, . . . ,m}, and |Ti,1| = |Ti,2|. We then define,

Ti = Ti,1 ∪ Ti,2 and Ni = |Ti|, (5)

and also define,
βi,1 =

∑
t∈Ti,1

αt and βi,2 =
∑
t∈Ti,2

αt, (6)

to be the sum of the corresponding coefficients in the solution α returned by the algorithm. With
these definitions, we can re-write the average loss and the regularization term as follows.

Lemma 10 For any coefficient vector α,

1

m

m∑
t=1

`
(
α>Kei, y

)
=

d∑
i=1

Ni

2m

(
`(βi,1 + σiβi,2, y) + `(σiβi,1 + βi,2, y)

)
and

α>Kα =
d∑
i=1

(
β2i,1 + β2i,2 + 2σiβi,1βi,2

)
,

where βi,1, βi,2 are defined in (6).

The proof is a straightforward exercise based on the definition of K. Finally, we define Ei to
be the event that the algorithm never queries a pair of inputs in Ti, i.e., the algorithm’s queries
(s1, r1), . . . , (sB, rB) on the kernel matrix satisfy

st 6∈ Ti ∨ rt 6∈ Ti t = 1, . . . , B .

To prove our results, we will require two key lemmas, presented below, which quantify how any
budgeted algorithm is likely to “miss” many blocks, and hence have its output relatively insensitive
to σ.

Lemma 11 Suppose m ≥ 2d and B < 3
50d

2. Then for any deterministic learning algorithm,

d∑
i=1

P(Ei) >
d

2
.

The formal proof is provided below. Although it is quite technical, the lemma’s intuition is very
simple: Recall that the kernel matrix is composed of d blocks, each of size m

d ×
m
d in expectation.

Thus, if we choose an entry uniformly at random, the chance of “hitting” some block is approxi-
mately d (m/d)2

m2 = 1
d . Thus, if we sample B points uniformly at random, where B � d2, then the

number of “missed” blocks
∑d

i=1 I {Ei} is likely to be Ω(d). The lemma above simply quantifies
this, and shows that this holds not just for uniform sampling, but for any algorithm with a budgeted
number of queries.
Proof Recall that each Ti corresponds to one of d blocks in the kernel matrix (possibly composed of
two sub-blocks). The algorithm queries (s1, r1), . . . , (sB, rB). For each possible query at time t we
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define the set Qs,t of blocks such that s was queried with a member of that block and we obtained
a value zero in the kernel matrix. Namely,

Qs,t =
{
i = 1, . . . , d : (∃τ < t) sτ = s ∧ rτ ∈ Ti ∧ Ksτ ,rτ = 0

}
∪
{
i = 1, . . . , d : (∃τ < t) rτ = s ∧ sτ ∈ Ti ∧ Ksτ ,rτ = 0

}
.

Given the query (st, rt) we define Lt = Qst,t to be the blocks in which some member was queried
with st, and Rt = Qrt,t the blocks in which some member was queried with rt.

We introduce a quantity Pt defined as follows: Pt = d + 1 if there is a query t′ < t such that
Kst′ ,rt′ = 1 and, moreover, st = st′ or rt = rt′ (that is, the block of st or the block of rt was
already discovered). Otherwise, let Pt = max

{
|Lt|, |Rt|

}
.

Let Dt be the event that the t-th query discovers a new block. That is, Dt is true if and only if
Kst,rt = 1 and Pt < d+ 1. Using this notation,

d∑
i=1

I {¬Ei} =
B∑
t=1

I {Dt} =
B∑
t=1

I {Dt ∧ Pt < d/2}+
B∑
t=1

I {Dt ∧ Pt ≥ d/2}︸ ︷︷ ︸
N

. (7)

We will now show that unless B ≥ 3
50d

2, we can upper bound N deterministically by
√

2B. We do
this by considering separately the case N ≤ d

2 and the case N > d
2 :

• Assume first N > d
2 , and let t1, . . . , tN be the times tk such that I {Dtk ∧ Ptk ≥ d/2} = 1.

Now fix some k and note that, because the common block to which stk and rtk both belong is
discovered, neither stk nor rtk can occur in a future query (st, rt) that discovers a new block.
Therefore, in order to have I {Dt ∧ Pt ≥ d/2} = 1 for N > d

2 times, at least

d

2
+

(
d

2
− 1

)
+ · · ·+ 1

queries must be made, where each term d
2 − k + 1 accounts for the fact that each one of the

previous k − 1 discovered blocks might contribute with at most a query to making Pt ≥ d
2 .

So, it must be

B ≥
d/2∑
k=1

(
d

2
− (k − 1)

)
≥ d2

8

queries to discover the first d
2 blocks, which contradicts the lemma’s assumption that B ≤

3
50d

2. Therefore, N ≤ d
2 .

• Assume thatN ≤ d
2 . Using the same logic as before, in order to have I {Dt ∧ Pt ≥ d/2} = 1

for N ≤ d
2 times, at least

d

2
+

(
d

2
− 1

)
+ · · ·+

(
d

2
−N + 1

)
queries must be made. So, it must be

B ≥
N∑
k=1

(
d

2
− (k − 1)

)
= (d+ 1)

N

2
− N2

2
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or, equivalently, N2 − (d + 1)N + 2B ≥ 0. Solving this quadratic inequality for N , and

using the lemma’s assumption that N ≤ d
2 , we have that N ≤ (d+1)−

√
(d+1)2−8B
2 . Using the

lemma’s assumption that B ≤ 3
50d

2 we get that N ≤
√

2B.

We now bound the first term of (7) in expectation. For any time t and query (st, rt), we say
that st is paired with rt if Kst,rt = 〈z2j−1, z2j〉 for some j ∈ {1, . . . ,m/2}, where {st, rt} ≡
{π(2j − 1), π(2j)}. Clearly, P(st paired with rt

)
= 1

m , where the probability is over the random
draw of the permutation π. Hence,

B∑
t=1

P
(
Dt ∧ Pt < d/2

)
≤

B∑
t=1

P
(
Dt | Pt < d/2, st not paired with rt

)
+

B∑
t=1

P
(
st paired with rt

)
≤

B∑
t=1

P
(
Dt | Pt < d/2, st not paired with rt

)
+
B

m
.

Let P′ = P
(
· | Pt < d/2, st not paired with rt

)
. Note that the two points st and rt have inde-

pendent block assignments when conditioned on st not paired with rt. Moreover, conditioned on
Pt < d/2, the event Dt implies st, rt ∈ Ti for some i ∈ ¬Lt ∩ ¬Rt, where |Lt|, |Rt| < d

2 and for
any S ⊆ {1, . . . , d} we use ¬S to denote {1, . . . , d} \ S.

Since, by definition of Lt, the block of st is not in Lt, and there were no previous queries
involving st and a point belonging to a block in ¬Lt, we have that

P′
(
st ∈ Ti

∣∣Lt) =
1

|¬Lt|
∀i 6∈ Lt .

Likewise,

P′
(
rt ∈ Tj

∣∣Rt) =
1

|¬Rt|
∀j 6∈ Rt .

Hence, for L′, R′ ranging over all subsets of {1, . . . , d} of size strictly less than d
2 ,

P′(Dt) =
∑
L′,R′

∑
i∈¬L′∩¬R′

P′
(
st ∈ Ti ∧ rt ∈ Ti

∣∣Lt = L′, Rt = R′
)
P′(Lt = L′ ∧ Rt = R′)

=
∑
L′,R′

∑
i∈¬L′∩¬R′

P′
(
st ∈ Ti

∣∣Lt = L′
)
P′
(
rt ∈ Ti

∣∣Rt = R′
)
P′(Lt = L′ ∧ Rt = R′) .

=
∑
L′,R′

∑
i∈¬L′∩¬R′

1

|¬L′|
1

|¬R′|
P′(Lt = L′ ∧ Rt = R′)

=
∑
L′,R′

|¬L′ ∩ ¬R′|
|¬L′| |¬R′|

P′(Lt = L′ ∧ Rt = R′) ≤ 2

d

because |¬L′| ≥ d
2 , |¬R′| ≥ d

2 and |¬L′ ∩ ¬R′| ≤ min{|¬L′|, |¬R′|}. Therefore, using m ≥ 2d
we can write

B∑
t=1

P
(
Dt ∧ Pt < d/2

)
≤ 2B

d
+
B

m
≤ 5B

2d

18
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where we used the lemma’s assumption that m ≥ 2d. Putting everything together, we get the
following upper bound on the expectation of (7):

E

[
d∑
i=1

I {¬Ei}

]
≤ 5B

2d
+
√

2B . (8)

On the other hand, we have

E

[
d∑
i=1

I {¬Ei}

]
= E

[
d∑
i=1

(1− I {Ei})

]
= d−

d∑
i=1

P(Ei) . (9)

Combining (8) and (9), we get that

d∑
i=1

P(Ei) ≥ d−
5B

2d
−
√

2B .

To finish the lemma’s proof, suppose on the contrary that
∑d

i=1 P(Ei) ≤ d
2 . Then from the equation

above, we would get that
d

2
≥ d− 5B

2d
−
√

2B

which implies B ≥
(√

7−
√
2

5

)2
d2 > 0.06d2, contradicting the lemma’s assumptions. Therefore,

we must have
∑d

i=1 P(Ei) >
d
2 as required.

Lemma 12 Suppose the kernel matrix K is sampled according to the distribution D as defined
earlier (using a parameter σ ∈ {0, 1}d). Let Ai be any event that, conditioned on Ni, depends only
on βi,1 and βi,2, (as returned by a deterministic algorithm based on access to the kernel matrix),
and let g(Ni) be some non-negative function of Ni. Then

E
[
g(Ni)

(
I {Ai, σi = 1}+ I {¬Ai, σi = 0}

)]
≥ 1

2
E
[
g(Ni)P(Ei | Ni)

]
.

Proof We begin by noting that

E
[
g(Ni)

(
I {Ai, σi = 1}+ I {¬Ai, σi = 0}

)]
= E

[
E
[
g(Ni) (I {Ai, σi = 1}+ I {¬Ai, σi = 0}) | Ni

]]
= E

[
g(Ni)

(
P(Ai, σi = 1 | Ni) + P(¬Ai, σi = 0 | Ni)

)]
. (10)

We now continue by analyzing the probabilities in the expression:

P(Ai, σi = 1 | Ni) + P(¬Ai, σi = 0 | Ni) . (11)

We will need two auxiliary results. First, we argue that for all i,

P(Ei | σi = 0, Ni) = P(Ei | σi = 1, Ni) = P(Ei | Ni) . (12)
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To prove this, we note that since the algorithm is deterministic, the occurrence of the event Ei is
determined by the kernel matrix, and more specifically the entries of the kernel matrix observed by
the algorithm. Therefore, if the kernel matrix is such that Ei occurs, then the algorithm’s output
would not change if we flip the value of σi as it only affects entries which were not touched by the
algorithm. Therefore, P(Ei | σi = 0, Ni) = P(Ei | σi = 1, Ni). Since σi is either 0 or 1, this
means that these probabilities also equal P(Ei | Ni).

Second, we argue that

P(Ai | Ei, σi = 0, Ni) = P(Ai | Ei, σi = 1, Ni) . (13)

This holds because if Ei occurs, then βi,1, βi,2 depend only on entries which are independent of σi.
Moreover,Ni is also independent of σi. ThereforeAi, which is assumed to depend only on βi,1, βi,2
when conditioned onNi, is also independent of σi when conditioned onEi andNi, from which (13)
follows.

Using (12), (13), and the fact that σi is uniformly drawn from {0, 1} and independent of Ni, we
have that (11) equals

P(Ai, σi = 1 | Ni) + P(¬Ai, σi = 0 | Ni)

= P(σi = 1)P(Ai | σi = 1, Ni) + P(σi = 0)P(¬Ai | σi = 0, Ni)

=
1

2

(
P(Ai | σi = 1, Ni) + P(¬Ai | σi = 0, Ni)

)
=

1

2

(
1− P(Ai | σi = 0, Ni) + P(Ai | σi = 1, Ni)

)
=

1

2

(
1− P(Ei | σi = 0, Ni)P(Ai | Ei, σi = 0, Ni)− P(¬Ei | σi = 0, Ni)P(Ai | ¬Ei, σi = 0, Ni)

+ P(Ei | σi = 1, Ni)P(Ai | Ei, σi = 1, Ni) + P(¬Ei | σi = 1, Ni)P(Ai | ¬Ei, σi = 1, Ni)
)

=
1

2

(
1 + P(Ei | Ni)

(
P(Ai | Ei, σi = 1, Ni)− P(Ai | Ei, σi = 0, Ni)

)
+ P(¬Ei | Ni)

(
P(Ai | ¬Ei, σi = 1, Ni)− P(Ai | ¬Ei, σi = 0, Ni)

))
≥ 1

2

(
1 + P(Ei | Ni)× 0 + P(¬Ei | Ni)× (−1)

)
=

1

2

(
1− P(¬Ei | Ni)

)
=

1

2
P(Ei | Ni) .

Plugging this lower bound on (11) back into (10), the result follows.

Finally, we will also require the following auxiliary result:

Lemma 13 Let N =
∑m/2

i=1 2Xi where X1, . . . , Xm/2 are i.i.d. Bernoulli random variables with
parameter 1/d. Also, let g(N) be a non-negative function of N . Then for any event Z,

E
[
g(N)P(Z | N = n)

]
≥

(
min

m
2d
≤n≤ 2m

d

g(n)

)(
P(Z)− 2 exp

(
−m

8d

))
.
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Proof Let S =
{
m
2d ,

m
2d + 1, . . . , 2md

}
. We can lower bound the expectation by∑

n∈S
P(N = n)g(n)P(Z | N = n) ≥

(
min
n∈S

g(n)

)∑
n∈S

P(N = n)P(Z | n)

=

(
min
n∈S

g(n)

)(
P(Z)−

∑
n/∈S

P(N = n)P(Z | n)

)

≥
(

min
n∈S

g(n)

)(
P(Z)−

∑
n/∈S

P(N = n)

)

=

(
min
n∈S

g(n)

)(
P(Z)− P(N /∈ S)

)
. (14)

Since N is distributed as twice the sum of m/2 i.i.d. Bernoulli random variables with parameter
1/d, so its expectation is m/d, and by multiplicative Chernoff bounds and union bounds,

P(N /∈ S) = P
(
N >

2m

d

)
+ P

(
N <

m

2d

)
≤ exp

(
−m

3d

)
+ exp

(
−m

8d

)
≤ 2 exp

(
−m

8d

)
.

Substituting this back into (14), the result follows.

A.1.1. PROOF OF THEOREM 3

Suppose we pick yt = 1√
d

for all t. Using Yao’s minimax principle, it is sufficient to prove a lower
bound for

E

[
1

m

m∑
t=1

∣∣∣∣α>Ket − 1√
d

∣∣∣∣− min
α :α>Kα≤2

1

m

m∑
t=1

∣∣∣∣α>Ket − 1√
d

∣∣∣∣
]
≥ 1

70
√
d
, (15)

where the expectation is with respect to the kernel matrix K drawn according to the distribution
D specified earlier, and α is any deterministic function of K encoding the learning algorithm.
This ensures that for any (possibly randomized) algorithm, there exists some K which satisfies the
theorem statement.

First, we will show that for any K ∈ K2d,m, there exists some α such that

1

m

m∑
t=1

∣∣∣∣α>Ket − 1√
d

∣∣∣∣ = 0 and α>Kα ≤ 2 . (16)

This implies that (15) can be re-written as

E

[
1

m

m∑
t=1

∣∣∣∣α>Ket − 1√
d

∣∣∣∣
]
. (17)

To see this, we utilize Lemma 10 to rewrite (16) as

1

m

m∑
t=1

`
(
α>Kei, y

)
=

d∑
i=1

Ni

2m

(∣∣∣∣βi,1 + σiβi,2 −
1√
d

∣∣∣∣+

∣∣∣∣σiβi,1 + βi,2 −
1√
d

∣∣∣∣) = 0, and

α>Kα =

d∑
i=1

(
β2i,1 + β2i,2 + 2σiβi,1βi,2

)
≤ 2 ,
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where {βi,1, βi,2} are the appropriate functions ofα. Note that these constraints are indeed satisfied
for any α for which βi,1 = βi,2 = 1√

d
if σi = 0, and βi,1 = 1√

d
, βi,2 = 0 if σi = 1. Again using

Lemma 10, we can rewrite (17) as

E

[
d∑
i=1

Ni

2m

(∣∣∣∣βi,1 + σiβi,2 −
1√
d

∣∣∣∣+

∣∣∣∣σiβi,1 + βi,2 −
1√
d

∣∣∣∣)
]
. (18)

Let us consider the expression
∣∣∣βi,1 + σiβi,2 − 1√

d

∣∣∣+ ∣∣∣σiβi,1 + βi,2 − 1√
d

∣∣∣ for some fixed choice of
the kernel matrix K. In particular:

• If σi = 1 and βi,1 + βi,2 ≥ 3
2
√
d

, then∣∣∣∣βi,1 + σiβi,2 −
1√
d

∣∣∣∣+

∣∣∣∣σiβi,1 + βi,2 −
1√
d

∣∣∣∣ = 2

∣∣∣∣βi,1 + βi,2 −
1√
d

∣∣∣∣ ≥ 1√
d
.

• If σi = 0 and βi,1 + βi,2 <
3

2
√
d

, then either βi,1 or βi,2 must be less than 3
4
√
d

, and therefore∣∣∣∣βi,1 + σiβi,2 −
1√
d

∣∣∣∣+

∣∣∣∣σiβi,1 + βi,2 −
1√
d

∣∣∣∣ =

∣∣∣∣βi,1 − 1√
d

∣∣∣∣+

∣∣∣∣βi,2 − 1√
d

∣∣∣∣
≥
∣∣∣∣ 3

4
√
d
− 1√

d

∣∣∣∣ =
1

4
√
d
.

Let Ai be the event that βi,1 + βi,2 ≥ 3
2
√
d

. Since the algorithm is deterministic, {βi,1, βi,2} and
hence Ai is determined by the kernel matrix K. By the analysis above, we can lower bound (18) by

E

[
d∑
i=1

Ni

2m

(
I {Ai, σi = 1} 1√

d
+ I {¬Ai, σi = 0} 1

4
√
d

)]

≥ 1

8m
√
d

d∑
i=1

E
[
Ni

(
I {Ai, σi = 1}+ I {¬Ai, σi = 0}

)]
.

By Lemma 12 and Lemma 13 this is lower bounded by

1

16m
√
d

d∑
i=1

E
[
Ni P(Ei | Ni)

]
≥ 1

32
√
d

(
1

d

d∑
i=1

P(Ei)− 2 exp
(
−m

8d

))
.

Since we assumed that B < 3
50d

2 and m ≥ 27d, we can apply Lemma 11, which lower bounded
this by

1

32
√
d

(
1

2
− 2 exp

(
−m

8d

))
≥ 1

70
√
d
,

where we used again the assumption that m ≥ 27d. �
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A.1.2. PROOF OF THEOREM 5

The proof is broadly similar to the one of Theorem 3, but using a generic loss rather than the absolute
loss.

Suppose we pick yt = y ∈ Y for all t, where y ∈ Y will be determined later. Using Yao’s
minimax principle, it is sufficient to prove a lower bound for

EK

[(
1

m

m∑
t=1

`
(
α>Ket, y

)
+
λ

2
α>Kα

)
−min

α

(
1

m

m∑
t=1

`
(
α>Ket, y

)
+
λ

2
α>Kα

)]
(19)

where —as in the proof of Theorem 3— the expectation is with respect to the kernel matrix K
drawn according to the distribution D, and α is any deterministic function of K encoding the
learning algorithm. This ensures that for any (possibly randomized) algorithm, there exists some K
which satisfies the theorem statement.

Utilizing Lemma 10, we can rewrite (19) as

E

[(
d∑
i=1

Ni

2m

(
`(βi,1 + σiβi,2, y) + `(σiβi,1 + βi,2, y)

)
+
λ

2

d∑
i=1

(
β2i,1 + β2i,2 + 2σiβi,1βi,2

))

− min
{βi,1,βi,2}

(
d∑
i=1

Ni

2m

(
`(βi,1 + σiβi,2, y) + `(σiβi,1 + βi,2, y)

)
+
λ

2

d∑
i=1

(
β2i,1 + β2i,2 + 2σiβi,1βi,2

))]

=
d∑
i=1

E
[
Ni

2m

(
`(βi,1 + σiβi,2, y) + `(σiβi,1 + βi,2, y)

)
+
λ

2

(
β2i,1 + β2i,2 + 2σiβi,1βi,2

)
− min
βi,1,βi,2

(
Ni

2m

(
`(βi,1 + σiβi,2, y) + `(σiβi,1 + βi,2, y)

)
+
λ

2

(
β2i,1 + β2i,2 + 2σiβi,1βi,2

))]
.

This can be written in a simplified form as

d∑
i=1

E
[
gσiNi(βi,1, βi,2)

]
, (20)

where

gσn(u, v) = fσn (u, v)−min
u,v

fσn (u, v), and

fσn (u, v) =
n

2m

(
`(u+ σv, y) + `(σu+ v, y)

)
+
λ

2

(
u2 + v2 + 2σuv

)
.

Now, let Ai be the event that g0Ni(βi,1, βi,2) < g1Ni(βi,1, βi,2). We consider two cases:

• If σi = 1 and Ai occurs, then

gσiNi(βi,1, βi,2) = max
σ

gσNi(βi,1, βi,2) ≥ min
u,v

max
σ

gσNi(u, v) .
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• If σi = 0 and Ai does not occur, then

gσiNi(βi,1, βi,2) = max
σ

gσNi(βi,1, βi,2) ≥ min
u,v

max
σ

gσNi(u, v) .

Therefore, using the fact that gσn is non-negative by definition, we have

gσiNi(βi,1, βi,2) ≥
(
I {Ai, σi = 1}+ I {¬Ai, σi = 0}

)
min
u,v

max
σ

gσNi(u, v) .

Substituting this back into (20), and using Lemma 12, Lemma 13 and Lemma 11 in order, we get a
lower bound of the form

d∑
i=1

E
[(

min
u,v

max
σ

gσNi(u, v)

)(
I {Ai, σi = 1}+ I {¬Ai, σi = 0}

)]

≥ 1

2

d∑
i=1

E
[(

min
u,v

max
σ

gσNi(u, v)

)
P(Ei | Ni)

]

≥ 1

2

d∑
i=1

(
min

m
2d
≤ni≤ 2m

d

min
u,v

max
σ

gσni(u, v)

)(
P(Ei)− 2 exp

(
−m

8d

))
=

1

2

(
min

m
2d
≤n≤ 2m

d

min
u,v

max
σ

gσn(u, v)

)
d∑
i=1

(
P(Ei)− 2 exp

(
−m

8d

))
≥ d

2

(
min

m
2d
≤n≤ 2m

d

min
u,v

max
σ

gσn(u, v)

)(
1

2
− 2 exp

(
−m

8d

))

= d

(
1

4
− exp

(
−m

8d

))(
min

m
2d
≤n≤ 2m

d

min
u,v

max
σ

gσn(u, v)

)
where the first inequality follows from Lemma 12, the second inequality is from Lemma 13, and the
third inequality is by Lemma 11. Since we assume m ≥ 27d, this is at least

d

5

(
min

m
2d
≤n≤ 2m

d

min
u,v

max
σ

gσn(u, v)

)
. (21)

We now turn to analyze min
u,v

max
σ

gσn(u, v). By definition of gσn(u, v), we have that

g0n(u, v) = f0n(u, v)−min
u,v

f0n(u, v) =
n

2m

(
`(u, y) + `(v, y)

)
+
λ

2
(u2 + v2)−min

u,v
f0n(u, v) .

It is readily seen that this function is λ-strongly convex in (u, v), and attains a minimal value of 0
at some (u∗1, u

∗
1), where

u∗1 = argmin
u

n

m
`(u, y) + λu2 .

Using the property of λ-strong convexity, we have for all u, v that

g0n(u, v) = g0n(u, v)− g0n(u∗1, u
∗
1) ≥

λ

2
‖(u, v)− (u∗1, u

∗
1)‖2 =

λ

2

(
(u− u∗1)2 + (v − u∗1)2

)
. (22)
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Also, by definition,

g1n(u, v) = f1n(u, v)−min
u,v

f1n(u, v) =
n

m
`(u+ v, y) +

λ

2
(u+ v)2 −min

u,v
f1n(u, v)

which is a λ strongly-convex function in u+ v, and attains a minimal value of 0 at any u2, v2 such
that u∗2 = u2 + v2, where

u∗2 = argmin
u

n

m
`(u, y) +

λ

2
u2.

Using the property of λ-strong convexity, we have for all u, v that

g1n(u, v) = g1(u, v)− g1(u2, v2) ≥
λ

2

(
(u+ v)− (u2 + v2)

)2
=
λ

2
(u+ v − u∗2)2 . (23)

Combining (22) and (23), and using the fact that the maximum is lower bounded by the average,
this implies that

min
u,v

max
σ

gσn(u, v) ≥ min
u,v

max

{
λ

2

(
(u− u∗1)2 + (v − u∗1)2

)
,
λ

2
(u+ v − u∗2)2

}
≥ min

u,v

λ

4

(
(u− u∗1)2 + (v − u∗1)2 + (u+ v − u∗2)2

)
.

A straightforward calculation reveals that this expression is minimized at u = v = 1
3(u∗1 + u∗2),

leading to a value of λ
12(2u∗1 − u∗2)2. To summarize, we showed that

min
u,v

max
σ

gσn(u, v) ≥ λ

12
(2u∗1 − u∗2)2

where

u∗1 = arg min
u

n

m
`(u, y) + λu2 and u∗2 = arg min

u

n

m
`(u, y) +

λ

2
u2 .

This computation holds for any value of y, and therefore we have

min
u,v

max
σ

gσn(u, v) ≥ max
y∈Y

λ

12
(2u∗1 − u∗2)2

where u∗1, u
∗
2 are as defined above. Substituting this back into (21), we get

1

60
λd

(
min

m
2d
≤n≤ 2m

d

max
y∈Y

(2u∗1 − u∗2)2
)
. (24)

Finally, to write this in a simpler form, let p = m
nd . Then we can equivalently write u∗1, u

∗
2 as

u∗1 = argmin
u

`(u, y) +
m

n
λu2 = argmin

u
`(u, y) + pλdu2

u∗2 = argmin
u

`(u, y) +
mλ

2n
u2 = argmin

u
`(u, y) +

pλd

2
u2 .

Moreover, the constraint m2d ≤ n ≤
2m
d implies that p ∈

[
1
2 , 2
]
, so we can lower bound (24) by

1

60
λd

(
min
p∈[ 12 ,2]

max
y∈Y

(2u∗1 − u∗2)2
)

as desired. �
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A.2. Proof of Theorem 9

Recall that we assume that m is divisible by 2d. Given t = 1, . . . ,m, define

i(t) = 1 +

⌊
t− 1

m/2d

⌋
to be the partition function of {1, . . . ,m} into 2d equal-sized blocks:

i(1) = i(2) = · · · = i(m/2d) = 1

i(m/2d+ 1) = · · · = i(2m/2d) = 2

and so on, until i(m) = 2d.
Suppose we choose the target values y1, . . . , ym according to yt = zi(t), where z = (z1, . . . , z2d)

is to be chosen later, and let xt = vi(t) for t = 1, . . . ,m. Recall that k(vi,vj) = I {vi = vj}. It
is easily seen that these instances induce a block-diagonal kernel matrix K ∈ K2d,m, composed
of 2d all-one blocks of equal size m/(2d). Moreover, any low-rank matrix K ′ used by the algo-
rithm will also have a block-wise structure (with possibly different values for the entries), where
K ′t,t′ =

〈
φ(vi(t)), φ(vi(t′))

〉
.

Given any such block-wise kernel matrix K, composed of 2d uniform blocks of size m/2d, let
GK be the 2d × 2d matrix defined as Gi(t),i(t′) = Kt,t′ . Note that since K is symmetric, GK is
symmetric as well. Finally, given some coefficient vector α, define β as

∀i = 1, . . . , d, βi =
∑

t : i(t)=i

αt .

With this notation, we can re-write the objective function and resulting solution using the following
lemma.

Lemma 14 For any block matrix K, where Kt,t′ = Kr,r′ if i(t) = i(r) and i(t′) = i(r′), and any
coefficient vector α with corresponding β, we have

1

m

m∑
t=1

(
α>Ket − yt

)2
+
λ

2
α>Kα =

1

m

(
α>
(
K +

mλ

2
I

)
Kα− 2y>Kα+ ‖y‖2

)
=

1

2d

(
β>
(
GK + dλI

)
GKβ − 2z>GKβ + ‖z‖2

)
.

Moreover, if α =
(
K + λm

2 I
)−1

y, then β = (GK + dλI)−1z.

The proof is a technical exercise, and appears separately in Subsection A.3.
In our case, we chose the training instances so that K is a block-diagonal matrix composed of

2d equal-sized all-ones block. Therefore, GK in our case is simply the d × d identity matrix. By
Lemma 14, we can write the objective function as

1

m

m∑
t=1

(
α>Ket − yt

)2
+
λ

2
α>Kα =

1

2d

(
(1 + dλ)‖β‖2 − 2z>β + ‖z‖2

)
.
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This function is 1+dλ
d -strongly convex in β, and is minimized at β∗ = 1

1+dλz. Therefore, the error
obtained by any other solution β is at least

1 + dλ

2d

∥∥∥∥β − 1

1 + dλ
z

∥∥∥∥2 . (25)

According to Lemma 14 and the definition of the algorithm, the β corresponding to the coeffi-
cient vector α returned by the learning algorithm (using a kernel matrix K ′) satisfies β = (GK

′
+

dλI)−1z. Plugging this back into (25), we get an error lower bound of

1 + dλ

2d

∥∥∥∥(GK
′
+ dλI)−1z − 1

1 + dλ
z

∥∥∥∥2 =
1 + dλ

2d

∥∥∥∥((GK
′
+ dλI)−1 − 1

1 + dλ
I

)
z

∥∥∥∥2 .
(26)

Let USU> be the spectral decomposition of GK
′
, where U =

[
u1, . . . ,u2d

]
∈ R2d×2d is an

orthonormal matrix, and S is a diagonal matrix with eigenvalues s1 ≤ s2 ≤ . . . s2d on the diagonal.
Moreover, since K ′ is a matrix of rank at most d, it follows that GK

′
is also of rank at most d, hence

s1 = · · · = sd = 0. We can therefore re-write (26) as

1 + dλ

2d

∥∥∥∥(U(S + dλI)−1U> − 1

1 + dλ
I

)
z

∥∥∥∥2
=

1 + dλ

2d

∥∥∥∥U ((S + dλI)−1 − 1

1 + dλ
I

)
U>z

∥∥∥∥2
=

1 + dλ

2d

∥∥∥∥((S + dλI)−1 − 1

1 + dλ
I

)
U>z

∥∥∥∥2
=

1 + dλ

2d

2d∑
i=1

((
1

si + dλ
− 1

1 + dλ

)
u>i z

)2

≥ 1 + dλ

2d

d∑
i=1

((
1

si + dλ
− 1

1 + dλ

)
u>i z

)2

=
1 + dλ

2d

d∑
i=1

((
1

dλ
− 1

1 + dλ

)
u>i z

)2

=
1 + dλ

2d

1(
dλ(1 + dλ)

)2 d∑
i=1

(
u>i z

)2
=

1

2(dλ)2(1 + dλ)d

d∑
i=1

(
u>i z

)2
.

We are now free to choose z = (z1, . . . , z2d), which induces some choice of the target values
y1, . . . , ym, to get the final bound. In particular, we argue that there exist some z ∈ {−1,+1}2d
such that

d∑
i=1

(
u>i z

)2
≥ d
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from which the result follows. To show this, we use the probabilistic method: Suppose that z is
chosen uniformly at random from {−1,+1}2d. Then

E

[
d∑
i=1

(
u>i z

)2]
= E

[
d∑
i=1

u>i zz
>ui

]
=

d∑
i=1

u>i E[zz>]ui

=

d∑
i=1

u>i Iui =

d∑
i=1

‖ui‖2 = d .

This means that there must exist some z ∈ {−1,+1}2d such that
∑d

i=1

(
u>i z

)2 ≥ d as required.
�

A.3. Proof of Lemma 14

To simplify the notation, let us introduce an auxiliarym×2dmatrixA, defined asAt,j = I {i(t) = j}.
In other words, its transpose has the form

A> =


1 · · · 1 0 · · · 0 0 · · · 0 0 · · ·
0 · · · 0 1 · · · 1 0 · · · 0 0 · · ·
0 · · · 0 0 · · · 0 1 · · · 1 0 · · ·

· · ·


We will now collect a few useful identities. First, since we defined β according to βi =

∑
t:i(t)=i αi

and y according to yt = zi(t), it is easily verified that

β = A>α , z =
2d

m
A>y , ‖y‖2 =

m

2d
‖z‖2. (27)

Second, we have
A>K =

m

2d
GKA>, (28)

which holds by the following chain of inequalities (using the definition of GK , A) for all j ∈
{1, . . . , 2d and t ∈ {1, . . . ,m}:

(A>K)j,t =
m∑
p=1

Ap,jKp,t =
m∑
p=1

I {i(p) = j}GKi(p),i(t)

=
m

2d
GKj,i(t) =

m

2d

2d∑
p=1

GKj,pI {i(t) = p}

=
m

2d

2d∑
p=1

GKj,pAt,p =
m

2d
(GKA>)j,t.

Third, we have
K = AGKA>, (29)
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since for any t, t′ ∈ {1, . . . ,m},

(
AGKA>

)
t,t′

=
2d∑

p,q=1

At,pG
K
p,qAt′,q

=

2d∑
p,q=1

I
{
i(t) = p, i(t′) = q

}
GKp,q = Gki(t),i(t′) = Kt,t′ .

We now turn to prove the required lemma. The fact that

1

m

m∑
t=1

(
α>Ket − yt

)2
+
λ

2
α>Kα =

1

m

(
α>
(
K +

mλ

2
I

)
Kα− 2y>Kα+ ‖y‖2

)
is a straightforward exercise. Moreover, using (27), (28) and (29), the above equals

1

m

(
α>
(
KK +

mλ

2
K

)
α− 2y>Kα+ ‖y‖2

)
=

1

m

(
α>
(
AGKA>K +

mλ

2
AGKA>

)
α− 2y>AGKA>α+

m

2d
‖z‖2

)
=

1

m

(
α>A

(
GKA>K +

mλ

2
GKA>

)
α− m

d
z>GKβ +

m

2d
‖z‖2

)
=

1

2d

(
α>A

(
2d

m
GKA>K + dλGKA>

)
α− 2z>GKβ + ‖z‖2

)
=

1

2d

(
α>A

(
GKGKA> + dλGKA>

)
α− 2z>GKβ + ‖z‖2

)
=

1

2d

(
α>A

(
GK + dλI

)
GKA>α− 2z>GKβ + ‖z‖2

)
=

1

2d

(
β>
(
GK + dλI

)
GKβ − 2z>GKβ + ‖z‖2

)
,

proving the first part of the lemma. To prove the second part, it is enough to show that (GK +
dλI)β = z. This follows from the following chain of equalities, using (27), (29), and the assump-
tion that α =

(
K + λm

2 I
)−1

y:

(GK + dλI)β = (GK + dλI)A>α = GKA>α+ dλA>α

=
2d

m
A>Kα+ dλA>α =

2d

m
A>
(
K +

λm

2
I

)
α

=
2d

m
A>y = z.
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