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Abstract
In this paper, we present and analyze a simple and robust spectral algorithm for the stochastic
block model with k blocks, for any k fixed. Our algorithm works with graphs having constant edge
density, under an optimal condition on the gap between the density inside a block and the density
between the blocks. As a co-product, we settle an open question posed by Abbe et. al. concerning
censor block models.
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1. Introduction

Community detection is an important problem in statistics, theoretical computer science and image
processing. A widely studied theoretical model in this area is the stochastic block model. In the
simplest case, there are two blocks V1, V2 each of size of n; one considers a random graph generated
from the following distribution: an edge between vertices belonging to the same block appears with
probability a

n and an edge between vertices across different blocks appear with probability b
n , where

a > b > 0. Given an instance of this graph, we would like to identify the two blocks as correctly as
possible. Our paper will deal with the general case of k ≥ 2 blocks, but for the sake of simplicity,
let us first focus on k = 2.

For k = 2, the problem can be seen as a variant of the well known hidden bipartition problem,
which has been studied by many researchers in theoretical computer science, starting with the work
of Bui et al. (1987); (see Dyer and Frieze (1989) Boppana (1987) Jerrum and Sorkin (1993) Mc-
Sherry (2001) and the references therein for further developments). In these earlier papers, a and b
are large (at least log n) and the goal is to recover both blocks completely. It is known that one can
efficiently obtain a complete recovery if (a−b)2

a+b ≥ C logn
n and a, b ≥ C log n for some sufficiently

large constant C (see, for instance Vu (2014)).
In the stochastic block model problem, the graph is sparse with a and b being constants. Classi-

cal results from random graph theory tell us that in this range the graph contains, with high proba-
bility, a linear portion of isolated vertices Bollobas (2001). Apparently, there is no way to tell these
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vertices apart and so a complete recovery is out of question. The goal here is to recover a large
portion of each block, namely finding a partition V ′1 ∪ V ′2 of V = V1 ∪ V2 such that Vi and V ′i are
close to each other. For quantitative purposes, let us introduce a definition

Definition 1 A collection of subsets V ′1 , V
′

2 of V1 ∪ V2 is γ-correct if |Vi ∩ V ′i | ≥ (1− γ)n.

In Coja-Oghlan (2010), Coja-Oglan proved

Theorem 2 For any constant γ > 0 there are constants d0, C > 0 such that if a, b > d0 and
(a−b)2
a+b > C log(a+ b), one can find a γ-correct partition using a polynomial time algorithm.

Coja-Oglan proved Theorem 2 as part of a more general problem, and his algorithm was rather
involved. Furthermore, the result is not yet sharp and it has been conjectured that the log term is
removable1. Even when the log term is removed, an important question is to find out the optimal
relation between the accuracy γ and the ratio (a−b)2

a+b . This is the main goal of this paper.

Theorem 3 There are constants C0 and C1 such that the following holds. For any constants
a > b > C0 and γ > 0 satisfying

(a− b)2

a+ b
≥ C1 log

1

γ
,

we can find a γ-correct partition with probability 1− o(1) using a simple spectral algorithm.

The constants C0, C1 can be computed explicitly via a careful, but rather tedious, book keeping.
We try not to optimize these constants to simplify the presentation. The proof of Theorem 3 yields
the following corollary

Corollary 4 There are constants C0 and ε such that the following holds. For any constants a >
b > C0 and ε > γ > 0 satisfying

(a− b)2

a+ b
≥ 8.1 log

2

γ
,

we can find a γ-correct partition with probability 1− o(1) using a simple spectral algorithm.

In parallel to our study, Zhang and Zhou , proving a minimax rate result that suggested that there
is a constant c > 0

(a− b)2

a+ b
≤ c log

1

γ

then one cannot recover a γ-correct partition (in expectation), regardless the algorithm.
In order to prove Theorem 3, we design a fast and robust algorithm which obtains a γ-correct

partition under the condition (a−b)2
a+b ≥ C log 1

γ . Our algorithm guarantees γ-correctness with high
probability.

We can refine the algorithm to handle the (more difficult) general case of having k blocks, for
any fixed number k. Suppose now there are k blocks V1, ..., Vk with |Vi| = n

k with edge probabilities
a
n between vertices within the same block and b

n between vertices in different blocks. As before, a
collection of subsets V ′1 , V

′
2 , .., V

′
k of V1 ∪ V2 ∪ ... ∪ Vk is γ-correct if |Vi ∩ V ′i | ≥ (1− γ)nk .

1. We would like to thank E. Abbe for communicating this conjecture.
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Theorem 5 There exists constants C1, C2, such that if k is any constant as n→∞ and if

1. a > b ≥ C1

2. (a− b)2 ≥ C2k
2a log 1

γ ,

then we can find a γ-correct partition with probability at least 1 − o(1) using a simple spectral
algorithm.

We believe that this result is sharp, up to the values of C1 and C2; in particular, the requirement
(a−b)2
a = Ω(k2) is optimal.
Our method also works (without significant changes) in the case the blocks are not equal, but

have comparable sizes (say cn ≥ |Vi| ≥ n for some constant c ≥ 1). In this case, the con-
stants C1, C2 above will also depend on c. While the emphasis of this paper is on the case a, b are
constants, we would like to point out that this assumption is not required in our theorems, so our
algorithms work on denser graphs as well.

Let us now discuss some recent works, which we just learned after posting the first version
of this paper on arxiv. Mossel informed us about a recent result in Mossel et al. (2013b) which
is similar to Theorem 3 (see (Mossel et al., 2013b, Theorem 5.3)). They give a polynomial time
algorithm and prove that there exists a constant C such that if (a − b)2 > C(a + b) and a, b are
fixed as n → ∞, then the algorithm recovers an optimal fraction of the vertices. The algorithm in
Mossel et al. (2013b) is very different from ours, and uses non-back tracking walks. This algorithm
doest not yet handle the case of more than 2 blocks, and its analysis looks very delicate. Next,
Guedon sent us Guédon and Vershynin (2014), in which the authors also proved a result similar to
Theorem 3, under a stronger assumption (a − b)2 ≥ C 1

γ2
(a + b) (see Theorem 1.1 and Corollary

1.2 of Guédon and Vershynin (2014)). Their approach relies on an entirely different (semi-definite
program) algorithm, which, in turn, was based on Grothendick’s inequality. This approach seems
to extend to the general k > 2 case; however, the formulation of the result in this case, using matrix
approximation, is somewhat different from ours (see (Guédon and Vershynin, 2014, Theorem 1.3)).
Two more closely related papers have been brought to our attention by the reviewers. In Lelarge
et al. (2013), authors have worked out the spectral part of the result in this paper. Also, in a paper
posted less than a month prior to this paper, authors of Yun and Proutiere (2014) have also achieved
a log 1/γ dependence using similar techniques.

It is remarkable to see so many progresses, using different approaches, on the same problem in
such a short span of time. This suggests that the problem is indeed important and rich, and it will
be really pedagogical to study the performance of the existing algorithms in practice. We are going
to discuss the performance of our algorithm in Sections 3 and 4.

We next present an application of our method to the Censor Block Model studied by Abbe
et. al. in Abbe et al. (2014). As before, let V be the union of two blocks V1, V2, each of size
n. Let G = (V,E) be a random graph with edge probability p with incidence matrix BG and
x = (x1, ..., x2n) be the indicator vector of V2. Let z be a random noise vector whose coordinates
zei are i.i.d Bernoulli(ε) (taking value 1 with probability ε and 0 otherwise), where ei are the edges
of G.

Given a noisy observation
y = BGx ⊕ z
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where ⊕ is the addition in mod 2, one would like identify the blocks. In Abbe et al. (2014), the
authors proved that exact recovery (γ = 0) is possible if and only if np

logn ≥
2

(1−2ε)2
+ o( 1

(1−2ε)2
) in

the limit ε→ 1/2. Further, they gave a semidefinite programming based algorithm which succeeds
up to twice the threshold. They posed the question of partial recovery (γ > 0) for sparse graphs.
Addressing this question, we show

Theorem 6 For any given constants γ, 1/2 > ε > 0, there exists constant C1, C2 such that if
np ≥ C1

(1−2ε)2
and p ≥ C2

n , then we can find a γ-correct partition with probability 1− o(1), using a
simple spectral algorithm.

Let us conclude this section by mentioning a related, interesting, problem, where the purpose
is just to do better than a random guess (in our terminology, to find a partition which is (1/2 + ε)-
correct). It was conjectured in Decelle et al. (2011) that this is possible if and only if (a − b)2 >
(a + b). This conjecture has been settled recently by Mossel et. al. Mossel et al. (2012) Mossel
et al. (2013a) and Massoulie Massoulié (2013) . Another closely related problem which has been
studied in Abbe et al. (2014) Mossel et al. (2014) is about when one can recover at least 1 − o(1)
fraction of the vertices.

The rest of the paper is organized as follows. In section 2, we describe our algorithm for Theo-
rem 7 and an overview of the proof. The full proof comes in sections 3. In section 4, we show how
to modify the algorithm to handle the k block case and prove theorem 5. Finally, in section 5, we
prove theorem 6.

2. Two communitites

We first consider the case k = 2. Our algorithm will have two steps. First we use a spectral
algorithm to recover a partition where the dependence between γ and (a−b)2

a+b is sub-optimal.
Let A0 denote the adjacency matrix of a random graph generated from the distribution as in

Theorem 7. Let Ā0
def
= EA0 and E0

def
= A0 − Ā0. Then Ā0 is a rank two matrix with the two non

zero eigenvalues λ1 = a + b and λ2 = a − b. The eigenvector u1 corresponding to the eigenvalue
a+ b has coordinates

u1(i) =
1√
2n
, for all i ∈ V

and eigenvector u2 corresponding to the eigenvalue a− b has coordinates

u2(i) =

{
1√
2n

if i ∈ V1
−1√
2n

if i ∈ V2.

Notice that the second eigenvector of Ā0 identifies the partition. We would like to use the second
eigenvector of A0 to approximately identify the partition. Since A0 = Ā0 +E0, perturbation theory
tells us that we get a good approximation if ‖E0‖ is sufficiently small. However, with probability
1 − o(1), the norm of E0 is rather large (even larger than the norm of the main term). In order to
handle this problem, we modify E0 using the auxiliary deletion, at the cost of losing a few large
degree vertices.

4
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Spectral Partition.

1. Input the adjacency matrix A0, d := a+ b.

2. Zero out all the rows and columns of A0 corresponding to vertices whose degree is bigger
than 20d, to obtain the matrix A.

3. Find the eigenspace W corresponding to the top two eigenvalues of A.

4. Compute v1, the projection of all-ones vector on to W

5. Let v2 be the unit vector in W perpendicular to v1.

6. Sort the vertices according to their values in v2, and let V ′1 ⊂ V be the top n vertices, and
V ′2 ⊂ V be the remaining n vertices

7. Output (V ′1 , V
′

2).

Figure 1: Spectral Partition

Let Ā, A,E be the matrices obtained from Ā0, A0, E0 after the deletion, respectively. Let ∆
def
=

Ā− Ā0; we have

A = Ā+ E

= Ā0 + ∆ + E.

The key observation is that ‖E‖ is significantly smaller than ‖E0‖. In the next section we will

show that ‖E‖ = O(
√
d), with probability 1− o(1), while ‖E0‖ is Θ(

√
logn

log logn), with probability
1−o(1). Furthermore, we could show that ‖∆‖ is onlyO(1) with probability 1−o(1). Therefore, if
the second eigenvalue gap for the matrixA0 is greater thanC

√
d, for some large enough constantC,

then Davis-Kahan sin Θ theorem would allow us to bound the angle between the second eigenvector
of Ā0 and A by an arbitrarily small constant. This will, in turn, enable us to recover a large portion
of the blocks, proving the following statement

Theorem 7 There are constants C0 and C1 such that the following holds. For any constants
a > b > C0 and γ > 0 satisfying (a−b)2

a+b ≥ C1
1
γ2

, then with probability 1 − o(1), Spectral
Partition outputs a γ-correct partition.

Remark 8 The parameter d := a + b can be estimated very efficiently from the adjacency matrix
A. We take this as input for a simpler exposition.

Step 2 is a further correction that gives us the optimal (logarithmic) dependence between γ and
(a−b)2
a+b . The idea here is to use the degree sequence to correct the mislabeled vertices. Consider a

mislabeled vertex u ∈ V ′1 ∩ V2. As u ∈ V2, we expect u to have b neighbors in V1 and a neighbors
in V2. Assume that Spectral Partition output V ′1 , V

′
2 where |V1\V ′i | ≤ 0.1n, we expect u to have

at most 0.9b+ 0.1a neighbors in V ′1 and at least 0.1b+ 0.9a neighbors in V ′2 . As
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Partition

1. Input the adjacency matrix A0, d := a+ b.

2. Randomly color the edges with Red and Blue with equal probability.

3. Run Spectral Partition on Red graph, outputting V ′1 , V
′

2 .

4. Run Correction on the Blue graph.

5. Output the corrected sets V
′

1 , V
′

2 .

Figure 2: Partition

0.1b + 0.9a > a+b
2 > 0.9b + 0.1a, we can correctly reclassify u by thresholding. There are,

however, few problems with this argument. First, everything is in expectation. This turns out to be
a minor problem; we can use a large deviation result to show that a majority of mislabeled vertices
can be detected this way. As a matter of fact, the desired logarithmic dependence is achieved at this
step, thanks to the exponential probability bound in the large deviation result.

The more serious problem is the lack of independence. Once Spectral Partition has run, the
neighbors of u are no longer random. We can avoid this problem using a splitting trick as given in
Partition. We sample randomly half of the edges of the input graph and used the graph formed by
them in Spectral Partition. After receiving the first partition, we use the other (random) half of
the edges for correction. This doesn’t make the two steps completely independent, but we can still
prove the stated result.

The sub-routine Correction is as follows:

Correction.

1. Input: a partition V ′1 , V
′

2 and a Blue graph on V ′1 ∪ V ′2 .

2. For any u ∈ V ′1 , label u bad if the number of neighbors of u in V ′2 is at least a+b
4 and good

otherwise.

3. Do the same for any v ∈ V ′2 .

4. Correct V ′i be deleting its bad vertices and adding the bad vertices from V ′3−i.

Figure 3: Correction

Figure 4 is the density plot of the matrix before and after clustering according to the algorithm
described above. We can prove

Lemma 9 Given a 0.1-correct partition V ′1 , V
′

2 and a Blue graph on V ′1 ∪ V ′2 as input to the sub-
routine Correction given in figure 3, we get a γ-correct partition with γ = 2 exp(−0.072 (a−b)2

a+b ).
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Figure 4: On the left is the density plot of the input (unclustered) matrix with parameters n =
7500, a = 10, b = 3 and on the right is the density plot of the permuted matrix after
running the algorithm described above. This took less than 3secs in Matlab running on a
2009 MacPro.

3. First step: Proof of Theorem 7

We now turn to the details of the proof. Using the notation in the previous section, we let W
be the two dimensional eigenspace corresponding to the top two eigenvalues of A and W̄ be the
corresponding space of Ā. For any two vector subspaces W1,W2 of same dimension, we use the
usual convention sin∠(W1,W2) := ‖PW1 − PW2‖, where PWi is the orthogonal projection onto
Wi. The proof has two main steps:

1. Bounding the angle: We show that sin∠(W, W̄ ) is small, under the conditions of the theorem.

2. Recovering the partition: If sin∠(W, W̄ ) is small, we find an approximate partition which
can then improved to find an optimal one.

3.1. Bounding the angle

For the first part, recall that A = Ā0 + ∆ + E. We first prove that ‖∆‖ and ‖E‖ are small with
probability 1− o(1). Bounding ‖∆‖ is easy as it will be sufficient to bound the number of vertices
of high degrees. We need the following

Lemma 10 There exist a constant d0 such that if d := a + b ≥ d0, then with probability 1 −
exp

(
−Ω(a−2n)

)
not more than a−3n vertices have degree ≥ 20d.

Note that the proof of the above lemma and other missing proofs in this subsection appear in
appendix A.1. If there are at most a−3n vertices with degree ≥ 20d, then by definition, ∆ has at
most 2a−3n2 non-zero entries, and the magnitude of each entry is bounded by a

n . Therefore, its
Hilbert-Schmidt norm is bounded by ‖∆‖HS ≤

√
2a−1/2.
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Corollary 11 For d0 sufficiently large, with probability 1− exp(−Ω(a−3n)), ‖∆‖ ≤ 1.

Now we address the harder task of bounding ‖E‖. Here is the key lemma

Lemma 12 SupposeM is random symmetric matrix with zero on the diagonal whose entries above
the diagonal are independent with the following distribution

Mij =

{
1− pij w.p. pij
−pij w.p. 1− pij

.

Let σ be a quantity such that pij ≤ σ2 and M1 be the matrix obtained from M by zeroing out
all the rows and columns having more than 20σ2n positive entries. Then with probability 1− o(1),
‖M1‖ ≤ Cσ

√
n for some constant C > 0.

Lemma 12 implies

Corollary 13 There exist constants C0, C such that if a > b ≥ C0, and E is obtained as described
before, then we have,

‖E‖ ≤ C
√
d

with probability 1− o(1).

Now, let v̄1, v̄2 be eigenvectors of Ā0 corresponding to the largest two eigenvalues λ1 ≥ λ2

v1, v2 be eigenvectors of A = Ā0 + ∆ + E corresponding to the largest two eigenvalues. Further,
W̄ := Span{v̄1, v̄2} and W := Span{v1, v2}.

Lemma 14 For any constant c < 1, we can choose constants C2 and C3 such that such that if
a− b ≥ C2

√
a+ b = C2

√
d and a ≥ C3 then, sin(∠W̄ ,W ) ≤ c < 1 with probability 1− o(1).

Proof of Lemma 14: Let C3 be a constant such that if a ≥ C3, then theorem 11 holds giving us
‖∆‖ ≤ 1. From lemma 13 we have that ‖E‖ ≤ C

√
d. The lemma then follows from the Davis-

Kahan Davis (1963) Bhatia (1997) bound for matrices Ā0 and A, which gives sin(∠W, W̄ ) ≤
‖E+∆‖
λ2

. Therefore, the lemma follows by choosing C1 big enough.

3.2. Recovery

Given a subspace W satisfying sin(∠W̄ ,W ) ≤ c < 1/16, we can recover a big portion of the
vertices. We prove (in appendix A.2) that

Lemma 15 Given a subspace W satisfying sin(∠W̄ ,W ) ≤ c < 1/16, we can recover a 8c/3-
correct partition.

Once we have an approximate partition, we can use the Blue edges to boost it in the Correction
step. We prove (in appendix A.3)

Lemma 16 Given a 0.1 correct partition V ′1 , V
′

2 as input to the Correction routine in figure 3, the
algorithm outputs a γ correction partition with γ = 2 exp(−0.072 (a−b)2

a+b ).
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4. Multiple communities

4.1. Overview

Let us start with the algorithm, which (compared to the algorithm for the case of 2 blocks) has an
additional step of random splitting. This additional step is needed in order to recover the partitions.
We will start by computing an approximation of the space spanned by the first k eigenvectors of
the hidden matrix. However, when k > 2, it is not obvious how to approximate the eigenvectors
themselves. To handle this problem, we need a new argument that requires this extra step.

Partition

1. Input the adjacency matrix A0, a, b.

2. Randomly color the edges with Red and Blue with equal probability.

3. Randomly partition V into two subsets Y and Z. Let B be the adjacency matrix of the
bipartite graph between Y and Z consisting only of the Red edges, with rows indexed by Z
and the columns indexed by Y .

4. Run Spectral Partition (figure 6) on matrix B, and get U ′1, U
′
2, ..., U

′
k as output. This part

uses only the Red edges that go between vertices in Y and Z and outputs an approximation
to the clustering in Z = U1 ∪ ... ∪ Uk. Here, Ui := Vi ∩ Z.

5. Run Correction (figure 7) on the Red graph. This procedure only uses the Red edges that are
internal to Z and improves the clustering in Z.

6. Run Merging (figure 8) on the Blue graph. This part uses only the Blue edges that go between
vertices in Y and Z and assigns the vertices in Y to appropriate cluster.

Figure 5: Partition

Since we use different set of edges for each step, we have independence across the steps.

4.2. Details

Step 1 is a spectral algorithm on a portion of the adjacency matrix A0 as given in figure 6. This will
enable us to recover a large portion of the blocks Z ∩ V1, ..., Z ∩ Vk. We will prove the following
statement (appendix B.1)

Theorem 17 There exists constants C1, C2 such that for any fixed integer k the following holds.

1. a > b ≥ C1

2. (a−b)2
a ≥ C2k

2 1
γ , and

then we can find a γ-correct partition U ′1, ..., U
′
k of Z with high probability using a simple spectral

algorithm.
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Spectral Partition.

1. Input B (a matrix of dimension |Z| × |Y | ), a, b and k.

2. Let Y1 be a random subset of Y by selecting each element with probability 1
2 independently

and let A1, A2 be the sub matrix of B formed by the columns indexed by Y1, Y2 := Y \Y1,
respectively.

3. Let d := a+ (k − 1)b. Zero out all the rows and columns of A1 corresponding to vertices
whose degree is bigger than 20d, to obtain the matrix A.

4. Find the space spanned by k left singular vectors of A, say W

5. Let a1, ...,am be some m = 2 log n random columns of A2. For each i, project a i − a onto
W , where a(j) = a+b

2n for all j is a constant vector.

6. For each projected vector, identify the top (in value) n/2k coordinates. Of the 2 log n sets so
obtained, discard half of the sets with the lowest Blue edge density in them.

7. Of the remaining subsets, identify some k subsets U ′1, ..., U
′
k such that |U ′i ∩ U ′j | < 0.2n/2k,

for i 6= j.

8. Output U ′1, ..., U
′
k.

Figure 6: Spectral Partition

Step 2 (figure 7) is a further correction that gives us the optimal (logarithmic) dependence be-
tween γ and (a−b)2

a+b . The idea here is to use the degree sequence to correct the mislabeled vertices
in Z. Consider a mislabeled vertex u ∈ Z ∩ V1. As u ∈ Z ∩ V1, we expect u to have a/4 Red
neighbors in Z ∩V1 and b/4 Red neighbors in Z ∩Vi for all i 6= 1. Assume that Spectral Partition
output U ′1, ..., U

′
k where |U1\U ′1| ≤ .1n/2k, we expect u to have at most 0.9b/4k + 0.1a/4k Red

neighbors in U ′i and at least 0.1b/4k + 0.9a/4k Red neighbors in U ′1. As

0.1b/8k + 0.9a/8k >
a+ b

8k
> 0.9b/8k + 0.1a/8k

we can correctly reclassify u by thresholding. We can prove (appendix B.2)

Lemma 18 Given a 0.1 correction partition of Z = (Z ∩ V1) ∪ ... ∪ (Z ∩ Vk) and the Red
graph over Z, the sub-routine Correction given in figure 7 computes a γ correct partition with
γ = 2k exp(−0.04 (a−b)2

k(a+b)).

Step 3 is to use the clustering information of vertices in Z to label the vertices in Y , and is
similar to step 2. We prove (appendix B.3)

Lemma 19 Given a 0.1 correction partition of Z = (Z ∩ V1) ∪ ... ∪ (Z ∩ Vk) and the Blue
graph over Y ∪ Z, the sub-routine Merge is given in (figure 8) computes a γ correct partition with
γ = 2k exp(−0.0324 (a−b)2

k(a+b)).

Combining lemmas 18, 19, we get the stated result.

10
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Correction.

1. Input: A collection of subsets U ′1, ..., U
′
k ⊂ Z and a graph on Z.

2. For every u ∈ Z, if i ∈ {1, 2, ..., k} is such that u has maximum neighbors in U ′i , then add u
to U ′′i . Break ties arbitrarily.

3. Output U ′′1 , ..., U
′′
k .

Figure 7: Correction

Merging.

1. Input: A partition U ′1, ..., U
′
k of (Z ∩ V1) ∪ (Z ∩ V2) ∪ ... ∪ (Z ∩ Vk) and a graph between

vertices Y and Z.

2. For all u ∈ Y , label u with ‘i’ if the number of neighbors of u in U ′i is at least a+b
8 . Label the

conflicts arbitrarily.

3. Output the label classes as the clusters V
′

1 , ..., V
′
k .

Figure 8: Merge

5. Censor Block Model

We first introduce some notations so as to write this problem in a way similar to the other problems
in this paper. To simplify the analysis, we make the following assumptions. We assume that there
are |V | = 2n vertices, with exactly n of them labeled 1, and the rest labeled 0. As in Abbe et al.
(2014), we assume that G ∈ G2n,p is a graph generated from the Erdos-Renyi model with edge
probability p. Since any edge (i, j) appears with probability p, and that z e ∼ Bernoulli(ε), we have

yi,j =


xi ⊕ xj w.p. p(1− ε)

xi ⊕ xj ⊕ 1 w.p. pε
0 w.p. 1− p

.

For any i, j ∈ V , let us write wij := xi ⊕ xj , and W := (wij)ij the associated 2n× 2n matrix.
We note that ȳi,j := E(yi,j) = pε + p(1 − 2ε)wi,j . Therefore, we can write yi,j = ȳi,j + ζi,j ,

where ζi,js are mean zero random variables satisfying Var(ζi,j) ≤ p. First we note that we can
recover the two communities from the eigenvectors of the 2n×2nmatrix Ȳ := (ȳi,j) = pεI+p(1−
2ε)W. Ȳ is a rank 2 matrix with eigenvalues pn and p(1−2ε)n, with the corresponding eigenvectors
v1 = (1, 1, ...., 1) and v2 = (1, ..., 1,−1, ...,−1). if we can find v2, we can identify the two blocks.
Let Y = (yi,j) and E = (ζi,j) be 2n × 2n matrices. Algorithm 10 (which is essentially same as
algorithm 2) which takes as input the adjacency matrix Y and the edge probability p achieves this
when np ≥ C2

(1−2ε)2
. More detail appears in appendix C.

11
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Figure 9: On the left is the density plot of the input (unclustered) matrix with parameters n =
3000, a = 22, b = 2 and on the right is the density plot of the permuted matrix after
running the algorithm described above. This took less than 1sec in Matlab running on a
2009 MacPro.

Spectral Partition II.

1. Input the adjacency matrix Y, p.

2. Zero out all the rows and columns of Y corresponding to vertices whose degree is bigger than
20pn, to obtain the matrix Y0.

3. Find the eigenspace U corresponding to the top two eigenvalues of Y0.

4. Compute v1, the projection of all-ones vector on to U

5. Let v2 be the unit vector in W perpendicular to v1.

6. Sort the vertices according to their values in v2, and let V ′1 ⊂ V be the top n vertices, and
V ′2 ⊂ V be the remaining n vertices

7. Output (V ′1 , V
′

2).

Figure 10: Algorithm 3
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Appendix A. Two communities

A.1. Bounding ‖∆‖ and ‖E‖

Proof of Lemma 10: One can prove Lemma 10 using a standard argument from random graph
theory. Consider a set of vertices X ⊂ V of size |X| = cn, where c < 1 is a constant. We first
bound the probability that all the vertices in this set have degree greater than 20d.
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Let us denote the set of edges on X by E(X) and the set of edges with exactly one end point in
X by E(X,Xc). If each degree in X is at least 20d, then a quick consideration reveals that either
|E(X)| ≥ 2cnd or |E(X,Xc)| ≥ 8cnd. The expected number of edges µE(X) := E(|E(X)|)
satisfies

0.25(cn)2 a

n
≤ µE(X) ≤ 0.5(cn)2 a

n
.

Let δ1 := 2
c ≤

2cnd
µE(X)

, then Chernoff bound (see Alon and Spencer (2004) for example) gives

P(|E(X)| ≥ cnd) ≤

(
exp(δ1 − 1)

δδ11

)µE(X)

≤ exp

((
2

c
− 1− 2

c
log

(
2

c

))
0.25(cn)2 a

n

)
≤ exp

(
−1

c
log

(
1

c

)
0.25(cn)2 a

n

)
(for small enough c)

= exp

(
−0.25 log

(
1

c

)
acn

)
.

Similarly, the expected number of edges µE(X,Xc) in E(X,Xc) satisfies

c(1− c)n2 a

n
≤ µE(X,Xc) ≤ c(2− c)n2 a

n
.

Let δ2 := 4 ≤ 8cnd
µE(X,Xc)

, then by Chernoff bound

P(|E(X,Xc)| ≥ 8cnd) ≤

(
exp(δ2 − 1)

δδ22

)µE(X,Xc)

≤ exp (−c(2− c)an) .

Now, if we substitute c = a−3 in the above bounds, we get

P(|E(X)| ≥ 2cnd) ≤ exp
(
−0.75 log(a)a−2n

)
P(|E(X,Xc)| ≥ 8cnd) ≤ exp

(
−a−2n

)
.

There are at most (
2n

cn

)
≤ exp

(
−c
(

log(
c

2
)− 1

)
n
)

subsets X of size |X| = cn. Substituting c = a−3 again, we get

(
2n

cn

)
≤ exp

(
4a−3 log(a)n

)
.

The claim follows from the union bound.

Proof of Lemma 12: We start by proving a simpler result.

15



CHIN RAO VU

Lemma 20 Let M be random symmetric matrix of size n with zero diagonal whose entries above
the diagonal are independent with the following distribution

Mij =

{
1− pij w.p. pij
−pij w.p. 1− pij

.

Let σ2 ≥ C1
logn
n be a quantity such that pij ≤ σ2 for all i, j, where C1 is a constant. Then with

probability 1− o(1), ‖M‖ ≤ C2σ
√
n for some constant C2 > 0.

Let us address Lemma 20. A weaker bound Cσ
√
n log n follows easily from Alshwede-Winter

type matrix concentration results (see Tropp (2012)). To prove the claimed bound, we need to be
more careful and follow the ε-net approach by Kahn and Szemeredi for random regular graphs in
Friedman et al. (1989) (see also Alon and Kahale (1994); Feige and Ofek (2005)).

Consider a 1
2 -net N of the unit sphere Sn. We can assume |N | ≤ 5n. It suffices to prove that

there exists a constant C ′2 such that with probability 1−o(1), |xTMy | ≤ C ′2σ
√
n for all x ,y ∈ N .

For two vectors x ,y ∈ N , we follow an argument of Kahn and Szemerédi Friedman et al.
(1989) and call all pairs (i, j) such that |xiyj | ≤ σ√

n
light and all remaining pairs heavy and denote

these two classes by L and H respectively. We have

xTMy =
∑
i,j

xiMijyj =
∑
L

xiMi,jyj +
∑
H

xiMi,jyj .

We now show that with probability 1− o(1), the last two summands are small in absolute value.
First, let us consider the contribution of light couples. We rewrite X :=

∑
L xiMi,jyj as∑

(i,j)∈L,i>jMi,jai,j , where

ai,j =


xiyj + xjyi if (i, j), (j, i) ∈ L

xiyj if (i, j) ∈ L
xjyi if (j, i) ∈ L

By the definition light pairs, |ai,j | ≤ 2 σ√
n

. Also, since x and y are unit vectors,
∑

i,j a
2
i,j ≤ 4.

Therefore, by Bernstein’s bound (see page 36 in Boucheron et al. (2013) for e.g.)

P(X > t) ≤ exp

(
−1

2 t
2

4σ2 + 1
32 σ√

n
t

)
.

Set t = 10σ
√
n and use the union bound (combining with the fact that the net has at most 5n

vectors, we can conclude that with probability at least 1− exp(−3n), |
∑

L xiMi,jyj | ≤ 10σ.
Next we handle the heavy pairs in H . Since 1 ≥

∑
H x

2
i y

2
j , the definition of heavy implies that∑

H |xiyj | ≤
√
n
σ .

Let Ai,j := Mi,j + pi,j , then∑
H

xiMi,jyj =
∑
H

xiAi,jyj −
∑
H

pijxiyj .

Note that A defines a graph, say GA, such that A is its adjacency matrix. As pij ≤ σ2, we have∑
H pij |xiyj | ≤ σ2

√
n
σ = σ

√
n. We use the following lemma to bound the first term.
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Lemma 21 Let G̃ = (Ṽ , Ẽ) be any graph whose adjacency matrix is denoted by Ã, and x ,y
be any two unit vectors. Let d̃ be such that the maximum degree ≤ c1d̃. Further, let d̃ satisfy the
property that for any two subsets of vertices S, T ⊂ Ṽ one of the following holds for some constants
c2 and c3:

e(S, T )

|S||T | d̃n
≤ c2 (1)

e(S, T ) log

(
e(S, T )

|S||T | d̃n

)
≤ c3|T | log

n

|T |
(2)

then
∑

H xiÃi,jyj ≤ max(16, 8c1, 32c2, 32c3)
√
d̃. Here H := {(i, j)||xiyj | ≥

√
d̃/n }.

The proof appears in appendix D.

Lemma 22 Let d̃ := σ2n. Then with probability 1 − o(1), the maximum degree in the graph GA
is ≤ 20d̃ and for any S, T ⊂ V one of the conditions (1) or (2 ) holds.

The two lemmas above guarantee that with probability 1− o(1), |
∑

H xiAi,jyj | ≤ C ′σ
√
n for

some constant C ′.
Proof The bound on the maximum degree follows from the Chernoff bound. We have that

Aij =

{
1 w.p. pij
0 w.p. 1− pij

.

Consider a particular vertex k and let X =
∑

iAik be the random variable denoting the number of
edges incident on it. We have that

µ = EX =
∑
i

pik ≤ σ2n.

For any l ≥ 4, Chernoff bound (see Alon and Spencer (2004)) implies that

P(X > lσ2n) ≤ exp

(
−σ

2nl ln l

3

)
≤ exp

(
− l log n

3

)
.

Applying this with l = 20, and taking a union bound over all the vertices, we can bound the
maximum degree by 20σ2n. Now let S, T ⊂ V be any two subsets. Let X := e(S, T ) be the
number of edges going between S and T . We have EX ≤ σ2|S||T |. If |T | ≥ n

e , then since the
maximum degree is ≤ 20σ2n, we have e(S, T ) ≤ |S|20σ2n ≤ 20eσ2|S||T |, giving us 1 in this
case. Therefore, we can assume |T | ≤ n

e . By Chernoff bound, it follows that for any l ≥ 4,

P(e(S, T ) > lσ2|S||T |) ≤ exp

(
− l ln(l)σ2|S||T |

3

)
.
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Let l′ be the smallest number such that l′ ln(l′) ≥ 21|T |
σ2|S||T | log

(
n
|T |

)
. As in Feige and Ofek (2005), if

we choose l = max(l′, 4), we can bound the above probability by exp
(
− l ln(l)σ2|S||T |

3

) (
n
|S|
)(

n
|T |
)
≤

1
n3 . Therefore, by the union bound we get that with probability 1− o(1) for all subsets S, T , and

e(S, T ) ≤ max(l′, 4)σ2|S||T |.

This implies that one of the conditions 1 or 2 holds with probability 1− o(1).
�

Proof of Lemma 12: Now we are ready to prove Lemma 12 by modifying the previous proof. We
again handle the light couples and the heavy couples separately, but need to make a modification to
the argument for the light couples.

Since we zero out some rows and columns of M to obtain M1, we first bound the norm of the
matrix M0, obtained from M by zeroing out a set S of rows and the corresponding columns. Next,
we take a union bound over all choices of S. For a fixed S, lemma 20 implies that with probability
at least 1 − exp(−3n), for all x ,y ∈ N1/2, |

∑
L xi(M0)ijyj | ≤ 10σ

√
n. Since there are at most

2n = exp (n ln 2) choices for S, we can apply a union bound to show that with probability at least
1− exp(−(3− ln 2)n), |

∑
L xi(M1)ijyj | ≤ 10σ

√
n.

The proof for the heavy couples goes through without any modifications. We just have to verify
that the conditions of lemma 21 are met. Firstly, the adjacency matrix A1 obtained from M1 has
bounded degree property by the definition ofM1. Now we note that only for the case of |S| ≤ |T | ≥
n
e did we need that the maximum degree was bounded. So for any |S| ≤ |T | < n

e , the discrepancy
properties (1) or (2) holds for A1, since zeroing out rows and columns can only decrease the edge
count across sets of vertices. In the case |T | ≥ n

e , like before we can show that (1) holds for A1

since the degrees are bounded. �
Now, to bound the norm of matrix E, we just appeal to 12. Suppose a > b ≥ C0, for a large

enough constant C0 to be determined later. Since A = Ā0 + ∆ + E and we have bounded ∆, it
remains to bound ‖E‖. Note that

(E0)ij =

{
1− a

n w.p. a
n

− a
n w.p. 1− a

n

if i, j belongs to the same community and

(E0)ij =

{
1− b

n w.p. b
n

− b
n w.p. 1− b

n

if i, j belongs to different communities. Since a > b, for all i, j we have that

Var((E0)ij) ≤
a

n

(
1− a

n

)
≤ d

n
.

A.2. Recovery

Now we focus on the second step in the proof, namely the recovery of the blocks once the angle
condition is satisfied.
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Lemma 23 If sin(∠W̄ ,W ) ≤ c ≤ 1
4 , then we can find a vector v ∈ W such that sin(∠v , v̄2) ≤

2
√
c.

Proof Let PW̄ , PW be the orthogonal projection operators on to the subspaces W̄ ,W respectively.
From the angle bound for the subspaces, we have that

‖PW̄ − PW ‖2 ≤ c.

The vector we want is obtained as follows. We first project v̄1 on toW , and then find the unit vector
orthogonal to the projection inW . We will now prove that the vector so obtained satisfies the bound
stated in the lemma. Since v̄1, v̄2 ∈ W̄ , we have that ‖PW v̄ i − v̄ i‖2 ≤ c for i = 1, 2. Let us define
u i := PW v̄ i and xi := u i − v̄ i (note that ‖xi‖ ≤ c) for i = 1, 2. We will now show that the vector

v ∈W perpendicular to u1 is close to v̄2. Let u⊥ = u2−
uT
1 u2

‖u1‖2
u1, it is then clear that ‖u⊥‖ ≤ 1.

Note that |uT1 u2| = |v̄T1 x2 + v̄T2 x1 + xT1 x2| ≤ 2c+ c2. We have,

uT⊥v̄2 = uT2 v̄2 −
(uT1 u2)(v̄T2 u1)

‖u1‖2∣∣uT⊥v̄2

∣∣ ≥ 1− c− (2c+ c2)c

(1− c)2

≥ 1− 2c.

The last inequality holds when c ≤ 1
4 . Therefore, it holds that for a unit vector v ⊥ u1,

|vT v̄2| ≥
∣∣uT⊥v̄2

∣∣ ≥ 1− 2c.

This gives sin(∠v , v̄2) ≤
√

1− (1− 2c)2 ≤ 2
√
c. �

Lemmas 14 and 23 together give

Corollary 24 For any constant c < 1, we can choose constants C2 and C3 in lemma 14 and find a
vector v such that sin(∠v̄2, v) ≤ c < 1 with probability 1− o(1).

We now can conclude the proof of our theorem using the following deterministic fact.

Lemma 25 If sin(∠v̄2, v) < c ≤ 0.5, then we can identify at least a (1− 4
3c

2) fraction of vertices
from each block correctly.

Proof of Lemma 25: Let us define two sets of vertices, V ′1 = {i|v(i) > 0} and V ′2 = {i|v(i) <
0}. One of the sets will have less than or equal to n

2 vertices, let us assume without loss of generality
that |V ′1 | ≤ n

2 . Writing v = c1v̄2 + err, for a vector err perpendicular to v̄2 and ‖err‖ < c. We
also have c1 >

√
1− c2. Since ‖err‖ < c, not more than c2

1−c2n coordinates of err can be bigger

than
√

1−c2√
n

< c1√
n

. Since v = c1v̄2 + err at least 1 − c2

1−c2 > 1 − 4
3c

2 (since c ≤ 0.5) fraction of

vertices with v̄2(i) = 1√
n

will have v(i) > 0. Therefore, we get that there are at least (1 − 4
3c

2)n

vertices belonging to the first block. �
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A.3. Proof of lemma 9

We will use the following large deviation result (see page 36 in Boucheron et al. (2013) for e.g.)
repeatedly

Lemma 26 (Chernoff) If X is a sum of n iid indicator random variables with mean at most ρ ≤
1/2, then for any t > 0

max{P(X ≥ EX + t),P(X ≤ EX − t)} ≤ exp

(
− t2

2VarX + t

)
≤ exp

(
− t2

2nρ+ t

)
.

In the Red graph, the edge densities are a/2n and b/2n, respectively. By Theorem 7, there is
a constant C such that if (a−b)2

a+b ≥ C then by running Spectral Partition on the Red graph, we
obtain, with probability 1− o(1) two sets V ′1 and V ′2 , where

|Vi\V ′i | ≤ .1n.

In the rest, we condition on this event, and the event that the maximum Red degree of a vertex
is at most log2 n, which occurs with probability 1− o(1).

Now we use the Blue edges. Consider e = (u, v). If e is not a red edge, and u ∈ Vi, v ∈ V3−i,
then e is a Blue edge with probability

µ :=
b/2n

1− b
2n

.

Similarly, if e is not a Red edge, and u, v ∈ Vi, then e is a Blue edge with probability

τ :=
a/2n

1− a
2n

.

Thus, for any u ∈ V ′i ∩ Vi, the number of its Blue neighbors in V ′3−i is at most

S(u) :=
.9n∑
i=1

ξui +
.1n∑
j=1

ζuj

where ξui are iid indicator variables with mean µ and ζuj are iid indicator variables with mean τ .
Similarly, for any u ∈ V ′1 ∩ V2, the number of its Blue neighbors in V ′2 is at least

S′(u) :=

.9n−d(u)∑
i=1

ζui +

.1n∑
j=1

ξuj ,

where d(u) = log2 n is the Red degree of u.
After the correction sub-routine, a vertex u in the (corrected) set V ′1 is misclassified if

• u ∈ V ′1 ∩ V1 and Su ≥ a+b
4 .

• u ∈ V ′1 ∩ V2 and S′u ≤ a+b
4
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Let ρ1, ρ2 be the probability of the above events. Then the number of misclassified vertices in
the (corrected) set V ′1 is at most

M :=
n∑
k=1

Γk +
0.1n∑
l=1

Λl

where Γk are iid indicator random variables with mean ρ1 and Λl are iid indicator random variables
with mean ρ2.

The rest is a simple computation. First we use Chernoff bound to estimate ρ1, ρ2. Consider

ρ1 := P
(
S(u) ≥ a+ b

4

)
.

By definition, we have

ES(u) = 0.9nµ+ 0.1nτ

= 0.9n(
b/2n

1− b
2n

) + 0.1n(
a/2n

1− a
2n

)

= 0.9
b

2
+ 0.1

a

2
+ 0.9

b

2
(

1

1− b/2n
− 1) + 0.1

a

2
(

1

1− a/2n
− 1).

(3)

Set

t :=
a+ b

4
−ES(u),

we have

t = 0.2(a−b)−0.9
b

2
(

1

1− b/2n
−1)−0.1

a

2
(

1

1− a/2n
−1) ≥ 0.2(a−b)−0.9

b

2

b

n
−0.1

a

2

a

n
≥ 0.19(a−b),

for any sufficiently large n.
Applying Chernoff’s bound, we obtain

ρ1 ≤ exp(− (0.19(a− b))2

2(0.9nµ+ .1nτ) + 0.19(a− b)
).

By (4), one can show that 2(0.9nµ + .1nτ) + 0.19(a − b) = 0.71b + 0.29a + o(1) ≤ a+b
2 . It

follows that

ρ1 ≤ exp(−0.072
(a− b)2

a+ b
).

By a similar argument, we obtain the same estimate for ρ2 (the contribution of the term d(u) ≤
log2 n is negligible). Thus, we can conclude that

EM ≤ 1.1n exp(−0.072
(a− b)2

a+ b
).
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Applying Chernoff’s with t := 0.9n exp(−0.072 (a−b)2
a+b ), we conclude that with probability

1− o(1)

M ≤ EM + t = 2n exp(−0.072
(a− b)2

a+ b
).

This implies that with probability 1− o(1),

|V ′1\V1| ≤ 2n exp(−0.072
(a− b)2

a+ b
).

By symmetry, the same conclusion holds for |V ′2\V2|.
Set

γ := 2 exp(−0.072
(a− b)2

a+ b
),

we have, for i = 1, 2

|Vi ∩ V ′i | = n− |Vi ∩ V ′3−i| = n− |V ′3−i\V3−i| ≥ n(1− γ).

This shows that the output V ′1 , V
′

2 form a γ-correct partition, with γ satisfying

(a− b)2

a+ b
=

1

0.072
log

2

γ
≈ 13.89 log

2

γ
,

proving our claim.

Proof of Corollary 4: Notice that in the analysis of Spectral Partition, we only require (a−b)2
a+b ≥

C for a sufficiently large constant C (so γ does not appear in the bound). In the analysis of Cor-
rection, we require (a−b)2

a+b ≥ 13.89 log 2
γ , as shown above. If γ < ε for a sufficiently small ε, this

assumption implies the first. Thus, Corollary holds with assumption (a−b)2
a+b ≥ 13.89 log 2

γ .
The constant 13.89 comes from the fact that the partition obtained from Spectral Partition is

.1-correct. If one improves upon .1, one improves 13.89. In particular, there is a constant δ such
that if the first partition is δ-correct, then one can improve 13.89 to 8.1 (or any constant larger than
8–which is the limit of the method, for that matter).

Appendix B. Multiple communities

We say the splitting is ‘perfect’ if we have |Y1 ∩ Vi| = n
4k = |Y2 ∩ Vi| for i = 1, .., k. We will

assume the splittings are perfect in the proofs for a simpler exposition. Though the splitting will
almost always not be perfect, and there will just be a o(1) error term that we have to carry throughout
to be precise. The bounds we give will all be still be essentially the same.

B.1. Proof of theorem 17

To analyze this algorithm, we use the machinery developed so far combined with some ideas from
Vu (2014). We consider the stochastic block model with k blocks of size n, where k is a fixed
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constant as n grows. This is a graph V = V1 ∪ V2 ∪ ... ∪ Vk where each |Vi| = n/k and for
u ∈ Vi, v ∈ Vj :

P[(u, v) ∈ E] =

{
a/n if i = j
b/n i 6= j

We can write, as before

A = Ā+ E

= Ā1 + ∆ + E,

where Ā, Ā1 are the expected matrices, and ∆ is matrix containing the deleted rows and columns.
Let W̄ be the span of the k left singular vectors of Ā1 We can bound ‖∆‖ ≤ 1 by bounding the
number of high degree vertices as we did before. E is given by

Eu,v =

{
1− a

n w.p. a
n

− a
n w.p. 1− a

n

if u, v ∈ Vi ∩ Y1 for some i ∈ 1, .., k and

Eu,v =

{
1− b

n w.p. b
n

− b
n w.p. 1− b

n

if u ∈ Vi ∩ Y1 and v ∈ Vj ∩ Y1 for i 6= j. Since σ2 := a
n ≥ Var(Eu,v), corollary 12 applied to

Ā1 −A gives the following result.

Lemma 27 There exists a constant C such that ‖E‖ ≤ C
√
a+ b with probability 1− o(1).

It is not hard to show that the rank of the matrix Ā1 is k, and its least non-trivial singular value
is σk(Ā1) = a−b

k . This fact, combined with lemma 27 and an application of Davis-Kahan bound
gives

Lemma 28 For any c > 0, there exists constants C1, C2 such that if (a − b) > C1k
2a and

a > b ≥ C2, then sin∠(W̄ ,W ) ≤ c with probability 1− o(1).

We pick m = 2 log n indices uniformly randomly from Y2 and project the corresponding
columns from the matrix B. Let ā i1 , ..., ā im and e i1 , ..., e im be the corresponding columns of
Ā1 and E, respectively. For a subspace W0, let PW0 be the projection on to the space W0. Note that
if vertex i ∈ Vni ∩ Y2, then

ā i(j) =

{
a
n if j ∈ Vni ∩ Z
b
n otherwise

.

We let the vector ā be
ā(j) :=

{
a+b
2n if j ∈ Z .

and bi = ā i − ā . We therefore have

bi(j) =

{
a−b
2n if j ∈ Vni ∩ Z
b−a
2n otherwise

.
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Since both ā i, ā are in the column span of Ā1, we have for all i

bi = PW̄bi.

We also note that ‖bi‖ = (a−b)
2
√

2n
. Therefore, if we can recover bi, we can identify the set Vni∩Z.

We now argue that we can recover bi approximately. Since a i − ā = bi + e i, we have

PW (a i − ā) = PWbi + PWe i

= PW̄bi + PWe i + err i

= bi + PWe i + err i,

where err i = (PW − PW̄ ) bi. Since sin∠(W̄ ,W ) ≤ δ1, we have for any unit vector v , ‖PWv − PW̄v‖ ≤
δ1, which in turn implies for all i

‖err i‖ ≤ δ1 ‖bi‖ .

Therefore, it is enough to bound ‖PWe i‖. We recall that k is a constant that does not depend
on n. W is k dimensional space giving E ‖PWe i‖2 ≤ kσ2. By Markov’s inequality, it follows that

P(‖PWe i‖ > 2σk1/2) ≤ 1

4
.

By a simple application of Chernoff bound, we have

Lemma 29 With probability at least 1− o(1), at least m/2 of the vectors e i1 , ..., e im satisfy∥∥PWe ij
∥∥ < 2σk1/2.

Let m1 ≥ m/2 denote the number of such vectors, hence referred to as good vectors. To avoid
introducing extra notation, let us say e i1 , .., e im1

are the good vectors and the corresponding indices

as good indices. Note that σ ≤
√
a√
n

. For any δ2 > 0, there exists a big enough constant C1 such that

if (a− b) > C1

√
ka, we have that 2σk1/2 ≤ δ2

∥∥bij∥∥ whenever ij is good. Therefore

Lemma 30 Given any δ > 0, there exists constants C1, C2 such that the following holds. If (a −
b) > C1

√
ka and a ≥ b ≥ C2, then for all good indices ij , it holds that

∥∥PW (a ij − ā)− bij
∥∥ ≤

δ
∥∥bij∥∥.

Let U ′ij be the top n/2k coordinates of the projected vector
∥∥PW (a ij − ā)

∥∥. If we choose the con-
stants C1, C2 appropriately, then for every good index ij , Uij contains 0.95 fraction of the vertices
in Vnij

∩ Z.
Lemma 31 then implies that when we throw away half of the sets U ′1, ..., U

′
m with the least Blue

edge densities, then each of the remaining sets intersects some Vni∩Z in 0.9 fraction of the vertices.

Lemma 31 There exists a constant c > 0 such that the following holds. Suppose we are given a
set X ⊂ Z of size |X| = n/2k. If for all i ∈ 1, ..., k

|X ∩ Vi| ≤ 0.9|X|,
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then with probability at least 1 − e−cn the number of Blue edges in the graph induced by X is at
most an/16k − 0.09(a− b)n/16k. Conversely, if

|X ∩ Vi| ≥ 0.95|X|

for some i ∈ 1, ..., k, then with with probability at least 1 − e−cn the number of Blue edges in the
graph induced by X is at least an/16k − 0.09(a− b)n/16k.

Proof
Let e(X) denote the number of Blue edges in the graph induced by vertices in X . Suppose

|X ∩ Vi| ≤ 0.9|X| for all i ∈ 1, ..., k. Then

Ee(X) ≤ an/16k − 0.09(a− b)n/8k.

To bound the probability that Ee(X) ≥ an/16k − .045(a − b)n/8k, we can use Chernoff bound.
Let δ = 0.045(a−b)n/8k

an/16k−0.09(a−b)n/8k .

P(Ee(X) ≥ an/16k − .045(a− b)n/8k) ≤ exp

(
− (.045(a− b)n/8k)2

2an/16k + 0.045(a− b)n/8k

)
.

Similarly, suppose |X ∩ Vi| ≥ 0.95|X| for some i ∈ 1, ..., k. Then

Ee(X) ≥ an/16k − 0.05(a− b)n/16k.

To bound the probability that Ee(X) ≤ an/16k − .045(a − b)n/8k, we can use Chernoff bound.
Let δ = 0.04(a−b)n/16k

an/16k−0.05(a−b)n/16k .

P(Ee(X) ≤ an/16k − .045(a− b)n/8k) ≤ exp

(
− (.04(a− b)n/16k)2

2an/16k + 0.04(a− b)n/16k

)
.

B.2. Proof of lemma 18

For notional convenience, let Ui := Z ∩ Vi. We will use the following large deviation result (see
page 36 in Boucheron et al. (2013) for e.g.) repeatedly

Lemma 32 (Chernoff) If X is a sum of n iid indicator random variables with mean at most ρ ≤
1/2, then for any t > 0

max{P(X ≥ EX + t),P(X ≤ EX − t)} ≤ exp

(
− t2

2VarX + t

)
≤ exp

(
− t2

2nρ+ t

)
.

By Theorem step1, there is a constant C such that if (a−b)2
a+b ≥ C then by running Spectral

Partition on the Red graph, we obtain, with probability 1− o(1), sets U ′1, ..., U
′
k, where

|U ′i\Ui| ≤ 0.1n/2k.

In the rest, we condition on this event. The probability we will talk about in this section is based
on the edges that go between vertices in Z.
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Now we use the edges that go between vertices in Z. Consider e = (u, v). If u ∈ Ui, v ∈ Uj
with i 6= j, then e is a Red edge with probability

µ := b/2n.

Similarly, if u, v ∈ Ui, then e is a Red edge with probability

τ := a/2n.

For any u ∈ U1, the number of its neighbors in U ′j is at most

S1i(u) :=

.9n/2k∑
i=1

ξui +

.1n/2k∑
j=1

ζuj

Similarly, for any u ∈ U1, the number of its neighbors in U ′1 is at least

S′11(u) :=

.9n/2k∑
i=1

ζui +

.1n/2k∑
j=1

ξuj .

After the correction sub-routine, if a vertex u ∈ U1 is mislabeled then one of the following holds

• S′1j ≥ a+b
8 for some j 6= 1

• S11 ≤ a+b
8 .

By an application of Chernoff bound, probability that S11 ≤ a+b
8 can be bounded by ρ1 = exp(−0.04 (a−b)2

k(a+b)).

Similarly, for any fixed j 6= 1, S′1j ≥ a+b
8 is bounded by ρ1. Therefore, the probability that any of

these happens is bounded by kρ1. Therefore, number of vertices in U1 that will be misclassified
after the correction step is at most

M :=

n/2k∑
k=1

Γk

where Γk are iid indicator random variables with mean ρ1.

EM ≤ n

2k
k exp(−0.04

(a− b)2

k(a+ b)
).

Applying Chernoff’s with t := n
2 exp(−0.04 (a−b)2

k(a+b)), we conclude that with probability 1−o(1)

M ≤ EM + t = n exp(−0.04
(a− b)2

k(a+ b)
).

This implies that with probability 1− o(1), number of mislabeled vertices in U1 is

≤ n exp(−0.04
(a− b)2

k(a+ b)
).
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Set

γ := 2k exp(−0.04
(a− b)2

k(a+ b)
).

Therefore, by a union bound over all i, we have that with probability 1−o(1) the outputU ′1, U
′
2, ..., U

′
k

after the correction step form a γ-correct partition, with γ satisfying

(a− b)2

k(a+ b)
=

1

0.04
log

2k

γ
= 25 log

2k

γ
,

proving our claim.

B.3. Proof of lemma 19

In this section, we show how we can merge Vi ∩ Y with Vi ∩ Z based on the Blue edges that go in
between vertices in Y and Z. We can assume that that we are given a γ correct partition U ′1, .., U

′
k

of U1, ..., Uk. Now we label the vertices in Y according to their degrees to U ′i as given in the Merge
routine. Let us assume γ ≤ 0.1. In the rest, we condition on this event, and the event that the
maximum Red degree of a vertex is at most log2 n, which occurs with probability 1− o(1).

Now we use the Blue edges. Consider e = (u, v). If e is not a red edge, and u ∈ Vi ∩ Y, v ∈
Vj ∩ Z, then e is a Blue edge with probability

µ :=
b/2n

1− b
2n

.

Similarly, if e is not a Red edge, and u ∈ Vi ∩ Z, v ∈ Vi ∩ Z, then e is a Blue edge with
probability

τ :=
a/2n

1− a
2n

.

Thus, for any u ∈ Y ∩ Vi, the number of Blue neighbors in U ′j is at most

Sj :=

.9n/2k∑
i=1

ξui +

.1n/2k∑
j=1

ζuj

where ξui are iid indicator variables with mean µ and ζuj are iid indicator variables with mean τ .
Similarly, for any u ∈ Y ∩ Vi, the number of Blue neighbors in U ′i is at least

S′i :=

.9n/2k−d(u)∑
i=1

ζui +

.1n/2k∑
j=1

ξuj .

After the correction sub-routine, if a vertex u in Y ∩Vi is misclassified then one of the following
holds

• Sj ≥ a+b
8k

• S′i ≤ a+b
8k .
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Let ρ be the probability that at least one of the above events happens. Then the number of
mislabeled vertices in the Y2 is at most

M :=

n/2∑
k=1

Γk

where Γk are iid indicator random variables with mean ρ. First we use Chernoff bound to estimate
ρ. Consider

ρ1 := P
(
Sj ≥

a+ b

8k

)
.

By definition, we have

ES(u) =
0.9nµ/k + 0.1nτ/k

2

= 0.9n(
b/4kn

1− b
2n

) + 0.1n(
a/4kn

1− a
2n

)

= 0.9
b

4k
+ 0.1

a

4k
+ 0.9

b

4k
(

1

1− b/2n
− 1) + 0.1

a

4k
(

1

1− a/2n
− 1).

(4)

Set

t :=
a+ b

8k
−ESj ,

we have

t = 0.1
a− b
k
−0.9

b

4k
(

1

1− b/2n
−1)−0.1

a

4k
(

1

1− a/2n
−1) ≥ 0.1

a− b
k
−0.9

b

4k

b

n
−0.1

a

4k

a

n
≥ 0.09

a− b
k

,

for any sufficiently large n.
Applying Chernoff’s bound, we obtain

ρ1 ≤ exp(− (0.09(a− b))2

k(0.9b/2 + .1a/2) + 0.09k(a− b)
)

≤ exp(−0.0324(a− b)2

k(a+ b)
).

By a similar argument, we get the same bound for

ρ2 := P
(
S′i ≤

a+ b

8k

)
.

Therefore, by a union bound, we have that

ρ ≤ k exp(−0.0324(a− b)2

k(a+ b)
).
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Thus, we can conclude that

EM ≤ n

2
k exp(−0.0324

(a− b)2

k(a+ b)
).

Applying Chernoff’s with t := n
2k exp

(
−0.0324 (a−b)2

k(a+b)

)
, we conclude that with probability

1− o(1)

M ≤ EM + t = nk exp

(
−0.0324

(a− b)2

k(a+ b)

)
.

This implies that with probability 1− o(1), the number of mislabeled vertices in Y is bounded
by

nk exp

(
−0.0324

(a− b)2

k(a+ b)

)
.

Set

γ := 2k exp

(
−0.0324

(a− b)2

k(a+ b)

)
.

We have, with probability 1− o(1), γ correct partition of the vertices in Y , with γ satisfying

(a− b)2

k(a+ b)
=

1

0.0324
log

2k

γ
≤ 31 log

2k

γ
,

proving our claim.

Appendix C. Censor Block Model

All we have to do now is to bound ‖E‖. Let σ2 := p ≥ Var(ζi,j) for all (i, j). Y0 is obtained by
zeroing out rows and columns of Y of high degree. We then have the following lemma. The proof
is essentially the same as corollary 13, so we skip the details.

Lemma 33 0 < ε0 ≤ ε < 1
2 . Then there exist constants C,C1 such that if p ≥ C

n , then with
probability 1− o(1),

∥∥Y0 − Ȳ
∥∥ ≤ C1σ

√
n = C1

√
np.

Since the second eigenvalue of Ȳ is p(1 − 2ε)n, to make the angle between the eigenspace
spanned by the two eigenvectors corresponding to the top two eigenvalues small, we need to assume

p(1− 2ε)n
√
np

is sufficiently large. The assumption

np ≥ C2

(1− 2ε)2

in theorem 6 is precisely this.
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Appendix D. Proof of Lemma 21

This proof is essentially same as that in Feige and Ofek (2005). Let us first define the following
sets. For γk := 2k,

Sk :=

{
i :
γk−1√
n
< xi ≤

γk√
n

}
, sk := |Sk|, k = blog

√
d

n
c, .., 0, 1, 2, ..., dlog

√
ne

and

Tk :=

{
i :
γk−1√
n
< yi ≤

γk√
n

}
, tk := |Tk|, k = blog

√
d

n
c, .., 0, 1, 2, ..., dlog

√
ne.

Further, we use the notation µi,j := sitj
d
n and λi,j := e(Si, Tj)/µi,j . We then have∑

H

xiÃi,jyj ≤
∑

i,j:γiγj≥
√
d

sitj
d

n
λi,j

γi√
n

γj√
n

=
√
d

∑
i,j:γiγj≥

√
d

si
γ2
i

n
tj
γ2
j

n

λi,j
√
d

γiγj

=
√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j .

In the last line, we have used the following notation αi := si
γ2i
n , βj := tj

γ2j
n , σi,j :=

λi,j
√
d

γiγj
. In

this notation, we can write 2 as follows:

σi,jαi log λi,j ≤ c3
γi

γj
√
d

[
2 log γj + log

1

βj

]
. (5)

Now we bound
∑

i,j:γiγj≥
√
d αiβjσi,j by a constant. We note that

∑
i αi ≤ 4 and

∑
i βi ≤ 4.

We now consider 6 cases.

1. σi,j ≤ 1 :

√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j ≤
∑

i,j:γiγj≥
√
d

αiβj

≤
√
d(
∑
i

αi)(
∑
i

βi)

≤ 16
√
d.

2. λij ≤ c2 : Since γiγj ≥
√
d we have in this case σi,j ≤ c2. Therefore,

√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j ≤
∑

i,j:γiγj≥
√
d

αiβjc2

≤ c2

√
d(
∑
i

αi)(
∑
i

βi)

≤ 16c2

√
d.
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3. γi >
√
dγj : Since the maximum degree is ≤ c1d, we have that λi,j ≤ c1n/tj . Therefore,

√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j =
√
d
∑
i

αi ∑
j:γiγj≥

√
d

βj
λi,j
√
d

γiγj


≤
√
d
∑
i

αi ∑
j:γiγj≥

√
d

bj
γ2
j

n

(c1n/bj)
√
d

γiγj


=
√
d
∑
i

αi ∑
j:γiγj≥

√
d

c1

√
d
γj
γi


≤
√
d
∑
i

(αic1 × 2)

≤ 2c1

√
d
∑
i

αi

≤ 8c1

√
d.

4. We now assume that we are not in cases 1 − 3. Therefore, we can assume that 5 holds. We
consider the following sub cases.

(a) log λi,j > (1/4)[2 log γj + log(1/βj)] : 5 implies that σi,jαi ≤ 4c3(γi/γj
√
d). There-

fore,
√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j =
√
d
∑
j

βj
∑

i:γiγj≥
√
d

αiσi,j

≤
√
d
∑
j

βj
∑

i:γiγj≥
√
d

4c3
γi

γj
√
d

≤
√
d
∑
j

βj × 8c3

≤ 32c3

√
d.

Above we made use of the fact that we are not in case 3, and that
∑

i:γiγj≥
√
d 4c3

γi
γj
√
d

is a geometric sum.

(b) 2 log γj ≥ log(1/βj) : We can assume we are not in case (a), and hence λi,j ≤ γj .
Combined with the fact that we are not in case 1, we have that γi ≤

√
d. Since we

are not in case 2, we can assume that log λi,j ≥ 1 and hence σi,jαi ≤ c3
γi

γj
√
d
4 log γj .

Therefore,

√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j =
√
d
∑
j

βj ∑
i:γiγj≥

√
d

αi
λi,j
√
d

γiγj


≤
√
d
∑
j

βj ∑
i:γiγj≥

√
d

4c3
γi√
dγj

log γj
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≤
√
d

∑
j

βj4c3

∑
i:γiγj≥

√
d

γi√
d


≤
√
d
∑
j

βj4c3 × 2

≤ 32c3

√
d.

(c) 2 log γj ≤ log 1/βj : Since we are not in (a) we have log λi,j ≤ log 1
βj

. It follows that

σi,j =
λi,j
√
d

γiγj
≤ 1

βj

√
d

γiγj
.

Therefore:

√
d

∑
i,j:γiγj≥

√
d

αiβjσi,j =
√
d
∑
i

αi ∑
j:γiγj≥

√
d

βjσi,j


=
√
d
∑
i

αi ∑
j:γiγj≥

√
d

βj
λi,j
√
d

γiγj
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SPECTRAL ALGORITHM FOR SPARSE GRAPHS

≤
√
d
∑
i

αi ∑
j:γiγj≥

√
d

√
d

γiγj


≤
√
d
∑
i

(αi × 2)

≤ 8
√
d.

�
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