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Abstract
Deep learning has enjoyed a resurgence of interest in the last few years for such applications as
image and speech recognition, or natural language processing. The vast majority of practical ap-
plications of deep learning focus on supervised learning, where the supervised loss function is
minimized using stochastic gradient descent. The properties of this highly non-convex loss func-
tion, such as its landscape and the behavior of critical points (maxima, minima, and saddle points),
as well as the reason why large- and small-size networks achieve radically different practical per-
formance, are however very poorly understood. It was only recently shown that new results in
spin-glass theory potentially may provide an explanation for these problems by establishing a con-
nection between the loss function of the neural networks and the Hamiltonian of the spherical
spin-glass models. The connection between both models relies on a number of possibly unreal-
istic assumptions, yet the empirical evidence suggests that the connection may exist in real. The
question we pose is whether it is possible to drop some of these assumptions to establish a stronger
connection between both models.
Keywords: multilayer networks, deep learning, spherical spin-glass model, Hamiltonian, non-
convex optimization

1. Introduction

The vast majority of practical applications of deep learning use multi-stage architectures composed
of alternated layers of linear transformations and max functions (most often Rectified Linear Units,
e.g. Nair and Hinton (2010)), and focus on supervised learning, where the loss function that needs
to be minimized is most often cross entropy or hinge loss.

Several researchers experimenting with larger networks had noticed that, while multilayer nets
do have many local minima, the result of multiple experiments consistently give very similar per-
formance. This suggests that all those local minima are more or less equivalent in terms of error. It
was also previously noticed that the problem of training deep learning systems resides with avoiding
saddle points and quickly ”breaking the symmetry” by picking sides of saddle points and choosing
a suitable attractor LeCun et al. (1998); Saxe et al. (2014); Dauphin et al. (2014).

Earlier theoretical analysis, conveniently reviewed in Dauphin et al. (2014), suggest the exis-
tence of a certain structure of critical points of random Gaussian error functions on high dimensional
continuous spaces. They imply that critical points whose error is much higher than the global min-
imum are exponentially likely to be saddle points with many negative and approximate plateau
directions whereas all local minima are likely to have an error very close to that of the global mini-
mum. Their work establishes a strong empirical connection between neural networks and the theory
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of random Gaussian fields by providing experimental evidence that the cost function of neural net-
works exhibits the same properties as the Gaussian error functions on high dimensional continuous
spaces. Nevertheless they provide no theoretical justification for the existence of this connection.

2. The connection between multilayer networks and spin-glass models

We next discuss the assumptions that were made in Choromanska et al. (2015) to establish a connec-
tion between the loss function of neural networks and the Hamiltonian of the spherical spin-glass
models (for detailed explanations see Choromanska et al. (2015)). The assumptions are numbered
and marked with letter resp. ’p’ or ’u’ denoting whether the assumption is resp. plausible, i.e. it can
be satisfied in practice or else it can be imposed on the network without significantly changing its
performance, or obviously unrealistic, e.g ’A1p’ denotes the first assumption, which is plausible.

It can be shown that the loss function of a typical multilayer network with ReLUs can be ex-
pressed as a polynomial function of the weights in the network, whose degree is the number of
layers, and whose number of monomials is the number of paths (denoted as Ψ) from inputs to out-
puts. As the weights (or the inputs) vary, some of the monomials are switched off and others become
activated. Consider a simple model of a fully-connected feed-forward neural network with H − 1
hidden layers (ni denotes the number of units in the ith hidden layer, where input layer has index
i = 0 and output layer has index i = H), and having a single output (consider binary classification
problem). Let Λ = H

√
Ψ, and we assume Λ ∈ Z+. Let Xi be the random input of the ith path of a

network. Then the normalized output of the network can be expressed as

Y =
1

Λ(H−1)/2

Ψ∑
i=1

XiAi

H∏
k=1

w
(k)
i ,

where w(k)
i is the weight of the kth segment of the ith path (this segment connects layer (k− 1) with

layer k of the network), andAi is a Bernoulli random variable denoting whether the ith path is active
(Ai = 1) or not (Ai = 0). Consider hinge loss L(w) = max(0, 1 − YtY ), where Yt is a random
variable corresponding to the true data labeling taking values 1 or −1, and w denotes all network
weights. Recall that max operator is often modeled as Bernoulli random variable taking values 0 or
1. Denote this random variable as M and its expectation as ρ

′
. Therefore

L(w) = M(1− YtY ) = M +
1

Λ(H−1)/2

Ψ∑
i=1

ZiIi

H∏
k=1

w
(k)
i , (1)

where Zi = −YtXi, and Ii = MAi is a Bernoulli random variable taking values 0 or 1. Assume
random variables I1, I2, . . . , IΨ have the same probability of success (A1p), and thus they have the
same expectation denoted as ρ. Also assuming that each Xi is a standard Gaussian random variable
(A2p), it follows that Zi is also a standard Gaussian random variable.

For large-size networks large number of network parameters are redundant Denil et al. (2013)
and can either be learned from a very small set of unique parameters or not learned at all with
almost no loss in prediction accuracy. Assume that Λ is the maximal number of non-redundant
(unique) parameters (A3p), and that they are uniformly distributed on the graph of connections of
the network (A4p), i.e. every H-length product of unique weights appears in Equation 1 (the set of
all products is {wi1wi2 . . . wiH}Λi1,i2,...,iH=1). Thus re-indexing the terms gives

L(w) = M +
1

Λ(H−1)/2

Λ∑
i1,i2,...,iH=1

Zi1,i2,...,iH Ii1,i2,...,iHwi1wi2 . . . wiH .

Assuming (A5u) the independence of Zi1,i2,...,iH and Ii1,i2,...,iH one obtains
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EM,I1,I2,...,IΨ
[L(w)] = ρ

′
+ ρ

1
Λ(H−1)/2

Λ∑
i1,i2,...,iH=1

Zi1,i2,...,iHwi1wi2 . . .wiH .

It is also assumed that Z’s are independent (A6u) . Finally, the spherical assumption (A7p) imposes
that 1

Λ

∑Λ
i=1w

2
i = 1.

Note that the term in bold is a Hamiltonian of the spherical spin-glass model Auffinger et al.
(2010). It was recently shown Auffinger et al. (2010) that the Hamiltonian of this model has inter-
esting properties when the size of the model (Λ) goes to∞. We next list these properties along with
the possible interpretation for neural networks: (i) critical points form an ordered structure such that
there exists an energy barrier (a certain value of the Hamiltonian) below which with overwhelming
probability one can find only low-index1 critical points, most of which are concentrated close to the
barrier (this would explain why in case of large networks recovered local minima are typically cor-
responding to the same test performance which is not the case for small networks, (ii) Recovering
the ground state, i.e. global minimum, takes exponentially long time, (iii) with overwhelming prob-
ability one can find only high-index saddle points above energy E−∞ and there are exponentially
many of those (this would explain the importance of saddle points in the optimization problem),
(iv) low-index critical points are ’geometrically’ lying closer to the ground state than high-index
critical points (this would explain why recovering poor quality local minima, which are ’far’ from
the global minimum, is more likely for small-size networks than for large-size networks).

Open problem: Is it possible to establish a connection between the loss function of the neural
networks and the Hamiltonian of the spherical spin-glass models under milder assumptions? The
central problem is to eliminate unrealistic assumptions of variable independence (A5-6u). Note that
assumption A5u implies that the activation mechanism of any path (for the ith path it is denoted
as Ii) is independent of the input data, which clearly cannot be true. Similarly, assumption A6u
implies all paths have independent inputs, which cannot be true since many paths share the same
input. Alternatively, it would also be desired to find network architectures for which the connection
to spin-glass models can be established explicitly with only mild (plausible), if any, assumptions.
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Y. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization. In NIPS. 2014.

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D. Freitas. Predicting parameters in deep
learning. In NIPS. 2013.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In Neural Networks: Tricks of the
trade. Springer, 1998.

V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,
2010.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. In ICLR. 2014.

1. Index of ∇2L at w is the number of negative eigenvalues of the Hessian ∇2L at w. Local minima have index 0.
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Appendix A. Empirical evidence
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Figure 1: Distributions of the scaled test losses for the spin-glass (left) and the neural network
(right) experiments.

In this section we briefly summarize a subset of results from Choromanska et al. (2015) show-
ing the similarity between the loss function of the neural networks and the Hamiltonian of the
spherical spin-glass models. The spin glass model was simulated for Λ from 25 to 500, where
for each value of Λ, the distribution of minima was obtained by sampling 1000 initial points on
the unit sphere and performing stochastic gradient descent (SGD) to find a minimum energy point.
The neural network model was simulated using a scaled-down version of MNIST, where each im-
age was downsampled to size 10 × 10. 1000 networks were trained with one hidden layer and
nhidden = {25, 50, 100, 250, 500} hidden units, each one starting from a random set of parameters
sampled uniformly within the unit cube. All networks were trained for 200 epochs using SGD with
learning rate decay. The distribution of the scaled test losses2 is compared in Figure 1 for both
models. We see that for small values of Λ and nhidden, we obtain poor local minima3 on many
experiments. For larger values of Λ and nhidden, the variance of losses decreases, and the distri-
bution becomes increasingly concentrated around the energy barrier where local minima have high
quality. This indicates that (i) getting stuck in poor local minima is a major problem for smaller
networks but becomes gradually of less importance as the network size increases, and (ii) in case of
larger networks recovered local minima are typically corresponding to the same test performance,
which is not the case for small networks.

Appendix B. Spherical spin-glass model

Figure 2 captures exemplary plots of the distributions of the mean number of critical points, local
minima and low-index saddle points. Clearly local minima and low-index saddle points are located
in the band (−ΛE0(H),−ΛE∞(H)), where−ΛE∞(H) is the energy barrier and−ΛE0(H) corre-
sponds to the ground state (global minimum), whereas high-index saddle points can only be found
above the energy barrier −ΛE∞(H). This ’geometric’ structure, if it is also true for multilayer
neural networks, plays a crucial role in the optimization problem. The optimizer, e.g. SGD, often

2. To observe qualitative differences in behavior for different values of Λ (for spin-glass model) and nhidden (for
neural network), it is necessary to rescale the loss values to make their expected values approximately equal. For
spin-glasses, the expected value of the loss at critical points scales linearly with Λ, therefore the losses have to be
divided by Λ, whereas for neural networks, the expected value of the loss at critical points was empirically found
to scale with nhidden according to power law E[L] ∝ eαnhiddenβ

(α and beta are coefficients), therefore the losses
were divided by L/eαnhiddenβ

.
3. Almost all recovered solutions were local minima with index equal to 0 (while computing the index of solutions, all

eigenvalues less than 0.001 in magnitude were set to 0).
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easily avoids the band of high-index critical points, which have many negative curvature directions,
and descends to the band of low-index critical points which lie closer to the global minimum. Thus
finding bad-quality solution, i.e. the one far away from the global minimum, is highly unlikely
for large-size networks (it is also confirmed by the experimental results in Figure 1). Furthermore,
as shown in Figure 2, low-index critical points are mostly concentrated close to the energy barrier
(’peaked’ distribution), which would potentially explain why in case of large networks recovered
local minima are typically corresponding to the same test performance which is not the case for
small networks.
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Figure 2: Distribution of the mean number of critical points, local minima and low-index saddle
points (original and zoomed; k denotes the index). Parameters H and Λ were set to
H = 3 and Λ = 1000. Black line: u = −ΛE0(H), red line: u = −ΛE∞(H). −ΛE0

corresponds to ground state (global minimum). Figure must be read in color.
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