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Abstract
We consider the problem of fitting a linear model to data held by individuals who are concerned
about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains
our design to mechanisms that provide a privacy guarantee to the participants; we use differential
privacy to model individuals’ privacy losses. This immediately poses a problem, as differentially
private computation of a linear model necessarily produces a biased estimation, and existing ap-
proaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize
well to biased estimators. We overcome this challenge through an appropriate design of the com-
putation and payment scheme.
Keywords: privacy, data privacy, differential privacy, linear regression, mechanism design

1. Introduction

Fitting a linear model is perhaps the most fundamental and basic learning task, with diverse ap-
plications from statistics to experimental sciences like medicine and sociology. In many settings,
the data from which a model is to be learnt are not held by the analyst performing the regression
task, but must be elicited from individuals. Such settings clearly include medical trials and census
surveys, as well as mining online behavioral data, a practice currently happening at a massive scale.

If data are held by self-interested individuals, it is not enough to simply run a regression—
the data holders may wish to influence the outcome of the computation, either because they could
benefit directly from certain outcomes, or to mask their input due to privacy concerns. In this
case, it is necessary to model the utility functions of the individuals and to design mechanisms that
provide proper incentives. Ideally, such mechanisms should still allow for accurate computation of
the underlying regression. A tradeoff then emerges between the accuracy of the computation and
the budget required to compensate participants.

In this paper, we focus on the problem posed by data holders who are concerned with their pri-
vacy. Our approach can easily be generalized to handle individuals manipulating the computation’s
outcome for other reasons, but for clarity we treat only privacy concerns. We consider a population
of players, each holding private data, and an analyst who wishes to compute a linear model from
their data. The analyst must design a mechanism (a computation he will do and payments he will
give the players) that incentivizes the players to provide information that will allow for accurate
computation, while minimizing the payments the analyst must make.
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We use a model of players’ costs for privacy that is based on the well-established notion of
differential privacy (Dwork et al., 2006). Incentivizing most players to truthfully report their data
to the analyst constrains our design to mechanisms that are differentially private. This immediately
poses a problem, as differentially private computation of a linear model necessarily produces a
biased estimation; existing approaches (Ghosh et al., 2014) to design mechanisms to elicit data
from privacy-sensitive individuals do not generalize well to biased estimators. Overcoming this
challenge, through appropriate design of the computation and payment scheme, is the main technical
contribution of the present work.

1.1. Our Results

We study the above issues in the context of linear regression. We present a mechanism (Algo-
rithm 2), which, under appropriate choice of parameters and fairly mild technical assumptions,
satisfies the following properties: it is (a) accurate (Theorem 14), i.e., computes an estimator whose
squared L2 distance to the true linear model goes to zero as the number of individuals increases,
(b) asymptotically truthful (Theorem 13), in that agents have no incentive to misreport their data,
(c) it incentivizes participation (Theorem 15), as players receive positive utility, and (d) it requires
an asymptotically small budget (Theorem 16), as total payments to agents go to zero as the num-
ber of individuals increases. Our technical assumptions are on how individuals experience privacy
losses and on the distribution from which these losses are drawn. Accuracy of the computation is
attained by establishing that the algorithm provides differential privacy (Theorem 10), and that it
provides payments such that the vast majority of individuals are incentivized to participate and to
report truthfully (Theorems 13 and 15). An informal statement appears in Theorem 9.

The fact that our total budget decreases in the number of individuals in the population is an
effect of the approach we use to eliciting truthful participation, which is based on the peer prediction
technology (Appendix A.1) and of the model of agents’ costs for privacy (Section 2.4). A similar
effect was seen by Ghosh et al. (2014). As they note, costs would no longer tend to zero if our
model incorporated some fixed cost for interacting with each individual.

1.2. Related Work

Following Ghosh and Roth (2013), a series of papers have studied data acquisition problems from
agents that have privacy concerns. The vast majority of this work (Fleischer and Lyu, 2012; Ligett
and Roth, 2012; Nissim et al., 2014; Cummings et al., 2015) operates in a model where agents
cannot lie about their private information (their only recourse is to withhold it or perhaps to lie
about their costs for privacy). A related thread (Ghosh and Roth, 2013; Nissim et al., 2012; Chen
et al., 2013) explores cost models based on the notion of differential privacy (Dwork et al., 2006).

Our setting is closest to, and inspired by, Ghosh et al. (2014), who bring the technology of peer
prediction to bear on the problem of incentivizing truthful reporting in the presence of privacy con-
cerns. The peer prediction approach of Miller et al. (2005) incentivizes truthful reporting (in the
absence of privacy constraints) by rewarding players for reporting information that is predictive of
the reports of other agents. This allows the analyst to leverage correlations between players’ infor-
mation. Ghosh et al. (2014) adapt the peer prediction approach to overcome a number of challenges
presented by privacy-sensitive individuals. The mechanism and analysis of Ghosh et al. (2014) was
for the simplest possible statistic—the sum of private binary types. In contrast, we regress a linear
model over player data, a significantly more sophisticated learning task. In particular, to attain accu-
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rate, privacy-preserving linear regression, we deal with biased private estimators, which interferes
with our ability to incentivize truth-telling, and hence to compute an accurate statistic.

Linear regression under strategic agents has been studied in a variety of different contexts. Dekel
et al. (2010) consider an analyst that regresses a “consensus” model across data coming from mul-
tiple strategic agents; agents would like the consensus value to minimize a loss over their own data,
and they show that, in this setting, empirical risk minimization is group-strategyproof. A similar
result, albeit in a more restricted setting, is established by Perote and Perote-Pena (2004). Regress-
ing a linear model over data from strategic agents that can only manipulate their costs, but not their
data, was studied by Horel et al. (2014) and Cai et al. (2014), while Ioannidis and Loiseau (2013)
consider a setting without payments, in which agents receive a utility as a function of estimation
accuracy. We depart from the above approaches by considering agents whose utilities depend on
their loss of privacy, an aspect absent from the above works.

Finally, we note a growing body of work on differentially private empirical risk minimization.
Our mechanism is based on the outcome perturbation algorithm of Chaudhuri et al. (2011). Other
algorithms from this literature — such as the localization algorithm of Bassily et al. (2014) or
objective perturbation of Chaudhuri et al. (2011) — could be used instead, and would likely yield
even better accuracy guarantees. We chose the output perturbation mechanism because it provides
an explicit characterization of the noise added to preserve privacy, which allows the analysis to
better highlight the challenges of incorporating privacy into our setting.

2. Model and Preliminaries

We present our model and a technical preliminary in this section. A more detailed review of peer
prediction, linear regression, and differential privacy can be found in Appendix A.

2.1. A Regression Setting

We consider a population where each player i ∈ [n] ≡ {1, . . . , n} is associated with a vector
xi ∈ Rd (i.e., player i’s features) and a variable yi ∈ R (i.e., her response variable). We assume that
responses are linearly related to the features; that is, there exists a θ ∈ Rd such that

yi = θ>xi + zi, for all i ∈ [n], (1)

where zi are zero-mean noise variables.
An analyst wishes to infer a linear model from the players’ data; that is, he wishes to estimate

θ, e.g., by performing linear regression on the players’ data. However, players incur a privacy cost
from revelation of their data and need to be properly incentivized to truthfully reveal it to the analyst.
More specifically, as in Ioannidis and Loiseau (2013), we assume that player i can manipulate her
responses yi but not her features xi. This is indeed the case when features are measured directly
by the analyst (e.g., are observed during a physical examination or are measured in a lab) or are
verifiable (e.g., features are extracted from a player’s medical record or are listed on her ID). A
player may misreport her response yi, on the other hand, which is unverifiable; this would be the
case if, e.g., yi is the answer the player gives to a survey question about her preferences or habits.

We assume that players are strategic and may lie either to increase the payment they extract
from the analyst or to mitigate any privacy violation they incur by the disclosure of their data. To
address such strategic behavior, the analyst will design a mechanismM : (Rd × R)n → Rd × Rn+
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that takes as input all player data (namely, the features xi and possibly perturbed responses ŷi), and
outputs an estimate θ̂ and a set of non-negative payments {πi}i∈[n] to each player. Informally, we
seek mechanisms that allow for accurate estimation of θ while requiring only asymptotically small
budget. In order to ensure accurate estimation of θ, we will require that our mechanism incentivizes
truthful participation on the part of most players, which in turn will require that we provide an
appropriate privacy guarantee. We discuss privacy in more detail in Section 2.3. Clearly, all of the
above also depend on the players’ rational behavior and, in particular, their utilities; we formally
present our model of player utilities in Section 2.4.

Throughout our analysis, we assume that θ is drawn independently from a known distributionF ,
the attribute vectors xi are drawn independently from the uniform distribution on the d-dimensional
unit ball,1 and the noise terms zi are drawn independently from a known distribution G. Thus θ,
{xi}i∈[n], and {zi}i∈[n] are independent random variables, while responses {yi}i∈[n] are determined
by (1). Note that as a result, responses are conditionally independent given θ.

We require some additional bounded support assumptions on these distributions. In short, these
boundedness assumptions are needed to ensure the sensitivity of mechanismM is finite; it is also
natural in practice that both features and responses take values in a bounded domain. More precisely,
we assume that the distribution F has bounded support, such that ‖θ‖22 ≤ B for some constant B;
we also require the noise distribution G to have mean zero, finite variance σ2, and bounded support:
supp(G) = [−M,M ] for some constant M . These assumptions together imply that

∣∣θ>xi∣∣ ≤ B
and |yi| ≤ B +M .

2.2. Linear and Ridge Regression

Let X = [xi]i∈[n] ∈ Rn×d denote the n× d matrix of features, and y = [yi]i∈[n] ∈ Rn the vector of
responses. Estimating θ through ridge regression amounts to minimizing the following regularized
quadratic loss function:

L(θ;X, y) =

n∑
i=1

`(θ;xi, yi) =

n∑
i=1

(yi − θ>xi)2 + γ ‖θ‖22 . (2)

That is, the ridge regression estimator can be written as: θ̂R = arg minθ∈Rd L(θ;X, y) = (γI +
X>X)−1X>y. The parameter γ > 0, known as the regularization parameter, ensures that the
loss function is strongly convex (see Appendix E) and, in particular, that the minimizer of (2) is
unique. When γ = 0, the estimator is the standard linear regression estimator, which we denote
by θ̂L = (X>X)−1X>y. The linear regression estimator is unbiased, i.e., under (1), it satisfies
E[θ̂L] = θ. The same is not true when γ > 0; the general ridge regression estimator θ̂R is biased.

2.3. Differential Privacy

Recall the classic definition of differential privacy by Dwork et al. (2006):

Definition 1 (Differential Privacy (Dwork et al., 2006)) A mechanismM : Dn → R is ε-differentially
private if for every pair of databasesD,D′ ∈ Dn differing only in one element, and for every subset
of possible outputs S ⊆ R, Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S].

1. See Theorem 20 and its accompanying Remark in Appendix A.2 for a discussion of generalizing beyond the uniform
distribution.
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We depart from this classic definition, quantifying privacy violation instead through joint dif-
ferential privacy (Kearns et al., 2014). Intuitively, full differential privacy requires that all outputs
by the mechanismM, including the payment it allocates to a player, is insensitive to every player’s
input. In settings like ours, however, it makes sense to assume that the payment to a player is also
in some sense “private,” in that it is shared neither publicly nor with other players. To that end,
we assume that the estimate θ̂ computed by the mechanism M is a publicly observable output;
in contrast, each payment πi is observable only by player i. Hence, from the perspective of each
player i, the mechanism output that is publicly released and that, in turn, might violate her privacy,
is (θ̂, π−i), where π−i comprises all payments excluding player i’s payment.

Definition 2 (Joint Differential Privacy (Kearns et al., 2014)) Consider a mechanismM : Dn →
O×Rn, forD,O,R arbitrary sets. For each i ∈ [n], let (M(·))−i = (o, π−i) ∈ O×Rn−1 denote
the portion of the mechanism’s output that is observable to outside observers and players j 6= i. A
mechanismM is ε-jointly differentially private if, for every player i, every database D ∈ Dn, every
d′i ∈ D, and for every observable set of outcomes S ⊆ O ×Rn−1:

Pr
[
(M(D))−i ∈ S

]
≤ exp(ε) Pr

[(
M(d′i, D−i)

)
−i ∈ S

]
.

This relaxation of differential privacy is natural, but it is also necessary to incentivize truthfulness.
Requiring that a player’s payment πi be ε-differentially private implies that a player’s unilateral de-
viation changes the distribution of her payment only slightly. Hence, under full differential privacy,
a player’s payment would remain roughly the same no matter what she reports, which intuitively
cannot incentivize truthful reporting.

We emphasize here that the existence of priors and the independence of responses are used only
to prove the accuracy of the model learned and truthfulness, but not to ensure any privacy guarantee.
Our mechanism satisfies joint differential privacy regardless of of whether the assumptions hold; if
they do, accuracy and truthfulness follow. Further, the notion of ε-joint differential privacy depends
on both yi and xi: although a player can only manipulate yi, both her response and her features are
treated as “private” variables in our model, and both disclosures incur a privacy cost. Features should
certainly be deemed private if, e.g., they are attributes in a player’s medical record, or outcomes of a
medical examination. Moreover, (1) implies a correlation between features and the response, which
can be strong, for example, in the case where θ has small support; it is therefore reasonable to
assume that, if the response is private, so should features correlated to this response.

2.4. Player Utilities

As discussed in the related work section, starting from Ghosh and Roth (2013), a series of recent
papers on strategic data revelation model player privacy costs as functions of the privacy parameter ε.
We also adopt this modeling assumption. Having introduced the notion of joint differential privacy,
we now present our model of player utilities. We assume that every player is characterized by a cost
parameter ci ∈ R+, determining her sensitivity to the privacy violation incurred by the revelation of
her data to her analyst. In particular, each player has a privacy cost function fi(ci, ε) that describes
the cost she incurs when her data is used in an ε-jointly differentially private computation. Players
have quasilinear utilities, so if player i receives payment πi for her report, and experiences cost
fi(ci, ε) from her privacy loss, her utility is ui = πi − fi(ci, ε).

Following again recent work, we assume that fi can be an arbitrary function, bounded by an
increasing monomial of ε. In particular, we make the following assumption.
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Assumption 1 The privacy cost function of each player satisfies fi(ci, ε) ≤ ciε2.

The monotonicity in ε is intuitive, as smaller values imply stronger privacy properties, with
ε = 0 indicating the output is independent of player i’s data. We note that the quadratic bound in
Assumption 1 was introduced by Chen et al. (2013) and also adopted by Ghosh et al. (2014). As
noted by the above authors, the quadratic bound can be shown to hold for a broad class of natural
cost functions fi; we refer the reader to Appendix D for a formal description of this class.

Throughout our analysis, we assume that the privacy cost parameters are also random variables,
sampled from a distribution C. We allow ci to depend on player i’s data (xi, yi); however, we
assume conditioned on (xi, yi), that ci does not reveal any additional information about the costs or
data of any other agents. Formally:

Assumption 2 Given (xi, yi), (X−i, y−i, c−i) is conditionally independent of ci:

Pr[(X−i, y−i, c−i)|(xi, yi), ci] = Pr[(X−i, y−i, c−i)|(xi, yi), c′i] for all (X−i, y−i, c−i), (xi, yi), ci, c
′
i.

We also make the following additional technical assumption on the tail of C.

Assumption 3 The conditional marginal distribution satisfies minxi,yi

(
Prcj∼C|xi,yi [cj ≤ τ ]

)
≥

1− τ−p for some constant p > 1.

Note that Assumption 3 implies that Prci∼C [ci ≤ τ ] ≥ 1− τ−p.

2.5. Mechanism Properties

We seek mechanisms that satisfy the following properties: (a) truthful reporting is an equilibrium,
(b) the estimator computed under truthful reporting is highly accurate, (c) players are ensured non-
negative utilities from truthful reporting, and (d) the budget required from the analyst to run the
mechanism is small. We present here the standard definitions for these properties used in this paper.
Consider a regression mechanism M. Let πi(X, y) and be the payment to player i when (X, y)
is the collection of reports to the regression mechanism, and let fi(ci, ε) be player i’s cost for
participating in the mechanism. We define a strategy profile σ = (σ1, . . . , σn) to be a collection of
strategies σi (one for each player), mapping from realized data (xi, yi) to reports ŷi. Under strategy
σi, a player who has data (xi, yi) would report ŷi = σi(xi, yi) to the regression mechanism.

Definition 3 (Bayes Nash equilibrium) A strategy profile σ forms an η-approximate Bayes Nash
equilibrium if for every player i, for all realizable (xi, yi), and for every misreport ŷi 6= yi,

E[πi(X,σ(X, y))]− fi(ci, ε) ≥ E[πi(X, (ŷi, σ−i(X−i, y−i)))]− f(ci, ε)− η.

Definition 4 (Accuracy) A regression is η-accurate if for all realizable parameters θ, it outputs an
estimate θ̂ such that E[‖θ̂ − θ‖22] ≤ η.

Definition 5 (Individually Rational) A mechanism is individually rational (IR) if E[πi(X, y)] −
fi(ci, ε) ≥ 0 for every player i and for all realizable (X, y).

We will also be concerned with the total amount spent by the analyst in the mechanism. The
budget B of a mechanism is the sum of all payments made to players. That is, B =

∑
i πi.

Definition 6 (Asymptotically small budget) An asymptotically small budget is such that B =∑n
i=1 πi(X, y) = o(1), for all realizable (X, y).
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Algorithm 1 Truthful Regression Mechanism(a, b)
Solicit reports X ∈ (Rd)n and ŷ ∈ Rn
Analyst computes θ̂L = (X>X)−1X>ŷ and θ̂L−i = (X>−iX−i)

−1X>−iŷ−i for each i ∈ [n]

Output estimator θ̂L

Pay each player i, πi = Ba,b(x
>
i θ̂

L
−i, x

>
i E[θ|xi, ŷi])

3. Truthful Regression without Privacy Constraints

To illustrate the ideas we use in the rest of the paper, we present in this section a mechanism which
incentivizes truthful reporting in the absence of privacy concerns. If the players do not have privacy
concerns (i.e., ci = 0 for all i ∈ [n]), the analyst can simply collect data, estimate θ using linear
regression, and compensate players using the following scoring rule:2

Ba,b(p, q) = a− b
(
p− 2pq + q2

)
.

The mechanism is formally presented in Algorithm 1. In the spirit of peer prediction, a player’s
payment depends on how well her reported ŷi agrees with the predicted value of yi, as constructed
by the estimate θ̂L−i of θ produced by all her peers. We now show that truthful reporting is a Bayes
Nash equilibrium.

Lemma 7 (Truthfulness) For all a, b > 0, truthful reporting is a Bayes Nash equilibrium under
Algorithm 1.

Proof Recall that conditioned on xi, yi, the distribution of X−i, y−i is independent of ci. Hence,
assuming all other players are truthful, player i’s expected payment conditioned on her data (xi, yi)
and her cost ci, for reporting ŷi is,

E[πi|xi, yi, ci] = E
[
Ba,b(x

>
i θ̂

L
−i, x

>
i E[θ|xi, ŷi])|xi, yi

]
= Ba,b

(
x>i E[θ̂L−i|xi, yi], x>i E[θ|xi, ŷi]

)
.

The second inequality is due to the linearity of Ba,b in its first argument, as well as the linearity of
the inner product. Note that Ba,b is uniquely maximized by reporting ŷi such that E[θ|xi, ŷi]>xi =

E[θ̂L−i|xi, yi]>xi. Since θ̂L is an unbiased estimator of θ, then E[θ̂L−i|xi, yi] = E[θ|xi, yi]. Thus the
optimal misreport is ŷi such that E[θ|xi, ŷi]>xi = E[θ|xi, yi]>xi, so truthful reporting is a Bayes
Nash equilibrium.

We note that truthfulness is essentially a consequence of (1) the fact that Ba,b is a strictly proper
scoring rule (as it is positive-affine in its first argument and strictly concave in its second argument),
and (2) most importantly, the fact that θ̂L−i is an unbiased estimator of θ. Moreover, as in the case
of the simple peer prediction setting presented in Appendix A.1, truthfulness persists even if θ̂L−i in
Algorithm 1 is replaced by a linear regression estimator constructed over responses restricted to an
arbitrary set S ⊆ [n] \ i.

Truthful reports enable accurate computation of the estimator with high probability, with accu-
racy parameter η = O( 1

n).

2. This is a variant of the well-known Brier scoring rule (Brier, 1950). See Appendix A.1 for more details.
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Lemma 8 (Accuracy) Under truthful reporting, with probability at least 1− d−t2 and when n ≥

C( tξ )2(d+ 2) log d, the accuracy the estimator θ̂L in Algorithm 1 is E
[∥∥∥θ̂L − θ∥∥∥2

2

]
≤ σ2

(1−ξ) 1
d+2

n
.

Proof Note that E
[∥∥∥θ̂L − θ∥∥∥2

2

]
= trace(Cov(θ̂L))

(5)
= σ2 trace

(
(X>X)−1

)
. For i.i.d. features

xi, the spectrum of matrix X>X can be asymptotically characterized by a theorem of Vershynin
(2012) (see Theorem 20 in Appendix A.2), and the lemma follows.

Remark Note that individual rationality and a small budget can be trivially attained in the absence
of privacy costs. To ensure individual rationality of Algorithm 1, payments πi must be non-negative,
but can be made arbitrarily small. Thus payments can be scaled down to reduce the analyst’s total
budget. For example, setting a = b(B+ 2B(B+M) + (B+M)2− 1) and b = 1

n2 ensures πi ≥ 0
for all players i, and the total required budget is 1

n(2B + 4B(B +M) + (B +M)2) = O( 1
n).

4. Truthful Regression with Privacy Constraints

As we saw in the previous section, in the absence of privacy concerns, it is possible to devise
payments that incentivize truthful reporting. These payments compensate players based on how
well their report agrees with a response predicted by θ̂L estimated using other player’s reports.

Players whose utilities depend on privacy raise several challenges. Recall that the parameters
estimated by the analyst, and the payments made to players, need to satisfy joint differential privacy,
and hence any estimate of θ revealed publicly by the analyst or used in a payment must be ε-
differentially private. Unfortunately, the sensitivity of the linear regression estimator θ̂L to changes
in the input data is, in general, unbounded. As a result, it is not possible to construct a non-trivial
differentially private version of θ̂L by, e.g., adding noise to its output.

In contrast, differentially private versions of regularized estimators like the ridge regression
estimator θ̂R can be constructed. Recent techniques have been developed for precisely this purpose,
not only for ridge regression but for the broader class of learning through (convex) empirical risk
minimization (Chaudhuri et al., 2011; Bassily et al., 2014). In short, the techniques by Chaudhuri
et al. (2011) and Bassily et al. (2014) succeed precisely because, for γ > 0, the regularized loss (2)
is strongly convex. This implies that the sensitivity of θ̂R is bounded, and a differentially private
version of θ̂R can be constructed by adding noise of appropriate variance or though alternative
techniques such as objective perturbation.

The above suggest that a possible approach to constructing a truthful, accurate mechanism in
the presence of privacy-conscious players is to modify Algorithm 1 by replacing θ̂L with a ridge
regression estimator θ̂R, both with respect to the estimate released globally and to any estimates used
in computing payments. Unfortunately, such an approach breaks truthfulness because θ̂R is a biased
estimator. The linear regression estimator θ̂L ensured that the scoring rule Ba,b was maximized
precisely when players reported their response variable truthfully. However, in the presence of
an expected bias b, it can easily be seen that the optimal report of player i deviates from truthful
reporting by a quantity proportional to bTxi.

We address this issue for large n using again the concentration result by Vershynin (2012) (see
Appendix A.2). This ensures that for large n, the spectrum of X>X should grow roughly linearly
with n, with high probability. By (5), this implies that as long as γ grows more slowly than n, the
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bias term of θ̂R converges to zero, with high probability. Together, these statements ensure that for
an appropriate choice of γ, we attain approximate truthfulness for large n, while also ensuring that
the output of our mechanism remains differentially private for all n. We formalize this intuition
by proving that our mechanism presented in Section 4.1, based on ridge regression, indeed attains
approximate truthfulness for large n, while also remaining jointly differentially private.

4.1. Private Regression Mechanism

We present our mechanism for private and truthful regression in Algorithm 2, which is a privatized
version of Algorithm 1. We incorporate into our mechanism the Output Perturbation algorithm from
Chaudhuri et al. (2011), which first computes the ridge regression estimator and then adds noise to
the output. This approach is used to ensure that the mechanism’s output satisfies joint differential
privacy.

The noise vector v will be drawn according to the following distribution PL, which is a high-
dimensional Laplace distribution with parameter 4B+2M

γε : PL(v) ∝ exp
(
−γε

4B+2M ‖v‖2
)

.

Algorithm 2 Private Regression Mechanism(γ, ε, a, b)

Solicit reports X ∈
(
Rd
)n and ŷ ∈ Rn

Randomly partition players into two groups, with respective data pairs (X0, ŷ0) and (X1, ŷ1)
Analyst computes θ̂R = (γI +X>X)−1X>ŷ and θ̂Rj = (γI +X>j Xj)

−1X>j ŷj for j = 0, 1

Independently draw v, v0, v1 ∈ Rd according to distribution PL
Compute estimators θ̂P = θ̂R + v, θ̂P0 = θ̂R0 + v0, and θ̂P1 = θ̂R1 + v1

Output estimator θ̂P

Pay each player i in group j, πi = Ba,b((θ̂
P
1−j)

>xi,E[θ|xi, ŷi]>xi) for j = 0, 1

Here we state an informal version of our main result. The formal version of this result is stated
in Corollary 18, which aggregates and instantiates Theorems 10, 13, 14, 15, and 16.

Theorem 9 (Main result (Informal)) Under Assumptions 1, 2, and 3, there exists ways to set γ,
ε, a, and b in Algorithm 2 to ensure that with high probability:

1. the output of Algorithm 2 is o( 1√
n

)-jointly differentially private,

2. it is an o
(

1
n

)
-approximate Bayes Nash equilibrium for a (1 − o(1))-fraction of players to

truthfully report their data,

3. the computed estimator θ̂P is o(1)-accurate,

4. it is individually rational for a (1− o(1))-fraction of players to participate in the mechanism,
and

5. the required budget from the analyst is o(1).

5. Analysis of Algorithm 2

In this section, we flesh out the claims made in Theorem 9. Due to space constraints, all proofs are
deferred to Appendix B.
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Theorem 10 (Privacy) The mechanism in Algorithm 2 is 2ε-jointly differentially private.

Proof idea We first show that the estimators θ̂P , θ̂P0 , θ̂P1 together satisfy 2ε-differential privacy,
by bounding the maximum amount that any player’s report can affect the estimators. We then use
the Billboard Lemma (Lemma 21 in Appendix A.3) to show that the estimators, together with the
vector of payments, satisfy 2ε-joint differential privacy.

Once we have a privacy guarantee, we can build on this to get truthful participation and hence
accuracy. To do so, we first show that a symmetric threshold strategy equilibrium exists, in which
all agents with cost parameter ci below some threshold τ should participate and truthfully report
their yi. We define τα,β to be the cost threshold such that (1) with probability 1 − β (with respect
to the prior from which costs are drawn), at least a (1− α)-fraction of players have cost parameter
ci ≤ τα,β , and (2) conditioned on her own data, each player i believes that with probability 1 − α,
any other player j will have cost parameter cj ≤ τα,β .

Definition 11 (Threshold τα,β) Fix a marginal cost distribution C on {ci}, and let

τ1
α,β = inf

τ

(
Pr
c∼C

[|{i : ci ≤ τ}| ≥ (1− α)n] ≥ 1− β
)
,

τ2
α = inf

τ

(
min
xi,yi

(
Pr

cj∼C|xi,yi
[cj ≤ τ ]

)
≥ 1− α

)
.

Define τα,β to be the larger of these thresholds: τα,β = max{τ1
α,β, τ

2
α}.

We also define the threshold strategy στ , in which a player reports truthfully if her cost ci is
below τ , and is allowed to misreport arbitrarily if her cost is above τ .

Definition 12 (Threshold strategy) Define the threshold strategy στ as follows:

στ (xi, yi, ci) =

{
Report ŷi = yi if ci ≤ τ,
Report arbitrary ŷi otherwise.

We show that στα,β forms a symmetric threshold strategy equilibrium in the Private Regression
Mechanism of Algorithm 2.

Theorem 13 (Truthfulness) Fix a participation goal 1 − α, a privacy parameter ε, a desired
confidence parameter β, ξ ∈ (0, 1), and t ≥ 1. Then under Assumptions 1 and 2, with probability
1−dt2 and when n ≥ C( tξ )2(d+2) log d, the symmetric threshold strategy στα,β is an η-approximate
Bayes-Nash equilibrium in Algorithm 2 for

η = b

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

)2

+ τα,βε
2.

10
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Proof idea There are three primary sources of error which cause the estimator θ̂P to differ from a
player’s posterior on θ. First, ridge regression is a biased estimation technique; second, Algorithm
2 adds noise to preserve privacy; third, players with cost parameter ci above threshold τα,β are
allowed to misreport their data. We show how to control the effects of these three sources of error,
so that θ̂P is “not too far” from a player’s posterior on θ. Finally, we use strong convexity of the
payment rule to show that any player’s payment from misreporting is at most η greater than from
truthful reporting.

Theorem 14 (Accuracy) Fix a participation goal 1 − α, a privacy parameter ε, a desired con-
fidence parameter β, ξ ∈ (0, 1), and t ≥ 1. Then under the symmetric threshold strategy στα,β ,
Algorithm 2 will output an estimator θ̂P such that with probability at least 1− β − d−t2 , and when
n ≥ C( tξ )2(d+ 2) log d,

E[‖θ̂P − θ‖22] = O

((
αn

γ
+

1

γε

)2

+
(γ
n

)2
+

(
1

n

)2

+
αn

γ
+

1

γε

)
.

Proof idea As in Theorem 13, we control the three sources of error in the estimator θ̂P — the bias
of ridge regression, the noise added to preserve privacy, and the error due to some players misre-
porting their data — this time measuring distance with respect to the expected L2 norm difference.

We next see that players whose cost parameters are below the threshold τα,β are incentivized to
participate.

Theorem 15 (Individual Rationality) Under Assumption 1, the mechanism in Algorithm 2 is in-
dividually rational for all players with cost parameters ci ≤ τα,β as long as,

a ≥

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB) + bB2 + τα,βε

2,

regardless of the reports from players with cost coefficients above τα,β .

Proof idea A player’s utility from participating in the mechanism is her payment minus her pri-
vacy cost. The parameter a in the payment rule is a constant offset that shifts each player’s payment.
We lower bound the minimum payment from Algorithm 2 and upper bound the privacy cost of any
player with cost coefficient below threshold τα,β . If a is larger than the difference between these
two terms, then any player with cost coefficient below threshold will receive non-negative utility.

Finally, we analyze the total cost to the analyst for running the mechanism.

Theorem 16 (Budget) The total budget required by the analyst to run Algorithm 2 when players
utilize threshold equilibrium strategy στα,β is

B ≤ n

[
a+

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB)

]
.

Proof idea The analyst’s budget is the sum of all payments made to players in the mechanism.
We upper bound the maximum payment to any player, and the total budget required is at most n
times this maximum payment.

11
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5.1. Formal Statement of Main Result

In this section, we present our main result, Corollary 18, which instantiates Theorems 10, 13, 14, 15,
and 16 with a setting of all parameters to get the bounds promised in Theorem 9. Before stating our
main result, we first require the following lemma which asymptotically bounds τα,β for an arbitrary
bounded distribution. We use this to control the asymptotic behavior of τα,β under Assumption 3.

Lemma 17 For a cost distribution C with conditional marginal CDF lower bounded by some
function F : minxi,yi

(
Prcj∼C|xi,yi [cj ≤ τ ]

)
≥ F (τ), then

τα,β ≤ max{F−1(1− αβ), F−1(1− α)}.

We note that under Assumption 3, Lemma 17 implies that τα,β ≤ max{(αβ)−1/p, (α)−1/p}.
Using this fact, we can state a formal version of our main result.

Corollary 18 (Main result (Formal)) Choose δ ∈ (0, p
2+2p). Then under Assumptions 1, 2, and

3, setting α = n−δ, β = n−
p
2

+δ(1+p), ε = n−1+δ, γ = n1− δ
2 , a = (6B + 2M)(1 + B)2n−

3
2 +

n−
3
2

+δ, b = n−
3
2 , ξ = 1/2, and t =

√
n

4C(d+2) log d in Algorithm 2 ensures that with probability

1− dΘ(−n) − n−
p
2

+δ(1+p):

1. the output of Algorithm 2 is O
(
n−1+δ

)
-jointly differentially private,

2. it is an O
(
n−

3
2

+δ
)

-approximate Bayes Nash equilibrium for a 1−O
(
n−δ

)
fraction of play-

ers to truthfully report their data,

3. the computed estimate θ̂P is O
(
n−δ

)
-accurate,

4. it is individually rational for a 1−O
(
n−δ

)
fraction of players to participate in the mechanism,

and

5. the required budget from the analyst is O
(
n−

1
2

+δ
)

.

This follows from instantiating Theorems 10, 13, 14, 15, and 16 with the specified parame-
ters. Note that the choice of δ controls the trade-off between approximation factors for the desired
properties.

Remark Note that different settings of parameters can be used to yield a different trade-off be-
tween approximation factors in the above result. For example, if the analyst is willing to supply a
higher budget (say constant or increasing with n), he could improve on the accuracy guarantee.
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Appendix A. Technical Preliminaries

A.1. Peer Prediction and the Brier Scoring Rule

Peer prediction (Miller et al., 2005) is a useful method of inducing truthful reporting among players
that hold data generated by the same statistical model. In short, each player reports her data to
an analyst and is paid based on how well her report predicts the report of other players; tying

14
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each player’s payment to how closely it predicts peer reports is precisely what induces truthfulness.
Ghosh et al. (2014) illustrate these ideas in the context of privacy-sensitive individuals through the
use of the Brier scoring rule (Brier, 1950) as a payment scheme among players holding a random
bit. As we make use of the same technique, we review here how the Brier scoring rule can be used
for basic peer prediction.

The basic Brier scoring rule was designed for the prediction of a binary event. Let I be an
indicator of the event occurring. Then the payment for reporting that the event will occur with
probability q is,

BasicBrier(I, q) = 2Iq + 2(1− I)(1− q)− q2 − (1− q)2.

Following Ghosh et al. (2014), we define an extension of the basic Brier scoring rule. For any p and
q, we define the payment function B(p, q) as follows:

B(p, q) = 1− 2(p− 2pq + q2)

Note that for the prediction of a binary event,B(p, q) is the expected payment according toBasicBrier(I, q)
when the event will occur with probability p and the agent submits prediction probability q. That
is, B(p, q) = EI∼p[BasicBrier(I, q)]. By design, B(p, q) is a strictly proper scoring rule, which
means it is uniquely maximized by a player truthful reporting her belief q about the probability of
the event occurring.

Algorithms 1 and 2 use payment ruleBa,b(p, q), which is a parametrized rescaling of the scoring
rule B(p, q), defined as follows:

Ba,b(p, q) = a− b
(
p− 2pq + q2

)
.

Any positive-affine transformation of a strictly proper scoring rule remains strictly proper (Bickel,
2007). The rescaled Brier scoring rule satisfies this criterion as Ba,b(p, q) = a′ + b′B(p, q) where
a′ = a − b/2 and b′ = b/2 > 0. Thus Ba,b(p, q) is a strictly proper scoring rule, and is uniquely
maximized by reporting the true probability q = p.

For concreteness, we now provide an example to demonstrate how the payment rule B(p, q)
can be used in peer prediction to truthfully elicit players’ beliefs. Consider a set of n players,
each holding a binary variable bi ∈ {0, 1}. Assume that each of these variables is generated by
independent Bernouli trials with parameter p, i.e., Pr(bi = 1) = p, for every i ∈ [n]. We assume
here that p is itself a random variable generated from a known prior over [0, 1]. Each player reports a
bit b̃i ∈ {0, 1} to the analyst, who wishes to estimate p as 1

n

∑
i∈[n] b̃i. The analyst therefore wishes

to incentivize truthful reporting of the bits bi, through an appropriate payment scheme.
Let E[p | b] be expected value of p conditioned on observing that a player’s bit is b ∈ {0, 1}.

Put differently, for every player whose bit is b, E[p | b] captures her belief about the realization of p
after she observes her own bit. Consider the following payment rule. To generate the payment for
player i, the analyst selects a player j uniformly at random from [n] \ i and pays player i:

B(b̃j ,E[p | b̃i]) (3)

Lemma 19 (Miller et al., 2005) Under payments (3), truthful reporting is a Bayes-Nash equilib-
rium.
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Proof Observe that for all q, q′ ∈ [0, 1], B(q′, q) is positive, so payments (3) are individually
rational. Moreover, for all q′ ∈ [0, 1], B(q′, q) is a strictly concave function of q maximized at
q′ = q. Moreover, B(q′, q) is an affine function of q′. If player i’s bit is bi and all other play-
ers report their bits truthfully (i.e., b̃j = bj for all j 6= i), then player i’s expected payment is

E
[
B(bj ,E[p | b̃i]) | bi

]
= B

(
E[bj | bi],E[p | b̃i]

)
= B

(
E[p | bi],E[p | b̃i]

)
. Hence, player i’s

payment is maximized when b̃i = bi.

Informally, the payment scheme (3) induces truthfulness by awarding a player the highest payment
if the belief induced on p by her reported bit “agrees” with the belief induced by the bit of a random
peer. We note that instead of the bit of a peer selected at random, any quantity whose expectation
conditioned on bi would be equal to E[p | bi] would work as input to the payment rule. For example,
using the average value b̄S = 1

|S|
∑

j∈S b̃j for any S ⊆ [n] \ i as the first argument of B would also
induce truthful reporting.

A.2. Properties of ridge regression

As mentioned in Section 2.2, the ridge regression estimator θ̂R is biased, while the linear regression
estimator θ̂L is unbiased. Nevertheless, in practice θ̂R is preferable to θ̂L as it can achieve a desirable
trade-off between bias and variance. In particular, consider the square loss error of the estimation
θ̂R, namely, E[‖θ̂R − θ‖22]. If we condition on the true parameter vector θ and the features X , this
can be written as

E[‖θ̂R − θ‖22] = E[‖θ̂R − E[θ̂R]‖22] + ‖E[θ̂R]− θ‖22 = trace(Cov(θ̂R)) + ‖ bias(θ̂R)‖22 (4)

where Cov(θ̂R) = E[(θ̂R − E[θ̂R])(θ̂R − E[θ̂R])>] and bias(θ̂R) = E[θ̂R] − θ are the covariance
and bias, respectively, of estimator θ̂R. Assuming that the responses y follow (1)3, then conditioned
on X and θ, these can be computed in closed form as:

Cov(θ̂R) = σ2(γI +X>X)−1X>X(γI +X>X)−1, bias(θ̂R) = −γ(γI +X>X)−1θ, (5)

where σ2 is the variance of the noise variables zi in (1). It is easy to see that decreasing γ decreases
the bias, but may significantly increase the variance. For example in the case where rank(X) < d,
the matrix X>X is not invertible, and the trace of the covariance tends to infinity as γ tends to zero.

Whether trace(Cov(θ̂R)) is large and, therefore, whether regularizing the square loss is nec-
essary, depends on largest eigenvalue (i.e., the spectral norm) of (X>X)−1. Although this can be
infinite for arbitraryX , if the xi’s are drawn i.i.d. we expect that as n increases we will get estimates
of lower variance. Indeed, by the law of large numbers, we expect that if we sample the features
xi independently from an isotropic distribution, then 1

n(X>X) should converge to the covariance
of this distribution (namely Σ = cI for some constant c). As such, for large n both the largest and
smallest eigenvalues of X>X should be of the order of n, leading to an estimation of ever decreas-
ing variance even when γ = 0. The following theorem, which follows as a corollary of a result
by Vershynin (2012) (see Appendix C), formalizes this notion, providing bounds on both the largest
and smallest eigenvalue of X>X and γI +X>X .

Theorem 20 Let ξ ∈ (0, 1), and t ≥ 1. Let ‖ · ‖ denote the spectral norm. If {xi}i∈[n] are
i.i.d. and sampled uniformly from the unit ball, then with probability at least 1 − d−t2 , when n ≥

3. i.e., under truthful reporting.
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C( tξ )2(d+ 2) log d, for some absolute constant C, then,∥∥∥X>X∥∥∥ ≤ (1 + ξ)
1

d+ 2
n, and

∥∥∥(X>X)−1
∥∥∥ ≤ 1

(1− ξ) 1
d+2n

, and

∥∥∥γI +X>X
∥∥∥ ≤ γ + (1 + ξ)

1

d+ 2
n, and

∥∥∥(γI +X>X)−1
∥∥∥ ≤ 1

γ + (1− ξ) 1
d+2n

.

Remark A generalization of Theorem 20 holds for {xi}i∈[n] sampled from any distribution with
a covariance Σ whose smallest eigenvalue is bounded away from zero (see Vershynin (2012)). We
restrict our attention to the unit ball for simplicity and concreteness.

A.3. The Billboard Lemma

A very useful result regarding jointly differentially private mechanisms that we use in our analysis
is the so-called “billboard-lemma”:

Lemma 21 (Billboard Lemma (Hsu et al., 2014)) LetM : Dn → O be an ε-differentially pri-
vate mechanism. Consider a set of n functions hi : D ×O → R, for i ∈ [n]. Then, the mechanism
M′ : Dn → O×Rn that computes r =M(D) and outputsM′(D) = (r, h1(Π2D, r), . . . , hn(ΠnD, r)),
where Πi is the projection to player i’s data, is ε-jointly differentially private.

In short, the billboard lemma implies that if we can construct payments such that the payment
to player i depends only on her data (e.g. xi, yi) and a universally observable output that is ε-
differentially private (e.g., θ̂), then the resulting mechanism will be ε-jointly differentially private.

Appendix B. Proofs from Section 5

B.1. Proof of Theorem 10 (Privacy)

We will now prove that the estimator θ̂P and the vector of payments π of the mechanism in Al-
gorithm 2 is 2ε-jointly differentially private. First, we need the following lemma to bound the
sensitivity of θ̂P , formally defined in Definition 22, which is the maximum change in the output
when a single player misreports her data. For vector-valued outputs, we measure this change with
respect to the L2 norm.

Definition 22 (Sensitivity) The sensitivity of a function f : D → R is the maximum L2 norm of
the function’s output, when a single player changes her input:

Sensitivity of f = max
D,D′, neighbors

‖f(D)− f(D′)‖2

The following lemma follows from Chaudhuri et al. (2011); a proof is provided for complete-
ness.

Lemma 23 The sensitivity of θ̂R is 1
γ (4B + 2M).
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Proof Let (X, y) and (X ′, y′) be two arbitrary neighboring databases that differ only in the i-th
entry. Let θ̂R and (θ̂R)′ respectively denote the ridge regression estimators computed on (X, y) and
(X ′, y′). Define g(θ) to be the change in loss when θ is used as an estimator for (X ′, y′) and (X, y).

g(θ) = L(θ;X ′, y′)− L(θ;X, y)

=
(
θ>xi − yi

)2
−
(
θ>x′i − y′i

)2

Lemma 7 of Chaudhuri et al. (2011) says that if L(θ;X, y) and L(θ;X ′, y′) are both Γ-strongly con-
vex, then

∥∥∥θ̂R − (θ̂R)′
∥∥∥

2
is bounded above by 1

Γ ·maxθ ‖∇g(θ)‖2. By Lemma 32 (in Appendix E),

both L(θ;X, y) and L(θ;X ′, y′) are 2γ-strongly convex, so
∥∥∥θ̂R − (θ̂R)′

∥∥∥
2
≤ 1

2γ ·maxθ ‖∇g(θ)‖2.

We now bound ‖∇g(θ)‖2 for an arbitrary θ.

‖∇g(θ)‖2 = 2
∥∥∥(θ>xi − yi)xi − (θ>x′i − y′i)x′i

∥∥∥
2

≤ 4
∣∣∣θ>xi − yi∣∣∣ ‖xi‖2

≤ 4
(∣∣∣θ>xi∣∣∣+ |yi|

)
≤ 4(2B +M)

Since this bound holds for all θ, it must be the case that maxθ ‖∇g(θ)‖2 ≤ 4(2B + M) as well.
Then by Lemma 7 of Chaudhuri et al. (2011),∥∥∥θ̂R − (θ̂R)′

∥∥∥
2
≤ 4

2γ
(2B +M) =

1

γ
(4B + 2M).

Since (X, y) and (X ′, y′) were two arbitrary neighboring databases, this bounds the sensitivity of
the computation. Thus changing the input of one player can change the ridge regression estimator
(with respect to the L2 norm) by at most 1

γ (4B + 2M).

We now prove that the output of Algorithm 2 satisfies 2ε-joint differential privacy.

Theorem 10 (Privacy) The mechanism in Algorithm 2 is 2ε-jointly differentially private.

Proof We begin by showing that the estimator θ̂P output by Algorithm 2 is ε-differentially private.
Let h denote the PDF of θ̂P output by Algorithm 2, and ν denote the PDF of the noise vector v.

Let (X, y) and (X ′, y′) be any two databases that differ only in the i-th entry, and let θ̂R and (θ̂R)′

respectively denote the ridge regression estimators computed on these two databases.
The output estimator θ̂P is the sum of the ridge regression estimator θ̂R, and the noise vector

v; the only randomness in the choice of θ̂P is the noise vector, because θ̂R is computed determin-
istically on the data. Thus the probability that Algorithm 2 outputs a particular θ̂P is equal to the
probability that the noise vector is exactly the difference between θ̂P and θ̂R. Fixing an arbitrary
θ̂P , let v̂ = θ̂P − θ̂R and v̂′ = θ̂P − (θ̂R)′. Then,

h(θ̂P |(X, y))

h(θ̂P |(X ′, y′))
=
ν(v̂)

ν(v̂′)
= exp

(
−γε

8B + 4M
(‖v̂‖2 −

∥∥v̂′∥∥
2
)

)
= exp

(
γε

8B + 4M
(
∥∥v̂′∥∥

2
− ‖v̂‖2)

)
(6)

18



TRUTHFUL LINEAR REGRESSION

By definition, θ̂P = θ̂R + v̂ = (θ̂R)′ + v̂′. Rearranging terms gives θ̂R − (θ̂R)′ = v̂′ − v̂. By
Lemma 23 and the triangle inequality,∥∥v̂′∥∥

2
− ‖v̂‖2 ≤

∥∥v̂′ − v̂∥∥
2

=
∥∥∥θ̂R − (θ̂R)′

∥∥∥
2
≤ 1

γ
(4B + 2M)

Plugging this into Equation (6) gives the desired inequality,

h(θ̂P |(X, y))

h(θ̂P |(X ′, y′))
≤ exp

(
γε

4B + 2M

1

γ
(4B + 2M)

)
= exp(ε).

Next, we show that the output (θ̂P , θ̂P0 , θ̂
P
1 , {πi}i∈[n]) of the mechanism satisfies joint differen-

tial privacy using the Billboard Lemma. The estimators θ̂P0 and θ̂P1 are computed in the same way as
θ̂P , so θ̂P0 and θ̂P1 each satisfy ε-differential privacy. Since θ̂P0 and θ̂P1 are computed on disjoint sub-
sets of the data, then by Theorem 4 of McSherry (2009), together they satisfy ε-differential privacy.
The estimator a player should use to compute her payments depends only on the partition of players,
which is independent of the data because it is chosen uniformly at random. Thus by the Compo-
sition Theorem in Dwork et al. (2006), the estimators (θ̂P , θ̂P0 , θ̂

P
1 ) together satisfy 2ε-differential

privacy.
Each player’s payment πi is a function of only her private information — her report (xi, ŷi)

and her group in the partition of players — and the 2ε-differentially private vector of estimators
(θ̂P , θ̂P0 , θ̂

P
1 ). Then by the Billboard Lemma 21, the output (θ̂P , θ̂P0 , θ̂

P
1 , {πi}i∈[n]) of Algorithm 2

satisfies 2ε-joint differential privacy.

B.2. Proof of Theorem 13 (Truthfulness)

In order to show that στα,β is an approximate Bayes-Nash equilibrium, we require the following
three lemmas. Lemma 24 bounds the expected number of players who will misreport under the
strategy profile στα,β . Lemma 25 bounds the norm of the expected difference of two estimators
output by Algorithm 2 run on different datasets, as a function of the number of players whose data
differs between the two datasets. Lemma 26 bounds the first two moments of the noise vector that
is added to preserve privacy.

Lemma 24 Under symmetric strategy profile στα,β , each player expects that at most an α-fraction
of other players will misreport, given Assumption 2.

Proof Let S−i denote the set of players other than i who truthfully report under strategy στα,β .
From the perspective of player i, the cost coefficients of all other players are drawn indepen-
dently from the posterior marginal distribution C|xi,yi . By the definition of τα,β , player i be-
lieves that each other player truthfully reports independently with probability at least 1 − α. Thus
E[|S−i| |xi, yi] ≥ (1− α)(n− 1).

Lemma 25 Let θ̂R and (θ̂R)′ be the ridge regression estimators on two fixed databases that differ
on the input of at most k players. Then∥∥∥θ̂R − (θ̂R)′

∥∥∥
2
≤ k

γ
(4B + 2M)
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Proof Since the two databases differ on the reports of at most k players, we can define a sequence of
databasesD0, . . . , Dk, that each differ from the previous database in the input of at most one player,
and D0 is the input that generated θ̂R, and Dk is the input that generated (θ̂R)′. Consider running
Algorithm 2 on each database Dj in the sequence. For each Dj , let θ̂Rj be the ridge regression
estimator computed on Dj . Note that θ̂R0 = θ̂R and θ̂Rk = (θ̂R)′.∥∥∥θ̂R − (θ̂R)′

∥∥∥
2

=
∥∥∥θ̂R0 − θ̂Rk ∥∥∥

2

=
∥∥∥θ̂R0 − θ̂R1 + θ̂R1 − . . .− θ̂Rk−1 + θ̂Rk−1 − θ̂Rk

∥∥∥
2

≤
∥∥∥θ̂R0 − θ̂R1 ∥∥∥

2
+
∥∥∥θ̂R1 − θ̂R2 ∥∥∥

2
+ . . .+

∥∥∥θ̂Rk−1 − θ̂Rk
∥∥∥

2

≤ k ·max
j

∥∥∥θ̂Rj − θ̂Rj+1

∥∥∥
2

For each j, θ̂Rj and θ̂Rj+1 are the ridge regression estimators computed on databases that differ in the
data of at most a single player. That means either the databases are the same, so θ̂Rj = θ̂Rj+1 and their
normed difference is 0, or they differ in the report of exactly one player. In the latter case, Lemma
23 bounds ‖θ̂Rj − θ̂Rj+1‖2 above by 1

γ (4B + 2M) for each j, including the j which maximizes the
normed difference.

Combining this fact with the above inequalities gives,∥∥∥θ̂R − (θ̂R)′
∥∥∥

2
≤ k

γ
(4B + 2M).

Lemma 26 The noise vector v added in Algorithm 2 satisfies: E[v] = 0 and E[‖v‖22] = 2
(

4B+2M
γε

)2

and E[‖v‖2] = 4B+2M
γε .

Proof For every v̄ ∈ Rd, there exists −v̄ ∈ Rd that is drawn with the same probability, because
‖v̄‖2 = ‖ − v̄‖2. Thus,

E[v] =

∫
v̄
v̄ Pr(v = v̄)dv̄ =

1

2

∫
v̄
(v̄ +−v̄) Pr(v = v̄)dv̄ = 0.

The distribution of v is a high dimensional Laplacian with parameter 4B+2M
γε and mean zero. It

follows immediately that E[‖v‖22] = 2
(

4B+2M
γε

)2
and E[‖v‖2] = 4B+2M

γε .

We now prove that symmetric threshold strategy στα,β is an approximate Bayes-Nash equilib-
rium in Algorithm 2.

Theorem 13 (Truthfulness) Fix a participation goal 1−α, a privacy parameter ε, a desired confi-
dence parameter β, ξ ∈ (0, 1), and t ≥ 1. Then under Assumptions 1 and 2, with probability 1−dt2
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and when n ≥ C( tξ )2(d + 2) log d, the symmetric threshold strategy στα,β is an η-approximate
Bayes-Nash equilibrium in Algorithm 2 for

η = b

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

)2

+ τα,βε
2.

Proof Suppose all players other than i are following strategy στα,β . Let player i be in group 1− j,
so she is paid according to the estimator computed on the data of group j. Let θ̂Pj be the estimator
output by Algorithm 2 on the reported data of group j under this strategy, and let (θ̂Rj )′ be the ridge
regression estimator computed within Algorithm 2 when all players in group j follow strategy στα,β .
Let θ̂Rj be the ridge regression estimator that would have been computed within Algorithm 2 if all
players in group j had reported truthfully. For ease of notation, we will suppress the subscripts on
the estimators for the remainder of the proof.

We will show that στα,β is an approximate Bayes-Nash equilibrium by bounding player i’s
incentive to deviate. We assume that ci ≤ τα,β (otherwise there is nothing to show because player i
would be allowed to submit an arbitrary report under στα,β ). We first compute the maximum amount
that player i can increase her payment by misreporting to Algorithm 2. Consider the expected
payment to player i from a fixed (deterministic) misreport, ŷi = yi + δ.

E[Ba,b((θ̂
P )>xi,E[θ|xi, ŷi]>xi)|xi, yi]− E[Ba,b((θ̂

P )>xi,E[θ|xi, yi]>xi)|xi, yi]
= Ba,b(E[θ̂P |xi, yi]>xi,E[θ|xi, ŷi]>xi)−Ba,b(E[θ̂P |xi, yi]>xi,E[θ|xi, yi]>xi)

The rule Ba,b is a proper scoring rule, so it is uniquely maximized when its two arguments are
equal. Thus any misreport of player i cannot yield payment greater thanBa,b(E[θ̂P |xi, yi]>xi,E[θ̂P |xi, yi]>xi),
so the expression of interest is bounded above by the following.

Ba,b(E[θ̂P |xi, yi]>xi,E[θ̂P |xi, yi]>xi)−Ba,b(E[θ̂P |xi, yi]>xi,E[θ|xi, yi]>xi)

= a− b
(
E[θ̂P |xi, yi]>xi − 2(E[θ̂P |xi, yi]>xi)2 + (E[θ̂P |xi, yi]>xi)2

)
− a+ b

(
E[θ̂P |xi, yi]>xi − 2(E[θ̂P |xi, yi]>xi)(E[θ|xi, yi]>xi) + (E[θ|xi, yi]>xi)2

)
= b

(
(E[θ̂P |xi, yi]>xi)2 − 2(E[θ̂P |xi, yi]>xi)(E[θ|xi, yi]>xi) + (E[θ|xi, yi]>xi)2

)
= b

(
E[θ̂P |xi, yi]>xi − E[θ|xi, yi]>xi

)2

= b
(
E[θ̂P − θ|xi, yi]>xi

)2

≤ b(‖E[θ̂P − θ|xi, yi]‖22‖xi‖22)

≤ b‖E[θ̂P − θ|xi, yi]‖22

We continue by bounding the term ‖E[θ̂P − θ|xi, yi]‖2.

‖E[θ̂P − θ|xi, yi]‖2 = ‖E[θ̂P − θ̂R + θ̂R − θ|xi, yi]‖2
= ‖E[(θ̂R)′ + v − θ̂R + θ̂R − θ|xi, yi]‖2
= ‖E[v|xi, yi] + E[(θ̂R)′ − θ̂R|xi, yi] + E[θ̂R − θ|xi, yi]‖2
≤ ‖E[v|xi, yi]‖2 + ‖E[(θ̂R)′ − θ̂R|xi, yi]‖2 + ‖E[θ̂R − θ|xi, yi]‖2
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We again bound each term separately. In the first term, the noise vector is drawn independently
of the data, so E[v|xi, yi] = E[v], which equals 0 by Lemma 26. Thus ‖E[v|xi, yi]‖2 = 0.

Jensen’s inequality bounds the second term above by E[‖(θ̂R)′ − θ̂R‖2|xi, yi]. The random
variables (θ̂R)′ and θ̂R are the ridge regression estimators of two (random) databases that differ
only on the data of players who misreported under threshold strategy στα,β . By Lemma 24, player
i believes that at most αn players will misreport their ŷj ,4 so for all pairs of databases over which
the expectation is taken, (θ̂R)′ and θ̂R differ in the input of at most αn players. By Lemma 25, their
normed difference is bounded above by αn

γ (4B+2M). Since this bound applied to every term over
which the expectation is taken, it also bounds the expectation.

For the third term, E[θ̂R − θ|xi, yi] = bias(θ̂R|xi, yi). Recall that θ̂R is actually θ̂Rj , which is
computed independently of player i’s data, but is still correlated with (xi, yi) through the common
parameter θ. However, conditioned on the true θ, the bias of θ̂R is independent of player i’s data.
That is, bias(θ̂R|xi, yi, θ) = bias(θ̂R|θ). We now expand the third term using nested expectations.

EX,z,θ
[
θ̂R − θ|xi, yi

]
= Eθ

[
EX,z[θ̂R − θ|xi, yi, θ]

]
= Eθ

[
bias(θ̂R|xi, yi, θ)

]
= Eθ

[
bias(θ̂R|θ)

]
= bias(θ̂R)

= −γ(γI +X>X)−1θ

Then by Theorem 20, when n ≥ C( tξ )2(d + 2) log d, the following holds with probability at least

1− d−t2 .

‖E[θ̂R − θ|xi, yi]‖2 = ‖ − γ(γI +X>X)−1θ‖2
≤ γ‖(γI +X>X)−1‖2‖θ‖2

≤ γ

(
1

γ + (1− ξ) 1
d+2n

)
B

=
γB

γ + (1− ξ) 1
d+2n

We will assume the above is true for the remainder of the proof, which will be the case except
with probability at most d−t

2
. Thus with probability at least 1 − d−t2 , and when n is sufficiently

large, the increase in payment from misreporting is bounded above by

b‖E[θ̂P − θ|xi, yi]‖22 ≤ b

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

)2

.

In addition to an increased payment, a player may also experience decreased privacy costs from
misreporting. By Assumption 1, this decrease in privacy costs is bounded above by ciε2. We have
assumed ci ≤ τα,β (otherwise player i is allowed to misreport arbitrarily under στα,β , and there is
nothing to show). Then the decrease in privacy costs for player i is bounded above by τα,βε2.

4. Lemma 24 promises that at most α(n− 1) players will misreport. We use the weaker bound of αn for simplicity.

22



TRUTHFUL LINEAR REGRESSION

Therefore player i’s total incentive to deviate is bounded above by η, and the symmetric thresh-
old strategy στα,β forms an η-approximate Bayes Nash equilibrium for

η = b

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

)2

+ τα,βε
2.

B.3. Proof of Theorem 14 (Accuracy)

In this section, we prove that the estimator θ̂P output by Algorithm 2 has high accuracy. We first
require the following lemma, which uses the concentration inequalities of Theorem 20 to give high
probability bounds on the distance from the ridge regression estimator to the true parameter θ.

Lemma 27 Let θ̂R be the ridge regression estimator computed on a given database (X, y). Then
with probability at least 1− d−t2 , as long as n ≥ C( tξ )2(d+ 2) log d

E[‖θ̂R − θ‖22] ≤

(
γB

γ + (1− ξ) 1
d+2n

)2

+ σ4

(
(1 + ξ) 1

d+2n

(γ + (1− ξ) 1
d+2n)2

)2

and
E[‖θ̂R − θ‖2] ≤ γB +Mn

γ + (1− ξ) 1
d+2n

.

Proof Recall from Section A.2 that,

E[‖θ̂R − θ‖22] = ‖ bias(θ̂R)‖22 + trace(Cov(θ̂R)),

and,

E[‖θ̂R − θ‖2] = E[‖θ̂R − E[θ̂R] + E[θ̂R]− θ‖2]

≤ E[‖θ̂R − E[θ̂R]‖2] + E[‖E[θ̂R]− θ‖2]

= E[‖θ̂R − E[θ̂R]‖2] + E[‖ bias(θ̂R)‖2]

We now expand the remaining terms: ‖ bias(θ̂R)‖2 and trace(Cov(θ̂R)) and E[‖θ̂R−E[θ̂R]‖2].
For the remainder of the proof, we will assume the concentration inequalities in Theorem 20 hold,
which will be the case, except with probability at most d−t

2
, as long as n ≥ C( tξ )2(d+ 2) log d.

‖ bias(θ̂R)‖2 = ‖ − γ(γI +X>X)−1θ‖2
≤ γ‖θ‖2‖(γI +X>X)−1‖2
≤ γB‖(γI +X>X)−1‖2

≤ γB

γ + (1− ξ) 1
d+2n
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trace(Cov(θ̂R)) = ‖ Cov(θ̂R)‖22
= ‖σ2(γI +X>X)−1X>X(γI +X>X)−1‖22
≤ σ4‖(γI +X>X)−1‖22‖X>X‖22‖(γI +X>X)−1‖22

≤ σ4

(
1

γ + (1− ξ) 1
d+2n

)2(
(1 + ξ)

1

d+ 2
n

)2
(

1

γ + (1− ξ) 1
d+2n

)2

≤ σ4

 (1 + ξ) 1
d+2n(

γ + (1− ξ) 1
d+2n

)2


2

E[‖θ̂R − E[θ̂R]‖2] = E[‖θ̂R − (θ + bias(θ̂R))‖2]

= E[‖(γI +X>X)−1X>y − θ + (γI +X>X)−1γIθ‖2]

= E[‖(γI +X>X)−1X>(Xθ + z)− θ + (γI +X>X)−1γIθ‖2]

= E[‖(γI +X>X)−1(X>X + γI)θ − θ + (γI +X>X)−1X>z‖2]

= E[‖θ − θ + (γI +X>X)−1X>z‖2]

= E[‖(γI +X>X)−1X>z‖2]

≤ E[‖(γI +X>X)−1‖2‖X>z‖2]

≤ E[‖(γI +X>X)−1‖2Mn]

≤ Mn

γ + (1− ξ) 1
d+2n

Using these bounds, we see:

E[‖θ̂R − θ‖22] ≤

(
γB

γ + (1− ξ) 1
d+2n

)2

+ σ4

(
(1 + ξ) 1

d+2n

(γ + (1− ξ) 1
d+2n)2

)2

and

E[‖θ̂R − θ‖2] ≤ γB

γ + (1− ξ) 1
d+2n

+
Mn

γ + (1− ξ) 1
d+2n

=
γB +Mn

γ + (1− ξ) 1
d+2n

We now prove the accuracy guarantee for the estimator θ̂P output by Algorithm 2.

Theorem 14 (Accuracy) Fix a participation goal 1 − α, a privacy parameter ε, a desired confi-
dence parameter β, ξ ∈ (0, 1), and t ≥ 1. Then under the symmetric threshold strategy στα,β ,
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Algorithm 2 will output an estimator θ̂P such that with probability at least 1− β − d−t2 , and when
n ≥ C( tξ )2(d+ 2) log d,

E[‖θ̂P − θ‖22] = O

((
αn

γ
+

1

γε

)2

+
(γ
n

)2
+

(
1

n

)2

+
αn

γ
+

1

γε

)
.

Proof Let the data held by players be (X, y), and let ŷ = y + δ be the reports of players under
the threshold strategy στα,β . As in Theorem 13, let θ̂P be the estimator output by Algorithm 2
on the reported data under this strategy, and let (θ̂R)′ be the ridge regression estimator computed
Algorithm 2 when all players follow strategy στα,β . Let θ̂R be the ridge regression estimator that
would have been computed within Algorithm 2 if all players had reported truthfully. Recall that v
is the noise vector added in Algorithm 2.

E[‖θ̂P − θ‖22] = E[‖θ̂P − θ̂R + θ̂R − θ‖22]

= E
[
‖θ̂P − θ̂R‖22 + ‖θ̂R − θ‖22 + 2

〈
θ̂P − θ̂R, θ̂R − θ

〉]
≤ E[‖θ̂P − θ̂R‖22] + E[‖θ̂R − θ‖22] + 2E[‖θ̂P − θ̂R‖2‖θ̂R − θ‖2]

We start by bounding the first term. Recall that the estimator θ̂P is equal to the ridge regression
estimator on the reported data, plus the noise vector v added by Algorithm 2.

E[‖θ̂P − θ̂R‖22] = E[‖(θ̂R)′ + v − θ̂R‖22]

= E[‖(θ̂R)′ − θ̂R‖22] + E[‖v‖22] + 2E[〈(θ̂R)′ − θ̂R, v〉]
= E[‖(θ̂R)′ − θ̂R‖22] + E[‖v‖22] + 2〈E[(θ̂R)′ − θ̂R],E[v]〉

= E[‖(θ̂R)′ − θ̂R‖22] + 2

(
4B + 2M

γε

)2

(by Lemma 26)

The estimators (θ̂R)′ and θ̂R are the ridge regression estimators of two (random) databases that
differ only on the data of players who misreported under threshold strategy στα,β . The definition
of τα,β ensures us that with probability 1 − β, at most αn players will misreport their ŷj . For the
remainder of the proof, we will assume that at most αn players misreported to the mechanism,
which will be the case except with probability β.

Thus for all pairs of databases over which the expectation is taken, (θ̂R)′ and θ̂R differ in the
input of at most αn players, and by Lemma 25, their normed difference is bounded above by(
αn
γ (4B + 2M)

)2
. Since this bound applies to every term over which the expectation is taken,

it also bounds the expectation.
Thus the first term satisfies the following bound:

E[‖θ̂P − θ‖22] ≤
(
αn

γ
(4B + 2M)

)2

+ 2

(
4B + 2M

γε

)2

.
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By Lemma 27, with probability at least 1 − d−t2 , when n ≥ C( tξ )2(d + 2) log d, the second
term is bounded above by

E[‖θ̂R − θ‖22] ≤

(
γB

γ + (1− ξ) 1
d+2n

)2

+ σ4

(
(1 + ξ) 1

d+2n

(γ + (1− ξ) 1
d+2n)2

)2

.

We will also assume for the remainder of the proof that the above bound holds, which will be the
case except with probability at most d−t

2
.

We now bound the third term.

2E[‖θ̂P − θ̂R‖2‖θ̂R − θ‖2] = 2E[‖(θ̂R)′ + v − θ̂R‖2‖θ̂R − θ‖2]

≤ 2E[
(
‖(θ̂R)′ − θ̂R‖2 + ‖v‖2

)
‖θ̂R − θ‖2]

= 2E[‖(θ̂R)′ − θ̂R‖2‖θ̂R − θ‖2] + 2E[‖v‖2‖θ̂R − θ‖2]

= 2E[‖(θ̂R)′ − θ̂R‖2‖θ̂R − θ‖2] + 2E[‖v‖2]E[‖θ̂R − θ‖2] (by independence)

= 2E[‖(θ̂R)′ − θ̂R‖2‖θ̂R − θ‖2] + 2

(
4B + 2M

γε

)
E[‖θ̂R − θ‖2] (by Lemma 26)

We have assumed at most αn players misreported (which will occur with probability at least
1− β), so for all pairs of databases over which the expectation in the first term is taken, Lemma 25
bounds ‖(θ̂R)′ − θ̂R‖ above by αn

γ (4B + 2M). Thus we continue bonding the third term:

2E[‖(θ̂R)′ − θ̂R‖2‖θ̂R − θ‖2] + 2

(
4B + 2M

γε

)
E[‖θ̂R − θ‖2]

≤ 2E[

(
αn

γ
(4B + 2M)

)
‖θ̂R − θ‖2] + 2

4B + 2M

γε
E[‖θ̂R − θ‖2] (by Lemma 25)

= 2

(
αn

γ
(4B + 2M)

)
E[‖θ̂R − θ‖2] + 2

4B + 2M

γε
E[‖θ̂R − θ‖2]

= 2

(
αn

γ
(4B + 2M) +

4B + 2M

γε

)
E[‖θ̂R − θ‖2]

≤ 2

(
αn

γ
(4B + 2M) +

4B + 2M

γε

)
γB +Mn

γ + (1− ξ) 1
d+2n

(by Lemma 27)

We can now plug these terms back in to get our final accuracy bound. Taking a union bound over
the two failure probabilities, with probability at least 1− β − d−t2 , when n ≥ C( tξ )2(d+ 2) log d:

E[‖θ̂P − θ‖22] ≤
(
αn

γ
(4B + 2M)

)2

+ 2

(
4B + 2M

γε

)2

+

(
γB

γ + (1− ξ) 1
d+2n

)2

+ σ4

(
(1 + ξ) 1

d+2n

(γ + (1− ξ) 1
d+2n)2

)2

+ 2

(
αn

γ
(4B + 2M) +

4B + 2M

γε

)
γB +Mn

γ + (1− ξ) 1
d+2n
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B.4. Proof of Theorems 15 and 16 (Individual Rationality and Budget)

In this section we first characterize the conditions needed for individual rationality, and then com-
pute the total budget required from the analyst to run the Private Regression Mechanism in Algo-
rithm 2. Note that if we do not require individual rationality, it is easy to achieve a small budget: we
can scale down payments as in the non-private mechanism from Section 3. However, once players
have privacy concerns, they will no longer accept an arbitrarily small positive payment; each player
must be paid enough to compensate for her privacy loss. In order to incentivize players to partici-
pate in the mechanism, the analyst will have to ensure that players receive non-negative utility from
participation.

We first show that Algorithm 2 is individually rational for players with privacy costs below
threshold. Note that because we allow cost parameters to be unbounded, it is not possible in general
to ensure individual rationality for all players while maintaining a finite budget.

Theorem 15 (Individual Rationality) Under Assumption 1, the mechanism in Algorithm 2 is in-
dividually rational for all players with cost parameters ci ≤ τα,β as long as,

a ≥

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB) + bB2 + τα,βε

2,

regardless of the reports from players with cost coefficients above τα,β .

Proof Let player i have privacy cost parameter ci ≤ τα,β , and consider player i’s utility from
participating in the mechanism. Let player i be in group 1 − j, so she is paid according to the
estimator computed on the data of group j. Let θ̂Pj be the estimator output by Algorithm 2 on the
reported data of group j under this strategy, and let (θ̂Rj )′ be the ridge regression estimator computed
within Algorithm 2 when all players in group j follow strategy στα,β . Let θ̂Rj be the ridge regression
estimator that would have been computed within Algorithm 2 if all players in group j had reported
truthfully. For ease of notation, we will suppress the subscripts on the estimators for the remainder
of the proof.

E[ui(xi, yi, ŷi)] = E[Ba,b((θ̂
P )>xi,E[θ|xi, ŷi]>xi)|xi, yi]− E[fi(ci, ε)]

≥ E[Ba,b((θ̂
P )>xi,E[θ|xi, ŷi]>xi)|xi, yi]− τα,βε2 (by Assump. 1)

= Ba,b(E[θ̂P |xi, yi]>xi,E[θ|xi, ŷi]>xi)− τα,βε2

We proceed by bounding the inputs to the payment rule, and thus lower-bounding the payment
player i receives. The second input satisfies the following bound.

E[θ|xi, ŷi]>xi ≤ ‖E[θ|xi, ŷi]‖2‖xi‖2 ≤ B

We can also bound the first input to the payment rule as follows.

E[θ̂P |xi, yi]>xi = E[(θ̂R)′|xi, yi]>xi + E[v|xi, yi]>xi
= E[(θ̂R)′|xi, yi]>xi
≤ ‖E[(θ̂R)′|xi, yi]‖2‖xi‖2
≤ ‖E[(θ̂R)′ − θ̂R|xi, yi]‖2 + ‖E[θ̂R − θ|xi, yi]‖2 + ‖E[θ|xi, yi]‖2

≤ αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B (by Lemma 25 and Theorem 20)
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Recall that our Brier-based payment rule isBa,b(p, q) = a−b
(
p− 2pq + q2

)
, which is bounded

below by a−b|p|−2b|p| |q|−b|q|2 = a−|p|(b+2b|q|)−b|q|2. Using the bounds we just computed
on the inputs to player i’s payment rule, her payment is at least

πi ≥ a−

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB)− bB2.

Thus her expected utility from participating in the mechanism is at least

E[ui(xi, yi, ŷi)] ≥ a−

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB)− bB2 − τα,βε2.

Player i will be ensured non-negative utility as long as,

a ≥

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB) + bB2 + τα,βε

2.

The next theorem characterizes the total budget required by the analyst to run Algorithm 2.

Theorem 16 (Budget) The total budget required by the analyst to run Algorithm 2 when players
utilize threshold equilibrium strategy στα,β is

B ≤ n

[
a+

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB)

]
.

Proof The total budget is the sum of payments to all players.

B =

n∑
i=1

E[πi] =

n∑
i=1

E[Ba,b((θ̂
P )>xi,E[θ|xi, ŷi]>xi)|xi, yi]

=

n∑
i=1

Ba,b(E[θ̂P |xi, yi]>xi,E[θ|xi, ŷi]>xi)

Recall that our Brier-based payment rule is Ba,b(p, q) = a − b
(
p− 2pq + q2

)
, which is bounded

above by a + b|p| + 2b|p| |q| = a + |p|(b + 2b|q|). Using the bounds computed in the proof of
Theorem 15, each player i receives payment at most,

πi ≥ a+

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB).

Thus the total budget is at most:

B =

n∑
i=1

E[πi] ≤ n

(
a+

(
αn

γ
(4B + 2M) +

γB

γ + (1− ξ) 1
d+2n

+B

)
(b+ 2bB)

)
.
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B.5. Proof of Lemma 17 (Bound on threshold τα,β)

Lemma 28 For a cost distribution C with conditional marginal CDF lower bounded by some func-
tion F : minxi,yi

(
Prcj∼C|xi,yi [cj ≤ τ ]

)
≥ F (τ), then

τα,β ≤ max{F−1(1− αβ), F−1(1− α)}.

Proof We first bound τ1
α,β .

τ1
α,β = inf

τ

(
Pr
c∼C

[|{i : ci ≤ τ}| ≥ (1− α)n] ≥ 1− β
)

= inf
τ

(
Pr
c∼C

[|{i : ci ≥ τ}| ≤ αn] ≥ 1− β
)

= inf
τ

(
1− Pr

c∼C
[|{i : ci ≥ τ}| ≥ αn] ≥ 1− β

)
= inf

τ

(
Pr
c∼C

[|{i : ci ≥ τ}| ≥ αn] ≤ β
)

We continue by upper bounding the inner term of the expression.

Pr
c∼C

[|{i : ci ≥ τ}| ≥ αn] ≤ E[|{i : ci ≥ τ}|
αn

(by Markov’s inequality)

=
n Pr[ci ≥ τ ]

αn
(by independence of costs)

=
Pr[ci ≥ τ ]

α

From this bound, if Pr[ci≥τ ]
α ≤ β, then also Prc∼C [|{i : ci ≥ τ}| ≥ αn] ≤ β. Thus,

inf
τ

(
Pr
c∼C

[|{i : ci ≥ τ}| ≥ αn] ≤ β
)
≤ inf

τ

(
Pr[ci ≥ τ ]

α
≤ β

)
,

since the infimum in the first expression is taken over a superset of the feasible region of the latter
expression. Then,

τ1
α,β ≤ inf

τ

(
Pr[ci ≥ τ ]

α
≤ β

)
= inf

τ
(Pr[ci ≥ τ ] ≤ αβ)

= inf
τ

(1− Pr[ci ≤ τ ] ≤ αβ)

= inf
τ

(C(τ) ≥ 1− αβ)

≤ inf
τ

(F (τ) ≥ 1− αβ)

(since the extremal conditional marginal bounds the unconditioned marginal)

= inf
τ

(
τ ≥ F−1(1− αβ)

)
= F−1(1− αβ)
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Thus under our assumptions, τ1
α,β ≤ F−1(1− αβ).

We now bound τ2
α.

τ2
α = inf

τ

(
min
xi,yi

(
Prcj∼C|xi,yi [cj ≤ τ ]

)
≥ 1− α

)
≤ inf

τ
(F (τ) ≥ 1− α)

= inf
τ

(
τ ≥ F−1(1− α)

)
= F−1(1− α)

Finally,
τα,β = max{τ1

α,β, τ
2
α} ≤ max{F−1(1− αβ), F−1(1− α)}.

B.6. Proof of Corollary 18 (Main result)

Corollary 18 (Main result (Formal)) Choose δ ∈ (0, p
2+2p). Then under Assumptions 1, 2, and

3, setting α = n−δ, β = n−
p
2

+δ(1+p), ε = n−1+δ, γ = n1− δ
2 , a = (6B + 2M)(1 + B)2n−

3
2 +

n−
3
2

+δ, b = n−
3
2 , ξ = 1/2, and t =

√
n

4C(d+2) log d in Algorithm 2 ensures that with probability

1− dΘ(−n) − n−
p
2

+δ(1+p):

1. the output of Algorithm 2 is O
(
n−1+δ

)
-jointly differentially private,

2. it is an O
(
n−

3
2

+δ
)

-approximate Bayes Nash equilibrium for a 1−O
(
n−δ

)
fraction of play-

ers to truthfully report their data,

3. the computed estimate θ̂P is O
(
n−δ

)
-accurate,

4. it is individually rational for a 1−O
(
n−δ

)
fraction of players to participate in the mechanism,

and

5. the required budget from the analyst is O
(
n−

1
2

+δ
)

.

Proof Choose δ ∈ (0, p
2+2p). Note that this ensures δ < 1/2. Let α = n−δ and β = n

p
2
−δ(1+p) as

we have chosen. By the constraint that δ < p
2+2p , we have ensured that β = o(1). By Lemma 17,

τα,β ≤ max{(αβ)−1/p, α−1/p} = (αβ)−1/p since α, β = o(1) and p > 1. Then τα,β = O
(
n1−δ).

Setting ξ = 1/2 and t =
√

n
4C(d+2) log d , we ensure that with probability 1 − d−

n
4C(d+2) log d =

1 − dΘ(−n), the bounds stated in Theorem 20 hold. With probability 1 − β, at most an α-fraction
of players will have cost parameters above τα,β . Taking a union bound over these two failure
probabilities, the bounds in Theorems 10, 13, 14, 15, and 16 will all hold with probability at least
1 − dΘ(−n) − n−

p
2

+δ(1+p). For the remainder of the proof, we will assume all bounds hold, which
will happen with at least the probability specified above.
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First note that by Theorem 10, Algorithm 2 is 2ε-jointly differentially private. By our choice of
ε, the privacy guarantee is 2n−1+δ = o(

√
n).

Recall that by Theorem 13, it is a

[
b

(
αn
γ (4B + 2M) + γB

γ+(1−ξ) 1
d+2

n

)2

+ τα,βε
2

]
-approximate

Bayes-Nash equilibrium for a (1 − α)-fraction of players to truthfully report their data. Taking B,

M , ξ, and d to be constants, it is a Θ

(
b
(
αn
γ + γ

n

)2
+ τα,βε

2

)
-approximate BNE. To achieve the

desired truthfulness bound, we require (among other things) that τα,βε2 = o( 1
n). Given the bound on

τα,β , it would suffice to have ε = o(n−
3
4

+ δ
2 ). This is satisfied by our choice of ε = n−1+δ because

δ < 1/2. After setting b = o( 1
n), we will have the desired truthfulness bound if αn

γ + γ
γ+n = o(1).

This implies the following constraints on γ: we require γ = ω(nα) = ω(n1−δ) and γ = o(n).
Our choice of γ = n1− δ

2 satisfies these requirements. Due to our choice of b = n−3/2, the ap-
proximation factor will be dominated by τα,βε2 = O

(
n−

3
2

+δ
)

= o(1). Thus truthtelling is an

O
(
n−

3
2

+δ
)

= o(1)-approximate Bayes-Nash equilibrium for all but an n−δ = o(1)-fraction of
players.

Recall from Theorem 14 that the estimator θ̂P isO
((

αn
γ + 1

γε

)2
+
(

γ
γ+n

)2
+
(

1
n

)2
+ αn

γ + 1
γε

)
-

accurate. We have already established that αn
γ = o(1) and γ

γ+n = o(1). Trivially, 1
n2 = o(1).

We turn now to the term 1
γε . For this term to be o(1), we require γ = ω(1

ε ) = ω
(
n1−δ). Our

choice of γ = n1− δ
2 ensures this requirement is satisfied. Since αn

γ + 1
γε = o(1), then so must be(

αn
γ + 1

γε

)2
= o(1). The accuracy bound will be dominated by three terms: first

( γ
n

)2
= n−δ,

second αn
γ = n−

δ
2 , and third 1

γε = n−
δ
2 . Thus, Algorithm 2 outputs an estimator with accuracy

O
(
n−

δ
2

)
= o(1).

Theorem 15 says that the mechanism in Algorithm 2 is individually rational for a (1−α)-fraction

of players as long as a ≥
(
αn
γ (4B + 2M) + γB

γ+(1−ξ) 1
d+2

n
+B

)
(b + 2bB) + bB2 + τα,βε

2. We

now expand each term of this expression to prove that our choice of a satisfies the desired bound.
Consider the first term: αn

γ (4B + 2M) = n−
δ
2 (4B + 2M). This term is decreasing in n, so it can

be upper bounded by its value when n = 1. Thus αn
γ (4B + 2M) ≤ 4B + 2M . Now consider the

second term:

γB

γ + (1− ξ) 1
d+2n

=
n1− δ

2B

n1− δ
2 + 1

2(d+2)n
=

n−
δ
2B

n−
δ
2 + 1

2(d+2)

= B

(
1− 1

2(d+ 2)n−
δ
2 + 1

)

The final term −1

2(d+2)n−
δ
2 +1

is always negative, so the entire term γB

γ+(1−ξ) 1
d+2

n
can be bounded

above byB. We can simplify the expression b+2bB+bB2 as (1+B)2b = (1+B)2n−3/2. Finally,
as noted earlier (and due to to Lemma 17), we can upper bound τα,βε2 ≤ n−

3
2

+δ. Combining all
of these bounds, it would suffice to set a ≥ (6B + 2M)(1 + B)2n−3/2 + n−

3
2

+δ. We set a to be
exactly this bound. Then it is individually rational for a 1 − α = 1 − n−δ = 1 − o(1) fraction of
players to participate in the mechanism.
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By Theorem 16, the total budget required by the analyst to run the mechanism is at most B =

n

[
a+

(
αn
γ (4B + 2M) + γB

γ+(1−ξ) 1
d+2

n
+B

)
(b+ 2bB)

]
. From our choice of a = Θ

(
n−

3
2

+δ
)

and because αn
γ + γ

n = o(1), the required budget isB = O
(
n(b+ τα,βε

2)
)

= O
(
n(n−

3
2 + n−

3
2

+δ)
)

=

O
(
n−

1
2

+δ
)

= o(1).

Appendix C. Proof of Theorem 20

Theorem 20 Let ξ ∈ (0, 1), and t ≥ 1. Let ‖ · ‖ denote the spectral norm. If {xi}i∈[n] are
i.i.d. and sampled uniformly from the unit ball, then with probability at least 1 − d−t2 , when n ≥
C( tξ )2(d+ 2) log d, for some absolute constant C, then,∥∥∥X>X∥∥∥ ≤ (1 + ξ)

1

d+ 2
n, and

∥∥∥(X>X)−1
∥∥∥ ≤ 1

(1− ξ) 1
d+2n

, and

∥∥∥γI +X>X
∥∥∥ ≤ γ + (1 + ξ)

1

d+ 2
n, and

∥∥∥(γI +X>X)−1
∥∥∥ ≤ 1

γ + (1− ξ) 1
d+2n

.

Proof We will first require Lemma 29, which characterizes the covariance matrix of the distribution
on X .

Lemma 29 The covariance matrix of x is Σ = 1
d+2I .

Proof Let z1, . . . , zd ∼ N(0, 1), and let u ∼ U [0, 1], all drawn independently. Define, r =√
z2

1 + · · ·+ z2
d and Z = (u1/d z1

r , . . . , u
1/d zd

r ). Then Z describes a uniform distribution over the
d-dimensional unit ball (Knuth, 1981). Recall that this is the same distribution from which the xi
are drawn. By the symmetry of the uniform distribution, E[Z] = 0, and Cov(Z) must be some
scalar times the Identity matrix. Then to compute the covariance matrix of Z, it will suffice to
compute the variance of some coordinate Zi of Z. Since each coordinate of Z has mean 0, then
V ar(Zi) = E[Z2

i ] + E[Zi]
2 = E[Z2

i ].

d∑
i=1

E[Z2
i ] = E

[
d∑
i=1

Z2
i

]

= E

[
d∑
i=1

(
u1/d zi

r

)2
]

= E[u2/d]E

[
(
1

r
)2

d∑
i=1

z2
i

]
= E[u2/d]

=
d

d+ 2
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By symmetry of coordinates, E[Z2
i ] = E[Z2

j ] for all i, j. Then E[Z2
i ] = 1

d+2 , and the covariance
matrix of Z (and of the xi since both variables have the same distribution) is Σ = 1

d+2I .

From Corollary 5.52 in Vershynin (2012) and the calculation of covariance in Lemma 29, for
any ξ ∈ (0, 1) and t ≥ 1, with probability at least 1− d−t2 ,∥∥∥∥ 1

n
X>X − 1

d+ 2
I

∥∥∥∥ ≤ ξ 1

d+ 2
, (7)

when n ≥ C( tξ )2(d + 2) log d, for some absolute constant C. We assume for the remainder of the

proof that inequality (7) holds, which is the case except with probability at most d−t
2
, as long as n

is sufficiently large. Then ∥∥∥∥X>X − 1

d+ 2
nI

∥∥∥∥ ≤ ξ 1

d+ 2
n.

Let λmax(A) and λmin(A) denote respectively the maximum and minimum eigenvalues of a
matrix A. By definition, λmax(A) = ‖A‖.

Assume towards a contradiction that λmax(X>X) = (1 + ξ) 1
d+2n+ δ for δ > 0.

ξ
1

d+ 2
n ≥

∥∥∥∥X>X − 1

d+ 2
nI

∥∥∥∥
=

∥∥∥X>X∥∥∥− 1

d+ 2
n

= λmax(X>X)− 1

d+ 2
n

= (1 + ξ)
1

d+ 2
n+ δ − 1

d+ 2
n

= ξ
1

d+ 2
n+ δ

This implies δ ≤ 0, which is a contradiction. Thus λmax(X>X) = ‖X>X‖ ≤ (1 + ξ) 1
d+2n.

Similarly, assume that λmin(X>X) = (1− ξ) 1
d+2n− δ for some δ > 0. Since all eigenvalues

are positive, it must be the case that λmin(X>X) ≥ 0.

0 ≥ λmin(X>X − 1

d+ 2
nI)

= λmin(X>X)− 1

d+ 2
n

= (1− ξ) 1

d+ 2
n− δ − 1

d+ 2
n

= −ξ 1

d+ 2
n− δ

33



CUMMINGS IOANNIDIS LIGETT

This is also a contradiction, so λmin(X>X) ≥ (1 − ξ) 1
d+2n. For any matrix A, λmax(A−1) =

1
λmin(A) . Thus,

λmin(X>X) =
1

λmax ((X>X)−1)

=
1

‖(X>X)−1‖

≥ (1− ξ) 1

d+ 2
n

=⇒ ‖(X>X)−1‖ ≤ (1− ξ) 1

d+ 2
n

Using the fact that λ is an eigenvalue of a matrix A if and only if (λ + c) is an eigenvalue of
(A+ cI), we have the following inequalities to complete the proof:∥∥∥γI +X>X

∥∥∥ = λmax(γI +X>X) ≤ γ + (1 + ξ)
1

d+ 2
n

∥∥∥(γI +X>X)−1
∥∥∥ =

1

λmin(γI +X>X)
≤ 1

γ + (1− ξ) 1
d+2n

Appendix D. Quadratically Bounded Privacy Penalty Costs

We will consider a particular functional form of fi(ci, ε), motivated by the model of privacy cost
in the existing literature (Chen et al., 2013). In particular, we assume that each player additionally
has a privacy cost function gi that measures her loss for participating in a particular instantiation of
a mechanism. Further, we assume that gi is upper-bounded by a function that depends on the ef-
fect that player i’s report has on the mechanism’s output. This assumption leverages the functional
relationship between player i’s data (xi, yi), and the output of the mechanism. For example, if a par-
ticular mechanism ignores the input from player i, then her privacy cost should be 0 for participating
in that computation, since her data is not used. We then define her ex ante privacy cost fi(ci, ε) to
be her expected cost for participation, where the expectation is taken over the randomness of other
players’ data and reports.

To formally state this assumption, first let mechanismM take in data reports (X, y) and output
an estimated parameter θ̂. Define gi(M, θ̂, (xi, yi), (X−i, y−i)) to be the privacy cost to player i for
reporting (xi, yi) to mechanismM when all other players report (X−i, y−i) and the output ofM
is θ̂.

Assumption 4 (Chen et al. (2013), Privacy Cost Assumption) 5 We assume that for any mecha-
nism M that takes in data (X, y) and outputs an estimate θ̂, then for all players i, for all estimates

5. The assumption proposed in Chen et al. (2013) allows privacy costs to be bounded by an arbitrary function of the log
probability ratio that satisfies certain natural properties. We restrict to this particular functional form for simplicity,
following Ghosh et al. (2014).
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θ̂, and for all possible input data (X, y),

gi(M, θ̂, (xi, yi), (X−i, y−i)) ≤ ci ln

(
max
y′i,y
′′
i

Pr[M(X, y′i, y−i) = θ̂]

Pr[M(X, y′′i , y−i) = θ̂]

)
.

Lemma 30 (Dwork et al. (2010); Chen et al. (2013), Composition Lemma) In settings that sat-
isfy Assumption 4 and for mechanisms M that are ε-differentially private for ε ≤ 1, then for all
players i with data (xi, yi), for all data reports of other players (X−i, y−i), and for all possible
misreports y′i by player i,

E[gi(M,M(X, y), (xi, yi), (X−i, y−i))]−E[gi(M,M(X, y′i, y−i), (xi, yi), (X−i, y−i))] ≤ 2ciε(e
ε−1) ≤ 4ciε

2

Proof (Sketch) The first inequality comes from Lemma 5.2 of Chen et al. (2013) by plugging in our
specification of their “privacy-bound function” and replacing statistical difference with the upper
bound of eε − 1. The second inequality comes from the bound eε ≤ 1 + 2ε for small ε.

To combine this framework with the utility model introduced in Section 2.4, we need only
to interpret fi(ci, ε) = 1

4E[gi(M,M(X, y), (xi, yi), (X−i, y−i))]. That is, f(ci, ε) is player i’s
expected cost for participating in the mechanism (up to a scaling constant). This interpretation,
along with Lemma 30, motivates Assumption 1.

Appendix E. Strong Convexity of Regularized Loss

Recall that we consider the loss function L(θ,X, y) to be the sum of these individual loss functions
plus a regularizing term:

L(θ;X, y) =

n∑
i=1

`(θ;xi, yi) =

n∑
i=1

(yi − θ>xi)2 + γ ‖θ‖22 .

We now define strong convexity, which requires that the eigenvalues of the Hessian of a function
are bounded away from zero, and we prove that the loss function L is strongly convex.

Definition 31 (Strong Convexity) A function f : Rd → R is m-strongly convex if

H (f(χ))−mI is positive semi-definite for all χ ∈ Rd,

where H(f(χ)) is the Hessian6 of f , and I is the d× d identity matrix.

Notice that when f is a one-dimensional function (d = 1), strong convexity reduces to the
requirement that f ′′(χ) ≥ m > 0 for all χ ∈ R. The following lemma proves that regularizing the
quadratic loss L ensures that it is strongly convex.

6. The Hessian H of function f is a d× d matrix of its partial second derivatives, where

H(f(χ))jk =
∂2f(χ)

∂χj∂χk
.

A d× d matrix A is positive semi-definite (PSD) if for all v ∈ Rd, v>Av ≥ 0.
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Lemma 32 L(θ;X, y) is 2γ-strongly convex in θ.

Proof We first compute the Hessian of L(θ;X, y). For notational ease, we will suppress the de-
pendence of L on X and y, and denote the loss function as L(θ). We will use xij to denote the j-th
coordinate of xi, and θj to denote the j-th coordinate of θ.

∂L(θ)

∂θj
=

n∑
i=1

[
−2yixij + 2(θ>xi)xij

]
+ 2γθj

∂L(θ)

∂θj∂θk
=

n∑
i=1

[2(xik)xij ] for j 6= k

∂L(θ)

∂θ2
j

=

n∑
i=1

[
2(xij)

2
]

+ 2γ

The Hessian of L is,

H(L(θ)) =

n∑
i=1

xix
>
i + 2γI,

where I is the identity matrix. Thus,

H(L(θ))− 2γI =
n∑
i=1

xix
>
i ,

which is positive semi-definite. To see this, let v be an arbitrary vector in Rd. Then for each i,
v(xix

>
i )v> = (vxi)

2 ≥ 0. The sum of PSD matrices is also PSD, so L(θ) is 2γ-strongly convex.
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