
JMLR: Workshop and Conference Proceedings vol 40:1–14, 2015

Variable Selection is Hard

Dean P. Foster DEAN@FOSTER.NET
Microsoft Research New York City and University of Pennsylvania

Howard Karloff HOWARD@CC.GATECH.EDU

Justin Thaler JTHALER@FAS.HARVARD.EDU

Yahoo Labs New York

Abstract
Variable selection for sparse linear regression is the problem of finding, given an m × p matrix B and a
target vector y, a sparse vector x such that Bx approximately equals y. Assuming a standard complexity
hypothesis, we show that no polynomial-time algorithm can find a k′-sparse x with ‖Bx− y‖2 ≤ h(m, p),
where k′ = k · 2log1−δ p and h(m, p) = pC1m1−C2 , where δ > 0, C1 > 0, C2 > 0 are arbitrary. This is true
even under the promise that there is an unknown k-sparse vector x∗ satisfying Bx∗ = y. We prove a similar
result for a statistical version of the problem in which the data are corrupted by noise.

To the authors’ knowledge, these are the first hardness results for sparse regression that apply when the
algorithm simultaneously has k′ > k and h(m, p) > 0.

1. Introduction

Consider a linear regression problem in which one is given an m× p matrix B and a target vector y ∈ Rm.
The goal is to approximately represent y as a linear combination of as few columns of B as possible. If a
polynomial-time algorithmA is presented withB and y, and it is known that y is an exact linear combination
of some k columns of B, and A is allowed to choose more than k columns of B, how many columns must
A choose in order to generate a linear combination which is close to y?

Note that we have allowed A to “cheat” both on the number of columns and on the accuracy of the
resulting linear combination. In this paper, we show the problem is intractable despite the allowed cheating.

Formally, we define (g, h)-SPARSE REGRESSION as follows. Let e(m) denote them-dimensional vector
of 1’s, and for any vector z, let ‖z‖ denote ‖z‖2 and let ‖z‖0 denote the number of nonzeros in z. Let g(·)
and h(·, ·) denote arbitrary functions. An algorithm for (g, h)-SPARSE REGRESSION satisfies the following.

• Given: An m × p Boolean matrix B and a positive integer k such that there is a real p-dimensional
vector x∗, ‖x∗‖0 ≤ k, such that Bx∗ = e(m). (Call such an input valid.)

• Goal: Output a (possibly random) p-dimensional vector x with ‖x‖0 ≤ k · g(p) such that ‖Bx −
e(m)‖2 ≤ h(m, p) with high probability over the algorithm’s internal randomness.

Since we are focused on hardness, restricting B to have entries in {0, 1} and the target vector to be e(m)

only makes the result stronger.
There is, of course, an obvious exponential-time deterministic algorithm for (g, h)-SPARSE REGRES-

SION, for g(p) = 1 for all p, and h(m, p) = 0: enumerate all subsets S of {1, 2, ..., p} of size k. For each S,
use Gaussian elimination to determine if there is an x with xj = 0 for all j 6∈ S such that Bx = e(m), and
if there is one, to find it. Since Bx∗ = e(m) and ‖x∗‖0 ≤ k, for at least one S the algorithm must return an
x with ‖x‖0 ≤ k,Bx = e(m).
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Before getting too technical, we warm up with a simple hardness proof for (g, h)-SPARSE REGRES-
SION. The short proof can be understood on its own. This theorem is just a warmup; later we will prove a
much stronger result (relying, unfortunately, on a stronger complexity assumption). To the authors’ knowl-
edge, this simple proof was not known, though similar arguments had been used previously to show weaker
hardness results for related problems (cf. (Arora et al., 1997, Proposition 6) and Çivril (2013)).

Theorem 1 Let 0 < δ < 1. If there is a deterministic polynomial-time algorithm A for (g, h)-SPARSE

REGRESSION, for which g(p) = (1− δ) ln p and h(m, p) = m1−δ, then SAT ∈ DTIME(nO(log logn)).

Proof Feige (1998) gives a reduction from SAT, running in deterministic time NO(log logN) on SAT in-
stances of size N , to SET COVER, in which the resulting, say, m × p, incidence matrix B (whose rows are
elements and columns are sets) has the following properties. There is a (known) k such that (1) if a formula
φ ∈ SAT, then there is a collection of k disjoint sets which covers the universe (that is, there is a collection
of k columns of B whose sum is e(m)), and (2) if φ 6∈ SAT, then no collection of at most k · [(1 − δ) ln p]
sets covers the universe (in other words, no set of at most k · [(1 − δ) ln p] columns of B has a sum which
is coordinate-wise at least e(m)). This is already enough to establish that any polynomial-time algorithm
for (g(p), 0)-SPARSE REGRESSION implies an NO(log logN)-time algorithm for SAT. The remainder of the
proof is devoted to establishing the analogous statement for (g(p),m1−δ)-SPARSE REGRESSION .

Build a matrix B′ by stacking r copies of B atop one another, r to be determined later. Let M = rm. If
φ ∈ SAT, then there is a collection of k columns summing to e(M). This is a linear combination of sparsity
at most k. If φ 6∈ SAT, then for any linear combination of at most k · [(1− δ) ln p] column vectors, in each
of the r copies of B, there is squared error of at least 1 (since the best one could hope for, in the absence
of a set cover, is m − 1 1’s and one 0). This means that the squared error overall is at least r. We want
r > M1−δ = (rm)1−δ, i.e., rδ > m1−δ, and hence we define r = dm1/δ−1e+ 1.

Construct an algorithm A′ for SAT as follows. Run A on instance (B′, k) of (g, h)-SPARSE REGRES-
SION for T (N) time steps, where T (N) is the time A would need on an rm × p matrix if (B′, k) were a
valid input for (g, h)-SPARSE REGRESSION (which it may not be); since in the valid case, A runs in time
polynomial in the size of the input matrix B′ (which is NO(log logN)), T (N) is also NO(log logN). If A
outputs a vector x such that ‖B′x − e(M)‖2 ≤ r and ‖x‖0 ≤ k[(1 − δ) ln p] within this time bound, then
A′ outputs “Satisfiable.” Otherwise (A doesn’t terminate in the allotted time or it terminates and outputs an
inappropriate vector), A′ outputs “Unsatisfiable.”

Clearly A′ runs in time NO(log logN) on inputs φ of size N . It remains to show that A′ is a correct
algorithm for SAT.

To this end, suppose that φ ∈ SAT. In this case, there is a solution x∗ of sparsity at most k with
B′x∗ = e(M), and since A is a correct algorithm for (g, h)-SPARSE REGRESSION, A will find such a
solution, causing A′ to output “Satisfiable” when run on φ. On the other hand, if φ 6∈ SAT, then there
is no vector x∗ with ‖x∗‖0 ≤ k · [(1− δ) ln p] such that ‖B′x∗ − e(M)‖2 ≤ r. Hence, A′ must output
“Unsatisfiable” when run on φ. We conclude that A′ is a correct algorithm for SAT running in time
NO(log logN) on instances of size N .

One can combine the PCP of Dinur and Steurer (2014) with Feige’s construction, or the earlier construc-
tion of Lund and Yannakakis (1994), to strengthen the conclusion of Theorem 1 to SAT ∈P.

Throughout, BPTIME(T ) will denote the set of all languages decidable by randomized algorithms, with
two-sided error, running in expected time T . Our main result is that unless NP ⊆ BPTIME(npolylog(n)),
then even if g(p) grows at a “nearly polynomial” rate, and h(m, p) ≤ pC1 ·m1−C2 for any positive constants
C1, C2, there is no quasipolynomial-time (randomized) algorithm for (g, h)-SPARSE REGRESSION:
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Theorem 2 Assume that NP 6⊆ BPTIME(npolylog(n)). For any positive constants δ, C1, C2, there exist a
g(p) in 2Ω(lg1−δ(p)) and an h(m, p) in Ω

(
pC1 ·m1−C2

)
such that there is no quasipolynomial-time random-

ized algorithm for (g, h)-SPARSE REGRESSION.

Note that the “−C2” cannot be removed from the condition h(m, p) ≤ pC1 ·m1−C2 in Theorem 2: the
algorithm that always outputs the all-zeros vector solves (g, h)-SPARSE REGRESSION for g(p) = 0 and
h(m, p) = m.

We also show, assuming a slight strengthening of a standard conjecture—known as the projection games
conjecture (PGC) (cf. Moshkovitz (2012))—about the existence of probabilistically checkable proofs with
small soundness error, that (g, h)-SPARSE REGRESSION is hard even if g grows as a constant power. We
refer to our slight strengthening of the PGC as the “Biregular PGC,” and state it formally in Section 2.3.

Theorem 3 Assuming the Biregular PGC, the following holds: If NP 6⊆ BPP, then for any positive
constants C1, C2, there exist a g(p) in pΩ(1) and an h(m, p) in Ω

(
pC1 ·m1−C2

)
such that there is no

polynomial-time randomized algorithm for (g, h)-SPARSE REGRESSION.

We might consider (g, h)-SPARSE REGRESSION to be a “computer science” version of Sparse Regres-
sion, in the sense that the data are deterministic and fully specified. In an alternative, “statistics” version
of Sparse Regression, the data are corrupted by random noise unknown to the algorithm. Specifically we
consider the following problem, which we call (g, h)-NOISY SPARSE REGRESSION.

• There are a positive integer k and an m × p Boolean matrix B, such that there exists an unknown
p-dimensional vector x∗ with ‖x∗‖0 ≤ k such that Bx∗ = e(m). An m-dimensional vector ε of i.i.d.
N(0, 1) “noise” components εi is generated and y is set to Bx∗ + ε = e(m) + ε. B, k, and y (but not
ε or x∗) are revealed to the algorithm.

• Goal: Output a (possibly random) x ∈ Rp such thatE[‖B(x−x∗)‖2] ≤ h(m, p) and ‖x‖0 ≤ k ·g(p).
Here, the expectation is taken over both the internal randomness of the algorithm and of the εi’s.

We give a simple reduction from (g, h)-SPARSE REGRESSION to (g, h)-NOISY SPARSE REGRESSION

that proves the following theorems.

Theorem 4 Assume that NP 6⊆ BPTIME(npolylog(n))). For any positive constants δ, C1, C2, there exist a
g(p) in 2Ω(log1−δ(p)) and an h(m, p) in Ω(pC1 ·m1−C2) such that there is no quasipolynomial-time random-
ized algorithm for (g, h)-NOISY SPARSE REGRESSION.

Theorem 5 Assuming the Biregular PGC, the following holds. If NP 6⊆ BPP, then for any positive con-
stants C1, C2, there exist a g(p) in pΩ(1) and an h(m, p) in Ω

(
pC1m1−C2

)
such that there is no polynomial-

time randomized algorithm for (g, h)-NOISY SPARSE REGRESSION.

Importance and Prior Work. Variable selection is a crucial part of model design in statistics. People want
a model with a small number of variables partially for simplicity and partially because models with fewer
variables tend to have smaller generalization error; that is, they give better predictions on test data (data
not used in generating the model). Standard greedy statistical algorithms to choose features for linear re-
gression include forward stepwise selection (also known as stepwise regression or orthogonal least squares),
backward elimination, and least angle regression. Standard non-greedy feature selection algorithms include
LASSO and ridge regression.
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There are algorithmic results for sparse linear regression that guarantee good performance under certain
conditions on the matrix B. For example, equation (6) of Zhang et al. (2014) states that a “restricted eigen-
value condition” implies that the LASSO algorithm will give good performance for the statistical version of
the problem. A paper by Natarajan (1995) presents an algorithm, also known as forward stepwise selection
or orthogonal least squares (see also Blumensath and Davies (2007)), which achieves good performance
provided that the L2-norm of the pseudoinverse of the matrix obtained from B by normalizing each col-
umn is small (Natarajan, 1995). It appears that no upper bound for stepwise regression under reasonable
assumptions on the matrix was known prior to the appearance of Natarajan’s algorithm in 1995 (and the
equivalence of Natarajan’s algorithm with forward stepwise selection appears not to have been noticed until
recently). For completeness, in the appendix to the full version (available at (Foster et al., 2014)), we include
an example proving that Natarajan’s algorithm can perform badly when the L2-norm of that pseudoinverse
is large, or in other words, that Natarajan’s analysis of his algorithm is close to tight. A similar example had
previously been given by Chen et al. (2001).

There have been several prior works establishing hardness results for variants of the sparse regression
problem. Natarajan (1995) used a reduction from EXACT COVER BY 3-SETS to prove that, given an m× p
matrix A, a vector b ∈ Rm, and ε > 0, it is NP-hard to compute a vector x satisfying ‖Ax− b‖ < ε if such
an x exists, such that x has the fewest nonzero entries over all such vectors. Davis et al. (1997) proved a
similar NP-hardness result. The hardness results of Natarajan (1995) and Davis et al. (1997) only establish
hardness if the algorithm is not allowed to “cheat” simultaneously on both the sparsity and accuracy of the
resulting linear combination.

Arora et al. (1997) showed that, for any δ > 0, a problem called MIN-UNSATISFY does not
have any polynomial-time algorithm achieving an approximation factor of 2log1−δ(n), assuming NP 6⊆
DTIME(npolylog(n)). In this problem, the algorithm is given a system Ax = b of linear equations over
the rationals, and the cost of a solution x∗ is the number of equalities that are violated by x∗. Amaldi and
Kann (1998) built directly on the result of Arora et al. (1997) to show, in our terminology, that (2log1−δ(n), 0)-
SPARSE REGRESSION also has no polynomial-time algorithm under the same assumption.

Finally, Zhang et al. (2014) showed a hardness result for (g, h)-NOISY SPARSE REGRESSION. We defer
a discussion of the result of Zhang et al. (2014) to Section 3.1. For now, we just note that their hardness
only applies to algorithms which cannot “cheat” on the sparsity, that is, to algorithms that must generate a
solution with at most k nonzeros.

In summary, to the best of our knowledge, our work is the first to establish that sparse linear regression
is hard to approximate, even when the algorithm is allowed to “cheat” on both the sparsity of the solution
output and the accuracy of the resulting linear combination.

2. Proofs of Theorems 2 and 3

2.1. Notation and Proof Outline

Throughout, we will use lower-case boldface letters to denote vectors. For any vector y ∈ Rm, ‖y‖ will
denote the Euclidean norm of y, while ‖y‖0 will denote the sparsity (i.e., the number of nonzeros) of y. For
any vector b, let Ball∆(b) = {b′ : ‖b − b′‖2 ≤ ∆} denote the ball of radius ∆ around b in the square
of the Euclidean norm. If y =

∑
i ciwi represents a vector y as a linear combination of vectors wi, we say

that wi participates in the linear combination if ci 6= 0. We will use the symbol N to denote the input size
of SAT instances used in our reductions.

The first step in our proof of Theorem 2 is to establish Proposition 6 below.
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Proposition 6 If SAT 6∈ BPTIME(Npolylog(N)), then for any constant δ < 1, there are a polynomial
m = m(p), a k = k(p), and a pair σ = σ(p),∆ = ∆(p) of values both in 2Ω(log1−δ(p)), such that no
quasipolynomial-time randomized algorithm distinguishes the following two cases, given an m×p Boolean
matrix B:

1. There is an x ∈ {0, 1}p such that Bx = e(m) and ‖x‖0 ≤ k.

2. For all x ∈ Rp such that Bx ∈ Ball∆(e(m)), ‖x‖0 ≥ k · σ.

(For the purpose of proving Theorem 2, having ∆ = 1 in Proposition 6 would actually suffice.)
The second step of the proof describes a simple transformation of any (g, h)-SPARSE REGRESSION

algorithm for a “fast-growing” function h into a (g, h)-SPARSE REGRESSION algorithm for h(m, p) = 1.
The proof appears in Section 2.4.

Proposition 7 Let C1, C2 be any positive constants. Let A be an algorithm for (g, h)-SPARSE REGRES-
SION running in time T (m, p), for some function g(·) ≥ 1, and for h(m, p) = pC1m1−C2 . Then there is an
algorithm A′ for (g, 1)-SPARSE REGRESSION that runs in time poly(T (poly(m, p), p)).

Proof [Proof of Theorem 2 assuming Propositions 6 and 7] Suppose by way of contradiction that there are
positive constants δ, C1, C2 such that there is a quasipolynomial-time randomized algorithm A for (g, h)-
SPARSE REGRESSION where g(p) = 2Ω(log1−δ(p)) and h(m, p) = pC1m1−C2 . By Proposition 7, A can be
transformed into a randomized quasipolynomial-time algorithm A′ for (g, 1)-SPARSE REGRESSION.

Clearly A′ is capable of distinguishing the following two cases, for any ∆ ≥ 1:

1. There is an x ∈ {0, 1}p such that Bx = e(m) and ‖x‖0 ≤ k.

2. For all x ∈ Rp such that Bx ∈ Ball∆(e(m)), ‖x‖0 ≥ k · g(p).

In particular, the above holds for ∆ = ∆(p) in 2Ω(log1−δ(p)) > 1, which contradicts Proposition 6.

Proof Outline for Proposition 6. Lund and Yannakakis showed, assuming SAT cannot be solved by algo-
rithms running in timeO(Npolylog(N)), that SET-COVER cannot be approximated within a factor of c·log2N
for any constant c < 1/4 (Lund and Yannakakis, 1994). Here, an instance of SET-COVER consists of a set
D of size N and a family {D1, . . . DM} of subsets of D, and the goal is to find a minimal collection of the
Di’s whose union equals D.

Lund and Yannakakis’ transformation from an instance φ of SAT to an instance of SET-COVER has a
(known) remarkable property: if φ is satisfiable, then the generated instance of SET-COVER does not just
have a small cover C of the base set D, it has a small partition of D. That is, if ci denotes the indicator
vector of set Ci, then

∑
Ci∈C ci = e(|S|). This is a stronger property than

∑
Ci∈C ci ≥ e(|S|), which is

the condition required to show hardness of SET-COVER. This observation naturally allows us to define a
corresponding instance of the Linear Regression problem with a sparse solution; the columns of the matrix
B in the regression problem are simply the indicator vectors ci.

A central ingredient in Lund and Yannakakis’ transformation is a certain kind of set system
{V1, . . . , VM} over a base set S. Their set system naturally requires that any union of fewer than ` Vi’s
or Vi’s cannot cover S, unless there is some i such that both Vi and Vi participate in the union. As a result,
they needed |S| to be polynomial in M and exponential in `. Since we are studying SPARSE REGRESSION

rather than SET-COVER, we can impose a weaker condition on our set systems. Specifically, we need that:
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any linear combination of ` indicator vectors of the sets or their complements is “far” from e(m), unless the
linear combination involves both the indicator vector of a set and the indicator vector of its complement.

(See Definition 8 below.) As a result, we are able to take |S| to be much smaller relative toM and ` than can
Lund and Yannakakis. Specifically, we can take |S| to be polynomial in ` and logarithmic in M . This is the
key to establishing hardness for super-logarithmic approximation ratios, and to obtaining hardness results
even when we only require an approximate solution to the system of linear equations.

2.2. Proof of Proposition 6

2.2.1. PRELIMINARIES

A basic concept in our proofs is that of ∆-useful set systems, defined below.

Definition 8 Let M and ` be positive integers, and let S be any finite set. A set system SM,` =
{V1, . . . , VM} of size M over S is any collection of M distinct subsets of S. SM,` is called ∆-useful,
for ∆ ≥ 0, if the following properties are satisfied.

Let vi ∈ {0, 1}|S| denote the indicator vector of Vi; that is, vi,j = 1 if j ∈ Vi, and 0 otherwise. Let
v̄i denote the indicator vector of the complement of Vi. Then no `-sparse linear combination of the vectors
v1, v̄1, . . . ,vM , v̄M is in Ball∆(e(|S|)), unless there is some i such that vi and v̄i both participate in the
linear combination.

(Note that there is a 2-sparse linear combination involving vi and v̄i that exactly equals e(|S|), namely,
vi + v̄i = e(|S|).)

Lemma 9 For any pair M, `, M ≥ 2, of positive integers, there exists a set S = {1, 2, ..., |S|} of size
O(`2 · logM) such that there is a ∆-useful set system SM,` over S, for some ∆ = Ω(|S|). Moreover, there
is a polynomial-time randomized algorithm that takes M and ` and generates a ∆-useful set system SM,`

over S with probability at least .99.

The proof of Lemma 9 below shows that a random collection of sets of the right size works. It also seems
likely that a deterministic construction that appears in Arora et al. (1997) could be modified to generate a
∆-useful set system.
Proof Throughout the proof, we set

|S| = d256`2 lnMe. (1)

To avoid notational clutter, we denote e(|S|) simply as e throughout the proof. The core of our argument is
the following technical lemma bounding the probability that e is “close” to the span of a “small” number of
randomly chosen vectors from {0, 1}|S|.

Sublemma 10 Given M ≥ 2 and `, define |S| as above. Let v1, . . . ,v` ∈ {0, 1}|S| be chosen inde-
pendently and uniformly at random from {0, 1}|S|. Let E denote the event that there exist coefficients
c1, . . . , c` ∈ R such that ‖e−

(∑`
i=1 civi

)
‖2 ≤ |S|/32. Then the probability of E is at most M−32`.

Proof Rather than reasoning directly about the Boolean vectors v1, . . . ,v` in the statement of the sublemma,
it will be convenient to reason about vectors in {−1, 1}`. Accordingly, for any vector v ∈ {0, 1}|S|, define
v∗ = 2v − 1. Notice that if v is a uniform random vector in {0, 1}|S|, then v∗ is a uniform random vector
in {−1, 1}|S|. The primary reason we choose to work with vectors over {−1, 1}|S| rather than {0, 1}|S| is
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that vectors in {−1, 1}|S| always have squared Euclidean norm exactly equal to |S|, in contrast to Boolean
vectors, which can have squared Euclidean norm as low as 0 and as large as |S|. Throughout, given a set
T of vectors in R|S|, and another vector v in R|S|, we let ΠT (v) denote the projection of v onto the linear
span of the vectors in T .

Note that for any Boolean vectors w,v ∈ {0, 1}|S|, ‖w∗ − v∗‖2 = 4‖w − v‖2. Hence, event E
from the statement of Sublemma 10 occurs if and only if there exist coefficients c1, . . . , c` ∈ R such that
‖e∗ −

(∑`
i=1 civ

∗
i

)
‖2 ≤ |S|/8. We bound the probability of this occurrence as follows.

Let T = {v∗1, . . . ,v∗`}. Note that

min
c1,...,c`∈R

‖e∗ −

(
j∑
i=1

civ
∗
i

)
‖2 = ‖e∗‖2 − ‖ΠT (e∗)‖2 = |S| − ‖ΠT (e∗)‖2.

Combined with the previous paragraph, we see that event E occurs if and only if

‖ΠT (e∗)‖2 ≥ 7|S|/8.

By equation (1), 7|S|/8 > 128`2 lnM, so it suffices to bound from above the probability that

‖ΠT (e∗)‖2 > 128`2 lnM.

Bounding the probability that ‖ΠT (e∗)‖2 > 128`2 lnM. Our analysis consists of two steps. In step
1, we bound the probability that ‖ΠT (w∗)‖2 > 128`2 lnM , where w∗ is a vector chosen uniformly at
random from {−1, 1}|S|, independently of v∗1, . . . ,v

∗
` . In step 2, we argue that, even though e∗ is a fixed

vector (not chosen uniformly at random from {−1, 1}|S|), it still holds that ‖ΠT (e∗)‖2 > 128`2 lnM
with exactly the same probability (where the probability is now only over the random choice of vectors
v∗1, . . . ,v

∗
` ∈ {−1, 1}|S|).

Step 1. Let `′ ≤ ` denote the dimension of the linear subspace V := span (v∗1, . . . ,v
∗
` ). Let {z∗1, . . . , z∗`′}

denote an arbitrary orthonormal basis for V . We have

‖ΠT (w∗)‖2 =
`′∑
i=1

〈w∗, zi〉2 =
`′∑
i=1

 |S|∑
j=1

w∗j · zi,j

2

, (2)

where w∗j denotes the jth entry of w∗, and zi,j denotes the jth entry of z. For any i, let wi denote the value

of the sum wi =
∑|S|

j=1 w
∗
j · zi,j . Since zi is a vector in an orthonormal basis, we know that

∑|S|
j=1 z

2
i,j = 1.

Meanwhile, each w∗j is a Rademacher random variable. Because we can view v∗1, ...,v
∗
` and hence

z∗1, ..., z
∗
`′ as fixed while w∗ is random, and because

∑
j z

2
i,j = 1, standard concentration results for

Rademacher sequences (Montgomery-Smith, 1990) imply that for t > 0 and for all i, Pr[wi > t] =

Pr[
∑|S|

j=1 w
∗
j ·zi,j > t] ≤ e−t2/2, for all fixed v∗1, ...,v

∗
` , and hence even if v∗1, ...,v

∗
` is random. In particular,

Pr[wi >
√

128` lnM ] ≤ e−64` lnM . A union bound over all i implies that Pr[wi >
√

128` lnM for all i ∈
[`′]] ≤ `′ · e−64` lnM ≤ e−32` lnM = M−32`. In this event, i.e., for all i

∑|S|
j=1 w

∗
j · zi,j ≤

√
128` lnM , we

can bound the right-hand side of equation (2) by

`′∑
i=1

 |S|∑
j=1

w∗j · zi,j

2

≤ `′ · 128` lnM ≤ 128`2 lnM.
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Step 2. For vectors v∗1, . . . ,v
∗
` ,w

∗ ∈ {−1, 1}|S|, let I(v∗1, . . . ,v∗` ;w∗) equal 1 if ‖ΠT (w∗)‖2 >
128`2 lnM , and 0 otherwise, where T = {v∗1, . . . ,v∗`}. We claim that E[I(v∗1, . . . ,v∗` ;w∗)] =
E[I(v∗1, . . . ,v∗` ; e∗)], where the first expectation is over random choice of v∗1, . . . ,v

∗
` ,w

∗ ∈ {−1, 1}|S|,
and the second expectation is only over the random choice of v∗1, . . . ,v

∗
` ∈ {−1, 1}|S|.

For two vectors x,y ∈ {−1, 1}|S|, let x ⊗ y denote the component-wise product of x and y, i.e.,
(x⊗ y)i = xi · yi. Then we can write:

E[I(v∗1, . . . ,v∗` ;w∗)] = 2−|S|·(`+1)
∑

v∗1 ,...,v
∗
` ,w
∗∈{−1,1}|S|

I(v∗1, . . . ,v∗` ;w∗)

= 2−|S|·(`+1)
∑

w∗∈{−1,1}|S|

 ∑
v∗1 ,...,v

∗
`∈{−1,1}|S|

I(v∗1, . . . ,v∗` ;w∗)


= 2−|S|·(`+1)

∑
w∗∈{−1,1}|S|

 ∑
v∗1 ,...,v

∗
`∈{−1,1}|S|

I(v∗1 ⊗w∗, . . . ,v∗` ⊗w∗;w∗ ⊗w∗)


= 2−|S|·`

∑
v′1,...,v

′
`∈{−1,1}|S|

I(v′1, . . . ,v′`; e∗)

= E[I(v′1, . . . ,v′`; e∗].

Here, the first equality is the definition of expectation; the second follows by rearranging the sum. The
third equality holds because multiplying each of v∗1, ...,v

∗
` and w∗ component-wise by w∗ is the same as

premultiplying each vector by the unitary matrix U = diag(w∗), and premultiplying by a unitary matrix
just rotates the space, which doesn’t change lengths of projections. The fourth equality holds because, for
any fixed w∗, if the vectors v∗1, . . . ,v

∗
` are uniformly distributed on {−1, 1}|S|, then so are the vectors

v′1 := v∗1 ⊗w∗, . . . ,v′` := v∗` ⊗w∗. The final equality is the definition of expectation.

Let V1, . . . , VM be random subsets of S, and vi be the indicator vector of Vi. Consider any subset Z
of ` of the vectors v1, v̄1, . . . ,vM , v̄M in which there is no i such that both vi and v̄i are in Z. (There are
exactly

(
M
`

)
2` such subsets Z.) Then the vectors in Z are all uniformly random vectors in {0, 1}|S| that are

chosen independently of each other. Sublemma 10 implies that the probability that there exist coefficients
c1, . . . , c` ∈ R such that ‖e−

(∑`
i=1 civi

)
‖2 ≤ |S|/32 is at most M−32`.

We can take a union bound over all
(
M
`

)
·2` ≤ M2` possible choices of Z to conclude that ‖e −(∑`

i=1 civi

)
‖2 > |S|/32 for all possible choices of the subsetZ with probability at least 1−M2`·M−32` =

1 − M−30` ≥ 0.99. In this event, there is no `-sparse linear combination of the vi and v̄i vectors in
Ball∆(e) for ∆ = |S|/32, unless vi and v̄i both participate in the linear combination for some i. That is,
{V1, . . . , VM} is a ∆-useful set system, as desired. This completes the proof of Lemma 9.

Please see the remainder of the proof of Proposition 6 in the full version of this paper (Foster et al., 2014).

2.3. Proof of Theorem 3

Let PCP1,εsound [b, k]|Σ| denote the class of languages that have a PCP verifier with perfect complete-
ness, soundness εsound, b bits of randomness used by the verifier, and k queries to a proof over alpha-
bet Σ. The sliding scale conjecture of Bellare et al. (1994) postulates that for every 0 ≤ δ ≤ 1,

8
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SAT ∈ PCP1,ε[O(log(N)), 2]poly(1/ε), where ε = 2−Ω(log1−δ(N)). In words, the sliding scale conjec-
ture asserts that SAT has a polynomial-length PCP in which the verifier makes two queries to the proof
(note that each query reads an entire symbol from the alphabet Σ, and hence corresponds to approximately
log |Σ| consecutive bits of the proof), and in which the soundness error falls exponentially with the number
of bits of the proof that the verifier accesses.

Note that any k-query PCP can be transformed into a k-prover MIP by posing each of the PCP verifier’s
k queries to a different prover. Thus, the sliding scale conjecture (at δ = 0) implies the existence of a
2-prover MIP for SAT in which |R|, |Q1|, |A1|, |Q2|, |A2| are all at most poly(N), and whose soundness
error is inversely polynomially small in N .

Moshkovitz (2012) formulates a slight strengthening of the sliding scale conjecture that she calls the
Projection Games Conjecture (PGC). Here, the term projection games refers to a certain class of two-player
one-round games defined over bipartite graphs. Projection games are equivalent, in a formal sense, to two-
prover MIP’s that satisfy functionality (the definition of which appears in the full version of this paper
(Foster et al., 2014)). This equivalence is standard; we provide the details in the appendix of the full version
for completeness.

Just like the sliding scale conjecture, the PGC postulates the existence of a 2-prover MIP for SAT in
which |R|, |Q1|, |A1|, |Q2|, |A2| are all at most poly(N), and in which the soundness error is polynomially
small in N . But the PGC additionally postulates that there is such an MIP that satisfies the functionality
property used in the proof of Proposition 6. Formally, the PGC states the following.1

Conjecture 11 (Reformulation of the projection games conjecture (PGC) (Moshkovitz, 2012)) There
exists c > 0 such that for all N and all ε ≥ 1/N c, there is a 2-prover MIP for SAT instances of size
N , with perfect completeness and soundness error at most ε, which satisfies the following two properties:

• |R|, |Q1|, |A1|, |Q2|, |A2| are all at most poly(N, 1/ε).

• The MIP satisfies functionality.

We will need a slight strengthening of the PGC that requires that SAT be efficiently reduced to a 2-
prover MIP that satisfies uniformity (the definition of which appears in the full version of this paper (Foster
et al., 2014)) in addition to functionality. We note that in the language of projection games, the uniformity
condition is equivalent to requiring the bipartite graph underlying the projection game be biregular. More-
over, the most efficient known reductions from SAT to projection games do produce biregular graphs (and
hence 2-prover MIP’s satisfying uniformity) (Dinur and Steurer, 2014).

Conjecture 12 (Biregular PGC) Conjecture 11 holds in which the MIP satisfies uniformity as well.

Proposition 13 below describes a strengthening of Proposition 6 that holds under the Biregular PGC.
Theorem 3 then follows by the argument of Section 2.1, using Proposition 7 in place of Proposition 13.

Proposition 13 Assuming Conjecture 12, the following holds for some pair of values σ = σ(p),∆ = ∆(p),
both in pΩ(1). If SAT 6∈ BPP, then there are a polynomial m = m(p) and k = k(p) such that no BPP
algorithm distinguishes the following two cases, given an m× p Boolean matrix B:

1. Technically, Moshkovitz’s PGC is slightly stronger than our Conjecture 11, in the full version of the paper, in that |R|, |Q1|,
and |Q2| are all required to be bounded by N1+o(1)poly(1/ε), rather than poly(N, 1/ε). She states the weaker version in a
footnote, and the weaker version suffices for our purposes.

9



FOSTER KARLOFF THALER

1. There is an x ∈ {0, 1}p such that Bx = e(m) and ‖x‖0 ≤ k.

2. For all x ∈ Rp such that Bx ∈ Ball∆(e(m)), ‖x‖0 ≥ k · σ.

Proof Conjecture 12 implies the existence of a perfectly complete two-prover MIP for SAT with soundness
error εsound = 1/NΩ(1) that satisfies functionality and uniformity, with |R|, |A1|, |A2|, |Q1|, |Q2| all bounded
by poly(N). Moreover, this MIP can be transformed into an equivalent MIP that satisfies both equality of
question space sizes and disjointness of answer spaces (both of which are defined in the full version of this
paper (Foster et al., 2014)), while keeping |R|, |A1|, |A2|, |Q1|, |Q2| bounded by poly(N). Disjointness of
answer spaces can be ensured by simple padding (only one bit of padding is required). Equality of question
space sizes can be ensured (Lund and Yannakakis, 1994), with at most a quadratic blowup in the size of Q1

and Q2. Namely, the verifier generates two independent queries (q1, q2) and (q′1, q
′
2) in Q1 ×Q2. Then, the

verifier asks the first prover the query (q1, q
′
2) and the second prover the query (q2, q

′
1). The provers ignore

the second component, and answer the queries by answering the first component of the query according to
the original MIP. The verifier accepts if and only if the verifier in the original MIP would have accepted the
answers to (q1, q2).

Thus, we have established that Conjecture 12 implies the existence of a perfectly complete canoni-
cal MIP for SAT with soundness error εsound = 1/NΩ(1) and for which |R|, |A1|, |A2|, |Q1|, |Q2| are all
bounded by poly(N). The remainder of the proof is now identical to that of Proposition 6; we provide the
details for completeness.

The proof of Proposition 6 specified an algorithm A′′ that output a Boolean m × p matrix B of size
polynomial in the parameters (|R|, |A1|, |A2|, |Q1|, |Q2|), which are themselves polynomial in N (so that
mp is polynomial in N ), such that:
Property 1. If φ ∈ SAT, then there is a vector x∗ ∈ {0, 1}p such thatBx∗ = e(m) and ‖x∗‖0 ≤ |Q1|+|Q2|.
Property 2. Abusing notation, let ` := `(N). If φ 6∈ SAT, then any x ∈ Rp such that Bx ∈ Ball∆(e(m))
satisfies ‖x‖0 ≥ (1− εsound · `2) · `2 · (|Q1|+ |Q2|), for some ∆ = Ω

(
`2 · log (|A1|+ |A2|)

)
.

Setting ` = (10 · εsound)−1/2 and k = |Q1|+ |Q2|, Properties 1 and 2 imply that

• If φ ∈ SAT, then there is a vector x∗ ∈ {0, 1}p such that Bx∗ = e(m) and ‖x∗‖0 ≤ k.

• If φ 6∈ SAT, then any x ∈ Rp such that Bx ∈ Ball∆(e(m)) satisfies ‖x‖0 ≥ σ · k, where ∆(p) =
Ω
(
`2 · log (|A1|+ |A2|)

)
≥ Ω(`) = pΩ(1), and σ(p) = (1− εsound · `2) · `2 ≥ Ω(`) = pΩ(1). (Recall

that p is polynomial in N .)

Suppose there is a randomized algorithm A′ that runs in BPTIME(poly(m, p)) = BPTIME(poly(N)) and
distinguishes between the above two cases. By running A′ on the matrix B output by A′′, we determine
with high probability whether φ is satisfiable. Thus, if SAT 6∈ BPTIME(poly(N)), no such algorithm A′
can exist.

2.4. Proof of Proposition 7

Proof Let g(·) be any function and let h(m, p) = pC1 ·m1−C2 for some positive constants C1, C2. LetA be
any algorithm for (g, h)-SPARSE REGRESSION that runs in randomized time T (m, p). Then on any m× p
input matrix B such that there exists a vector x∗ with ‖x∗‖0 ≤ k,A outputs a vector x with ‖x‖0 ≤ g(p) ·k
satisfying ‖Bx− e(m)‖2 ≤ pC1 ·m1−C2 .

10
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We show how to transform A into an algorithm A′ for the (g, 1)-SPARSE REGRESSION problem, such
that A′ runs in time T (pC1/C2 ·m1/C2 , p).

Let r = d
(
pC1 ·m1−C2

)1/C2e. Let B′ denote the (mr) × p matrix obtained by stacking r copies of B
on top of each other. The algorithm A′ simply runs A on B′, to obtain an approximate solution x to the
system of linear equations given by B′x = e(rm), and outputs x. Notice that the running time of A′ is
indeed O(T (pC1/C2 ·m1/C2 , p)) = O (T (poly (m, p) , p)).

Analysis of x: Since Bx∗ = e(m), it also holds that B′x∗ = e(rm). That is, the system B′x = e(rm)

has an exact solution of sparsity k. Hence, A must output a vector x with ‖x‖0 ≤ g(p) · k, satis-
fying ‖B′x − e(rm)‖2 ≤ pC1 · (rm)1−C2 . Notice that ‖B′x − e(rm)‖2 = r · ‖Bx − e(m)‖2. Thus,
‖Bx− e(m)‖2 = (1/r) ·

[
‖B′x− e(rm)‖2

]
≤ (1/r)

[
·pC1 · (rm)1−C2

]
= pC1 ·m1−C2 · r−C2 ≤ 1.

3. The Statistical Problem

3.1. Motivation and Prior Work

In this section we motivate the (g, h)-NOISY SPARSE REGRESSION problem introduced in Section 1. The
problem (g, h)-NOISY SPARSE REGRESSION is a sparse variant of a less challenging problem known as
NOISY REGRESSION that is popular in the statistics literature. In NOISY REGRESSION, instead of being
given a fixed matrixB for which we seek a sparse vector x such thatBx ≈ y, we assume corrupting random
noise injected into the problem. Specifically, we assume that there are (1) a known m× p matrix X (which
plays the role ofB) and (2) an unknown real p-dimensional vector θ. Anm-dimensional vector ε of random
noise is generated, with the εi’s being i.i.d. N(0, 1) random variables. The vector y = Xθ + ε (but not ε
itself) is then revealed to the algorithm (along with X , which it already knew). On an instance specified by
(X,θ) with y revealed to the algorithm, an algorithm will produce θ̂ = θ̂(X,y). We define ŷ = Xθ̂. The
instance’s prediction loss is defined to be ‖ŷ−E[y]‖2 = ‖X(θ̂−θ)‖2. (By “E[y]” here, since y = Xθ+ε,
we mean the vector Xθ.) Its expected value E[‖X(θ̂ − θ)‖2], over the random vector ε, is called the risk.

The goal is to make the risk as small as possible. However, as θ is unknown, it is hard to measure the
performance of an algorithm at a single θ. After all, an algorithm which luckily guesses θ and then sets
θ̂ = θ will have zero risk for that θ. For this reason, one usually seeks an algorithm that minimizes the
supremum of the risk over all θ. In other words, this minimax estimator finds θ̂ to minimize the supremum
over θ of E[‖X(θ̂ − θ)‖2]. NOISY REGRESSION refers to the problem of minimizing this last supremum.

Note here that we are using random noise whose components have variance 1, regardless of the magni-
tudes of the entries of X . For our hard instances, the entries of X are 0-1.

It is well-known that ordinary least squares is a minimax estimator: least squares achieves risk p, inde-
pendently of m (Foster and George, 1994, bottom of page 1950). Moreover, no estimator, polynomial-time
or not, achieves smaller maximum risk. (It’s not even a priori obvious that the risk can be made indepen-
dent of m.) The problem (g, h)-NOISY SPARSE REGRESSION defined in Section 1 is a “sparse version”
of NOISY REGRESSION which is identical to NOISY REGRESSION except that there is a positive integer k,
known to the algorithm, such that ||θ||0 ≤ k. The goal of the algorithm is to find an estimate θ̂ of θ for
which both the supremum over θ of the sparsity ||θ̂||0 and the supremum over θ of the risk E[‖X(θ̂−θ)‖2]
are as small as possible.

As was the case for (g, h)-SPARSE REGRESSION, there is a naive exponential-time algorithm for
SPARSE NOISY REGRESSION. Namely, try all subsets S of {1, 2, ..., p} of size k. For each S, use or-

11



FOSTER KARLOFF THALER

dinary least squares to find the θ̂j’s, except require that θ̂j = 0 for all j 6∈ S. An upper bound on the risk of
this algorithm is known:

Theorem 14 Foster and George (1994) For any θ, the risk of the naive exponential-time algorithm is
bounded by 4k ln p.

The question we are interested in is, how small can a polynomial-time algorithm make the risk, if it is
allowed to “cheat” somewhat on the sparsity? More formally, if a polynomial-time algorithm is allowed to
output a vector θ̂ with ‖θ̂‖0 ≤ k · g(k) (where g(k) ≥ 1 is an arbitrary function), how small can its risk be?

Theorem 4 (respectively, Theorem 5) from Section 1 asserts that the risk cannot be bounded above by
pC1 · m1−C2 for any positive constants C1, C2, even if one is allowed to cheat by a nearly polynomial
(respectively, polynomial) factor on the sparsity of the returned vector. This is in stark contrast to NOISY

REGRESSION, where there is a polynomial-time algorithm (least-squares regression) that achieves risk p,
independently of m.

Now we can describe the result of Zhang et al. (2014). There is a standard (non-greedy) algorithm
known as LASSO which is known to achieve risk bounded by O((1/γ2(B))(k log p)), where γ(B) is B’s
“restricted eigenvalue constant” (Zhang et al., 2014). Zhang, Wainwright, and Jordan prove that, unless
NP⊆P/poly, for any δ > 0 any polynomial-time algorithm has risk Ω((1/γ2(B))(k1−δ log p)), for some
matrices B (for which γ(B) can be made arbitrarily small). To contrast their results with ours, Zhang et al.
(2014) require a different complexity assumption and prove a different lower bound (involving γ(B), which
ours does not), but most importantly, their bound only applies to algorithms that return linear combinations
of k columns, whereas ours allows linear combinations of 2log(1−δ) p · k columns.

It is known that a matrix with i.i.d. N(0, 1) entries satisfies the restricted isometry property used in
compressed sensing. From (van de Geer and Bhlmann, 2009, pages 1367-1368), which proves that the
restricted isometry property implies the restricted eigenvalue condition, it is likely that the reciprocal of the
restricted eigenvalue constant is polynomial. If true, this would imply that a thresholded version of Lasso
(which retains the k largest components in absolute value and zeroes out the rest) has polynomial risk for
random N(0, 1) matrices, which would imply that no proof of average-case hardness is possible; worst-case
hardness, which is what our proofs provide, would be the strongest sort of hardness possible.

3.2. Proof of Theorems 4 and 5

Proposition 15 For every pair g(·), h(·, ·) of polynomials, if there is an algorithm for (g, h/2)-NOISY

SPARSE REGRESSION that runs in time T (m, p), then there is an algorithm for (g, h)-SPARSE REGRES-
SION that runs in time O(T (m, p)).

Combining Proposition 15 with Theorem 2 proves Theorem 4 and combining Proposition 15 with The-
orem 3 proves Theorem 5, respectively.
Proof Let A be an algorithm for (g, h/2)-NOISY SPARSE REGRESSION. The following algorithm A′
solves (g, h)-SPARSE REGRESSION, with failure probability at most δ. A′ executes the following procedure
dlog(1/δ)e times: it generates an m-dimensional vector ε whose components are (approximately) i.i.d.
N(0, 1) random variables and sets y = e(m) + ε. (We will assume that the algorithm generates N(0, 1)
random variables exactly.) It then runs A on input (B, k,y) to obtain a vector x of sparsity at most k · g(p),
and checks whether ‖Bx − e(m)‖2 ≤ h(m, p). If so, it halts and outputs x. If A′ has not halted after
dlg(1/δ)e iterations of the above procedure, A′ outputs a special failure symbol ⊥. The rest of the proof
appears in the full version of this paper (Foster et al., 2014).
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