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Abstract
In many estimation problems, e.g. linear and logistic regression, we wish to minimize an unknown
objective given only unbiased samples of the objective function. Furthermore, we aim to achieve
this using as few samples as possible. In the absence of computational constraints, the minimizer
of a sample average of observed data – commonly referred to as either the empirical risk minimizer
(ERM) or the M -estimator – is widely regarded as the estimation strategy of choice due to its
desirable statistical convergence properties. Our goal in this work is to perform as well as the
ERM, on every problem, while minimizing the use of computational resources such as running
time and space usage.

We provide a simple streaming algorithm which, under standard regularity assumptions on the
underlying problem, enjoys the following properties:

1. The algorithm can be implemented in linear time with a single pass of the observed data, using space
linear in the size of a single sample.

2. The algorithm achieves the same statistical rate of convergence as the empirical risk minimizer on
every problem, even considering constant factors.

3. The algorithm’s performance depends on the initial error at a rate that decreases super-polynomially.
4. The algorithm is easily parallelizable.

Moreover, we quantify the (finite-sample) rate at which the algorithm becomes competitive with
the ERM.

1. Introduction

Consider the following optimization problem:

min
w∈S

P (w), where P (w)
def
= Eψ∼D[ψ(w)] (1)

and D is a distribution over convex functions from a Euclidean space S to R (e.g. S = Rd in the
finite dimensional setting). Let w∗ be a minimizer of P and suppose we observe the functions
ψ1, ψ2, . . . , ψN independently sampled from D. Our objective is to compute an estimator ŵN so
that the expected error (or, equivalently, the excess risk):

E[P (ŵN )− P (w∗)]

is small, where the expectation is over the estimator ŵN (which depends on the sampled functions).
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Stochastic approximation algorithms, such as stochastic gradient descent (SGD) (Robbins and
Monro, 1951), are the most widely used in practice, due to their ease of implementation and their ef-
ficiency with regards to runtime and memory. Without consideration for computational constraints,
we often wish to compute the empirical risk minimizer (ERM; or, equivalently, the M -estimator):

ŵERM
N ∈ argmin

w∈S

1

N

N∑
i=1

ψi(w). (2)

In the context of statistical modeling, the ERM is the maximum likelihood estimator (MLE). Under
certain regularity conditions, and under correct model specification,1 the MLE is asymptotically
efficient, in that no unbiased estimator can have a lower variance in the limit (see Lehmann and
Casella (1998); van der Vaart (2000)).2 Analogous arguments have been made in the stochastic
approximation setting, where we do not necessarily have a statistical model of the distribution D
(see Kushner and Yin (2003)). The regularity conditions we consider herein are standard; without
such assumptions the work in Shalev-Shwartz et al. (2010) shows that the ERM may unstable.

The question we aim to address is as follows. Consider the ratio:

E[P (ŵERM
N )− P (w∗)]

E[P (ŵN )− P (w∗)]
. (3)

We seek an algorithm to compute ŵN in which: (1) under sufficient regularity conditions, this
ratio approaches 1 on every problem D and (2) it does so quickly, at a rate quantifiable in terms of
the number of samples, the dependence on the initial error (and other relevant quantities), and the
computational time and space usage.

1.1. This work

Under certain smoothness assumptions on ψ and strong convexity assumptions on P (applicable to
linear and logistic regression, generalized linear models, smooth Huber losses, and various other
M -estimation problems), we provide an algorithm where:

1. The algorithm achieves the same statistical rate of convergence as the ERM on every problem,
even considering constant factors, and we quantify the sample size at which this occurs.

2. The algorithm can be implemented in linear time with a single pass of the observed data,
using space linear in the size of a single sample.

3. The algorithm decreases the standard notion of initial error at a super-polynomial rate.3

4. The algorithm is trivially parallelizable (see Remark 6).

Table 1 compares previous (and concurrent) algorithms that enjoy the first two guarantees; this work
is the first with a finite-sample analysis handling the more general class of problems. Our algorithm
is a variant of the stochastic variance reduced gradient procedure of Johnson and Zhang (2013).

Importantly, we quantify how fast we obtain a rate comparable to that of the ERM. For the
case of linear regression, we have non-trivial guarantees when the sample size N is larger than

1. A well specified statistical model is one where the data is generated under some model in the parametric class. See
the linear regression Section 3.1.

2. Note that biased estimators, e.g. the James-Stein estimator, can outperform the MLE (Lehmann and Casella, 1998).
3. A function is super-polynomial if grows faster than any polynomial.
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Algorithm / analysis Problem Step size Initial error
dependence

Parallel-
izable

Finite-step
analysis

Polyak and Juditsky (1992) general decaying: 1/nc ? ? 7

Polyak and Juditsky (1992) /

Dieuleveut and Bach (2014)

linear
regression

constant Ω(1/n2) ? 3

This work:
Streaming SVRG general constant 1/nω(1) 3 3

Table 1: Comparison of known streaming algorithms which achieve a constant competitive ratio
to the ERM. Polyak and Juditsky (1992) is an SGD algorithm with iterate averaging. Concurrent
to and independently from our work, Dieuleveut and Bach (2014) provide a finite-sample analysis
for SGD with averaging in the linear regression problem setting (where the learning rate can be
taken as constant). In the “problem” column, “general” indicates problems under the regularity
assumptions herein. Polyak and Juditsky (1992) require the step size to decay with the sample size
n, as 1/nc with c strictly in the range 1/2 < c < 1. The dependence on c in a finite-sample analysis
is unclear (and tuning the decay of learning rates is often undesirable in practice). The initial error
is P (w0)−P (w∗), where w0 is the starting point of the algorithm. We seek algorithms in which the
initial error dependence is significantly lower in order, and we write 1/nω(1) to indicate that it can
be driven down to an arbitrarily low-order polynomial. See Remark 6 with regard to parallelization.

a constant times what can be interpreted as a condition number, κ = L/µ, where µ is a strong
convexity parameter of P and where L is a smoothness parameter of each ψ. Critically, after N is
larger than κ, the initial error is divided by a factor that can be larger than any polynomial in N/κ.

Finally, in order to address this question on a per-problem basis, we provide both upper and
lower bounds for the rate of convergence of the ERM.

1.2. Related work

Stochastic optimization dates back to the work of Robbins and Monro (1951) and has seen much
subsequent work (Kushner and Clark, 1978; Kushner and Yin, 2003; Nemirovski and Yudin, 1983).
More recently, questions of how to quantify and compare rates of estimation procedures – with
implications to machine learning problems in the streaming and large dataset settings – have been
raised and discussed several times (see Bottou and Bousquet (2008); Agarwal and Bottou (2014)).

Stochastic approximation. The pioneering work of Polyak and Juditsky (1992) and Ruppert
(1988) provides an asymptotically optimal streaming algorithm, by averaging the iterates of an SGD
procedure. It is unclear how quickly these algorithms converge to the rate of the ERM in finite sam-
ple; the relevant dependencies, such as the dependence on the initial error – that is, P (w0)−P (w∗)
wherew0 is the starting point of the algorithm – are not specified. In particular, they characterize the
limiting distribution of

√
N(ŵN −w∗), essentially arguing that the variance of the iterate-averaging

procedure matches the asymptotic distribution of the ERM (see Kushner and Yin (2003)).
In a series of papers, Bach and Moulines (2011), Bach and Moulines (2013), Dieuleveut and

Bach (2014), and Defossez and Bach (2015) provide non-asymptotic analysis of the same averag-
ing schemes. Of these, for the specific case of linear least-squares regression, Dieuleveut and Bach
(2014) and Defossez and Bach (2015) provide rates which are competitive with the ERM, concur-
rently and independent of results presented herein. In Dieuleveut and Bach (2014) and Defossez and
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Bach (2015) the dependence on the initial error decaying as 1/N2 is shown. In non-parametric (least
squares) settings, there are various results looking at optimal rates of online algorithms in compari-
son to batch estimators (see Dieuleveut and Bach (2014); Yao (2010); Tarres and Yao (2014); Ying
and Pontil (2008); Yao (2010)). The work in Bach and Moulines (2011) and Bach and Moulines
(2013) either does not achieve the ERM rate or has a dependence on the initial error which is not
lower in order.

For the special case of least squares, one could adapt the algorithm and guarantees of Dieuleveut
and Bach (2014); Defossez and Bach (2015), by replacing global averaging with random restarts, to
obtain super-polynomial rates (results comparable to ours when specializing to linear regression).
For more general problems, it is unclear how such an adaptation would work – using constant step
sizes alone may not suffice. In contrast, as shown in Table 1, our algorithm is identical for a wide
variety of cases and does not need decaying rates (whose choices may be difficult in practice).

We should also note that much work has characterized rates of convergence under various as-
sumptions on P and ψ different than our own. Our case of interest is when P is strongly convex.
For such P , the rates of convergence of many algorithms are O(1/N), often achieved by averaging
the iterates in some way (Nemirovski et al., 2009; Juditsky and Nesterov, 2010; Rakhlin et al., 2012;
Hazan and Kale, 2014). These results do not achieve a constant competitive ratio, for a variety of
reasons (they have a leading order dependencies on various quantities, including the initial error
along with strong convexity and smoothness parameters). Solely in terms of the dependence on the
sample size N , these rates are known to be optimal (Nemirovski and Yudin, 1983; Nesterov, 2004;
Agarwal et al., 2012).

Empirical risk minimization (M -estimation). In statistics, it is classically argued that the MLE,
under certain restrictions, is an asymptotically efficient estimator for well-specified statistical mod-
els (Lehmann and Casella, 1998; van der Vaart, 2000). Analogously, in an optimization context,
applicable to mis-specified models, similar asymptotic arguments have been made: under certain
restrictions, the asymptotically optimal estimator is one which has a limiting variance that is equiv-
alent to that of the ERM (Anbar, 1971; Fabian, 1973; Kushner and Clark, 1978).

With regards to finite-sample rates, Agarwal et al. (2012) provide information-theoretic lower
bounds (for any strategy) for certain stochastic convex optimization problems. This result does not
imply our bounds as they do not consider the same smoothness assumptions on ψ. For the special
case of linear least-squares regression, there are several upper bounds (for instance, Caponnetto and
De Vito (2007); Hsu et al. (2014)). Recently, Shamir (2014) provides lower bounds specifically for
the least-squares estimator, applicable under model mis-specification, and sharp only for specific
problems.

Linearly convergent optimization (and approaches based on doubling). There are numerous
algorithms for optimizing sums of convex functions that converge linearly, i.e. that depend only
logarithmically on the target precision. Notably, several recently developed such algorithms are
applicable in the setting where the sample size N becomes large, due to their stochastic nature
(Strohmer and Vershynin, 2009; Le Roux et al., 2012; Shalev-Shwartz and Zhang, 2013; Johnson
and Zhang, 2013). These procedures minimize a sum of N losses in time (near to) linear in N ,
provided N is sufficiently large relative to the dimension and the condition number.

Naively, one could attempt to use one of these algorithms to directly compute the ERM. Such
an attempt poses two difficulties. First, we would need to prove concentration results for the em-
pirical function P̂N (w) = 1

N

∑N
i=1 ψi(w); in order to argue that these algorithms perform well
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in linear time with respect to the objective P , one must relate the condition number of P̂N (w)
to the condition number of P (w). Second, we would need new generalization analysis in order
to relate the in-sample error εN (ŵN ), where εN (w)

def
= P̂N (w) − minw′ P̂N (w′), to the gener-

alization error E[P (ŵN ) − P (w∗)]. To use existing generalization analyses would demand that
εN (wN ) = Ω(1/N), but the algorithms in question all require at least logN passes of the data (fur-
thermore scaled by other problem-dependent factors) to achieve such an in-sample error. Hence,
this approach would not immediately describe the generalization error obtained in time linear in N .
Finally, it requires that entire observed data sample, constituting the sum, be stored in memory.

A second natural question is: can one naively use a doubling trick with an extant algorithm to
compete with the ERM? By this we mean to iteratively run such a linearly convergent optimization
algorithm, on increasingly larger subsets of the data, with the hope of cutting the error at each
iteration by a constant fraction, eventually down to that of the ERM. There are two points to note
for this approach. First, the approach is not implementable in a streaming model as one would
eventually have to run the algorithm on a constant fraction of the entire dataset size, thus essentially
holding the entire dataset in memory. Second, proving such an algorithm succeeds would similarly
involve the aforementioned type of generalization argument.

We conjecture that these tight generalization arguments described are attainable, although with
a somewhat involved analysis. For linear regression, the bounds in Hsu et al. (2014) may suffice.
More generally, we believe the detailed ERM analysis provided herein could be used.

In contrast, the statistical convergence analysis of our single-pass algorithm is self-contained
and does not go through any generalization arguments about the ERM. In fact, it avoids matrix
concentration arguments entirely.

Comparison to related work. To our knowledge, this work provides the first streaming algorithm
guaranteed to have a rate that approaches that of the ERM (under certain regularity assumptions on
D), where the initial error is decreased at a super-polynomial rate. The previous work, in the gen-
eral case that we consider, only provides asymptotic convergence guarantees (Polyak and Juditsky,
1992). For the special case of linear least-squares regression, the concurrent and independent work
presented in Dieuleveut and Bach (2014) and Defossez and Bach (2015) also converges to the rate
of the ERM, with a lower-order dependence on the initial error of Ω(1/N2). Furthermore, even
if we ignored memory constraints and focused solely on computational complexity, our algorithm
compares favorably to using state-of-the-art algorithms for minimizing sums of functions (such as
the linearly convergent algorithms in Le Roux et al. (2012); Shalev-Shwartz and Zhang (2013);
Johnson and Zhang (2013)); as discussed above, obtaining a convergence rate with these algorithms
would entail some further generalization analysis.

It would be interesting if one could quantify an approach of restarting the algorithm of Polyak
and Juditsky (1992) to obtain guarantees comparable to our streaming algorithm. Such an analysis
could be delicate in settings other than linear regression, as their learning rates do not decay too
quickly or too slowly (they must decay strictly faster than 1/

√
N , yet more slowly than 1/N ). In

contrast, our algorithm takes a constant learning rate to obtain its constant competitive ratio. Fur-
thermore, our algorithm is easily parallelizable and its analysis, we believe, is relatively transparent.

1.3. Organization

Section 2 summarizes our main results, and Section 3 provides applications to a few standard sta-
tistical models. The Appendix contains all proofs.
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2. Main results

This section summarizes our main results, as corollaries of more general theorems provided later.
After providing our assumptions in Section 2.1, Section 2.2 provides the algorithm, along with
performance guarantees. Then Section 2.3 provides upper and lower bounds of the statistical rate
of the empirical risk minimizer.

First, a few preliminaries and definitions are needed. Denote ‖x‖2M
def
= xTMx for a vector

x and a matrix M of appropriate dimensions. Denote λmax(M) and λmin(M) as the maximal and
minimal eigenvalues of a matrixM . Let I denote the identity matrix. Also, for positive semidefinite
symmetric matrices A and B, A � B if and only if xTAx ≤ xTBx for all x.

Throughout, define σ2 as:

σ2 def
= Eψ∼D

[
1

2
‖∇ψ(w∗)‖2(∇2P (w∗))−1

]
(4)

This quantity governs the precise (problem dependent) convergence rate of the ERM. Namely, under
certain restrictions on D, we have

lim
N→∞

E[P (ŵERM
N )− P (w∗)]

σ2/N
= 1. (5)

This limiting rate is well-established in asymptotic statistics (see, for instance, van der Vaart (2000)),
whereas Section 2.3 provides upper and lower bounds on this rate for finite sample sizes N . Analo-
gous to the Cramér-Rao lower bound, under certain restrictions, σ2/N is the asymptotically efficient
rate for stochastic approximation problems (Anbar, 1971; Fabian, 1973; Kushner and Yin, 2003).4

The problem dependent rate of σ2/N sets the benchmark. Statistically, we hope to achieve a
leading order dependency of σ2/N quickly, with rapidly-decaying dependence on the initial error.

2.1. Assumptions

We now provide two assumptions under which we analyze the convergence rate of our streaming
algorithm, Algorithm 1. Our first assumption is relatively standard. It provides upper and lower
quadratic approximations (the lower approximation is on the full objective P ).

Assumption 2.1 Suppose that:

1. The objective P is twice differentiable.

2. (Strong convexity) The objective P is µ-strongly convex, i.e. for all w,w′ ∈ S,

P (w) ≥ P (w′) +∇P (w′)T(w − w′) +
µ

2
‖w − w′‖22, (6)

3. (Smoothness) Each loss ψ is L-smooth (with probability one), i.e. for all w,w′ ∈ S,

ψ(w) ≤ ψ(w′) +∇ψ(w′)T(w − w′) +
L

2
‖w − w′‖22, (7)

4. Though, as with Cramér-Rao, this may be improvable with biased estimators.
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Our results in fact hold under a slightly weaker version of this assumption – see Remark 21. Define:

κ
def
=
L

µ
. (8)

The quantity κ can be interpreted as the condition number of the optimization objective (1). The
following definition quantifies a global bound on the Hessian.

Definition 1 (α-bounded Hessian) Let α ≥ 1 be the smallest value (if it exists) such that for all
w ∈ S,∇2P (w∗) � α∇2P (w).

Under Assumption 2.1, we have α ≤ κ, because L-smoothness implies ∇2P (w∗) � LI and
µ-strong convexity implies µI � ∇2P (w). However, α could be much smaller. For instance, α = 1
in linear regression, whereas κ is the maximum to minimum eigenvalue ratio of the design matrix.

Our second assumption offers a stronger, local relationship on the objective’s Hessian, namely
self-concordance. A function is self-concordant if its third-order derivative is bounded by a multiple
of its second-order derivative. Formally, f : R→ R is M self-concordant if and only if f is convex
and |f ′′′(x)| ≤ Mf ′′(x)3/2. A multivariate function f : Rd → R is M self-concordant if and only
if its restriction to any line is M self-concordant.

Assumption 2.2 (Self-concordance) Suppose that:

1. P is M -self concordant (or that the weaker condition in Equation (31) holds).

2. The following kurtosis condition holds:

Eψ∼D
[
‖∇ψ(w∗)‖42

](
Eψ∼D

[
‖∇ψ(w∗)‖22

])2 ≤ C
Note that these two assumptions are also standard assumptions in the analysis of the two phases

of Newton’s method (aside from the kurtosis condition): the first phase of Newton’s method gets
close to the minimizer quickly (based on a global strong convexity assumption) and the second
phase obtains quadratic convergence (based on local curvature assumptions on how fast the local
Hessian changes, e.g. self-concordance). Moreover, our proof of the streaming algorithm follows a
similar structure; we use Assumption 2.1 to analyze the progress of our algorithm when the current
point is far away from optimality and Assumption 2.2 when it is close.

2.2. Algorithm

Here we describe a streaming algorithm and provide its convergence guarantees. Algorithm 1
is inspired by the Stochastic Variance Reduced Gradient (SVRG) algorithm of Johnson and Zhang
(2013) for minimizing a strongly convex sum of smooth losses. The algorithm follows a simple
framework that proceeds in stages. In each stage s we draw ks samples independently at random
fromD and use these samples to obtain an estimate of the gradient of P at the current point, w̃s ((9)).
This stable gradient, denoted ∇̂P (w̃s), is then used to decrease the variance of a gradient descent
procedure. For each of m̃ steps (where m̃ is chosen uniformly at random from {1, 2, . . . ,m}), we
draw a sample ψ fromD and take a step opposite to its gradient at the current point, plus a zero-bias
correction given by∇ψ(w̃s)− ∇̂P (w̃s) (see (10)).

The remainder of this section shows that, for suitable choices of ks andm, Algorithm 1 achieves
desirable convergence rates under the aforementioned assumptions.
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Algorithm 1 Streaming Stochastic Variance Reduced Gradient (Streaming SVRG)
input Initial point w̃0, batch sizes {k0, k1, . . .}, update frequency m, learning rate η, smoothness L

for each stage s = 0, 1, 2, . . . do
Sample ψ̃1, . . . , ψ̃ks from D and compute the estimate

∇̂P (w̃s) =
1

ks

∑
i∈[ks]

∇ψ̃i(w̃s). (9)

Sample m̃ uniformly at random from {1, 2, . . . ,m}.
w0 ← w̃s
for t = 0, 1, . . . , m̃− 1 do

Sample ψt from D and set

wt+1 ← wt −
η

L

(
∇ψt(wt)−∇ψt(w̃s) + ∇̂P (w̃s)

)
. (10)

end for
w̃s+1 ← wm̃

end for

Remark 2 (Generalizing SVRG) Note that Algorithm 1 is a generalization of SVRG. In particular
if we chose ks = ∞, i.e. if ∇̂P (w̃s) = ∇P (w̃s), then our algorithm coincides with the SVRG
algorithm of Johnson and Zhang (2013). Also, note that Johnson and Zhang (2013) do not make
use of any self-concordance assumptions.

Remark 3 (Non-conformance to stochastic first-order oracle models) Algorithm 1 is not imple-
mentable in the standard stochastic first-order oracle model, e.g. that which is assumed in order to
obtain the lower bounds in Nemirovski and Yudin (1983) and Agarwal et al. (2012). Streaming
SVRG computes the gradient of the randomly drawn ψ at two points, while the oracle model only
allows gradient queries at one point.

We have the following algorithmic guarantee under only Assumption 2.1, which is a corollary
of Theorem 25 (also see the Appendix).

Corollary 4 (Convergence under α-bounded Hessians) Suppose Assumption 2.1 holds. Fix w̃0 ∈
Rd. For p ≥ 2 and b ≥ 3, set η = 1

20bp+1 , m = 20bp+1κ
η , k0 = 20ακbp+1, and ks = bks−1. Denote:

Ns
def
=

s−1∑
τ=0

(kτ +m)

(Ns is an upper bound on the number of samples drawn up to the end of stage s).
Let ŵNs be the parameter returned at iteration s by Algorithm 1. For Ns ≥ bp

2+6pκ (and so
s > p2 + 6p), we have

E[P (ŵNs)− P (w∗)] ≤

((
1 +

4

b

) √
ασ√
Ns

+

√
P (w̃0)− P (w∗)(

Ns
ακ

)p
)2
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When α = 1 (such as for least squares regression), the above bound achieves the ERM rate of
σ2/N (up to a constant factor, which can be driven to one, as discussed later). Furthermore, under
self-concordance, we can drive the competitive ratio (3) down from α to arbitrarily near to 1. The
following is a corollary of Theorem 26 (also see the Appendix):

Corollary 5 (Convergence under self-concordance) Suppose Assumptions 2.1 and 2.2 hold. Con-
sider w̃0 ∈ Rd. For p ≥ 2 and b ≥ 3, set η = 1

20bp+1 ,m = 20bp+1κ
η , k0 = max{400κ2b2p+3, 10C} =

max{bmκ, 10C}, and ks = bks−1. Denote Ns
def
=
∑s−1

τ=0(ks +m) (an upper bound on the number
of samples drawn up to the end of stage s). Let ŵNs be the parameter returned at iteration s by
Algorithm 1. Let ε0 = P (w̃0)− P (w∗). Then:

E[P (ŵNs)− P (w∗)] ≤

(1 + 5
b

)
σ√
Ns

+
(
2 + 5

b

) √κσ√
Ns

min

{
1,
(

Ns
2(Mσ+1)2k0

)− p
2

}
+

√
ε0

( Ns
2k0

)
p+1
2

2

Remark 6 (Implementation and parallelization) Note that Algorithm 1 is simple to implement
and requires little space. In each iteration, the space usage is linear in the size of a single sample
(along with needing to count to ks and m). Furthermore, the algorithm is easily parallelizable
once we have run enough stages. In both Theorem 25 and Theorem 26 as s increases ks grows
geometrically, whereas m remains constant. Hence, the majority of the computation time is spent
averaging the gradient, i.e. (9), which is easily parallelizable.

Note that the constants in the parameter settings for the Algorithm have not been optimized.
Furthermore, we have not attempted to fully optimize the time it takes the algorithm to enter the
second phase (in which self-concordance is relevant), and we conjecture that the algorithm in fact
enjoys even better dependencies. Our emphasis is on an analysis that is flexible in that it allows
for a variety of assumptions in driving the competitive ratio to 1 (as is done in the case of logistic
regression in Section 3, where we use a slight variant of self-concordance).

Before providing statistical rates for the ERM, let us remark that the above achieves super-
polynomial convergence rates and that the competitive ratio can be driven to 1 (recall that σ2/N is
the rate of the ERM).

Remark 7 (Linear convergence and super-polynomial convergence) Suppose the ratio γ between
P (w̃0)−P (w∗) and σ2 is known approximately (within a multiplicative factor), we can let ks = k0

for logb γ number of iterations, then start increasing ks = bks−1. This way in the first logb γ iter-
ations E[P (ŵNs) − P (w∗)] is decreasing geometrically. Furthermore, even without knowing the
ratio γ, we can can obtain a super-polynomial rate of convergence by setting the parameters as we
specify in the next remark. (The dependence on the initial error will then be 2−Ω(logN/ log logN)2 .)

Remark 8 (Driving the ratio to 1) By choosing b sufficiently large, the competitive ratio (3) can
be made close to 1 (on every problem). Furthermore, we can ensure this constant goes to 1 by
altering the parameter choices adaptively: let ks = 4s(s!)k0, and let ηs = η/2s, ms = m · 4s.
Intuitively, k grows so fast that lims→∞ ks/Ns = 1; ηs and ms are also changing fast enough so the
initial error vanishes very quickly.
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2.3. Competing with the ERM

Now we provide a finite-sample characterization of the rate of convergence of the ERM under
regularity conditions. This essentially gives the numerator of (3), allowing us to compare the rate
of the ERM against the rate achieved by Streaming SVRG. We provide the more general result in
Theorem 31; this section focuses on a corollary.

In the following, we constrain the domain S; so the ERM, as defined in (2), is taken over this
restricted set. Further discussion appears in Theorem 31 and the comments thereafter.

Corollary 9 (of Theorem 31) Suppose ψ1, ψ2, . . . , ψN are an independently drawn sample from
D. Assume the following regularity conditions hold; see Theorem 31 for weaker conditions.

1. S is compact.

2. ψ is convex (with probability one).

3. w∗ is an interior point of S , and∇2P (w∗) exists and is positive definite.

4. (Smoothness) Assume the first, second, and third derivatives of ψ exist and are uniformly
bounded on S.

Then, for the ERM ŵERM
N (as defined in (2)), we have limN→∞

E[P (ŵERM
N )−P (w∗)]
σ2/N

= 1.
In particular, the following lower and upper bounds hold. With problem dependent constantsC0

and C1 (polynomial in the relevant quantities, as specified in Theorem 31), we have for all p ≥ 2, if
N satisfies p log dN

N ≤ C0, then(
1− C1

√
p log dN

N

)
σ2

N ≤ E[P (ŵERM
N )− P (w∗)] ≤

(
1 + C1

√
p log dN

N

)
σ2

N + maxw∈S(P (w)−P (w∗))
Np

3. Applications: one pass learning and generalization

We now provide a few applications to standard statistical models. For the least-squares regression,
we also instantiate upper and lower bounds for the ERM. The applications in this section can be ex-
tended to include generalized linear models, some M -estimation problems, and other loss functions
(e.g. the Huber loss).

3.1. Linear least-squares regression

In linear regression, the goal is to minimize the (possibly `2-regularized) squared loss ψX,Y (w) =
(Y − wTX)2 + λ ‖w‖22 for a random data point (X,Y ) ∈ Rd × R. The objective (1) is

P (w) = EX,Y∼D
[
(Y − w>X)2

]
+ λ ‖w‖22 . (11)

3.1.1. UPPER BOUND FOR THE ALGORITHM

Using that α = 1, the following corollary illustrates that Algorithm 1 achieves the rate of the ERM,

10



COMPETING WITH THE EMPIRICAL RISK MINIMIZER IN A SINGLE PASS

Corollary 10 (Least-squares performance of streaming SVRG) Suppose that ‖X‖2 ≤ L. Us-
ing the parameter settings of Corollary 4, taking µ = λ + λmin(Σ), and supposing that N ≥
bp

2+6pκ,

E[P (w̃N )− P (w∗)] ≤

((
1 +

4

b

)
σ√
N

+

√
P (w̃0)− P (w∗)(

N
κ

)p
)2

Remark 11 (When N ≤ κ) If the sample size is less than κ and λ = 0, there exist distributions on
X in which the ERM is not unique (as the sample matrix 1

N

∑
XiX

>
i will not be invertible, with

reasonable probability, on these distributions by construction).

Remark 12 (When do the streaming SVRG bounds become meaningful?) Algorithm 1 is com-
petitive with the performance of the ERM when the sample size N is slightly larger than a constant
times κ. In particular, as the sample N size grows larger than κ, then the initial error is decreased at
an arbitrary polynomial rate in N/κ.

Let us consider a few special cases. First, consider the unregularized setting where λ = 0.
Assume also that the least-squares problem is well-specified. That is, Y = w>∗ X+η where E[η] = 0
and E[η2] = σ2

noise. Define Σ = E[XX>]. Here, we have

σ2 = E‖η2X‖2Σ−1 = dσ2
noise.

In other words, Corollary 10 recovers the classical rate in this case.
In the mis-specified case – where we do not assume the aforementioned model is correct (i.e.

E[Y |X] may not equal w>∗ X ) – define Y∗(X) = w>∗ X , and we have

σ2 = E
[
(Y − Y∗(X))2‖X‖2Σ−1

]
= E

[
(Y − E[Y | X])2‖X‖2Σ−1

]
+ E

[
(E[Y | X]− Y∗(X))2‖X‖2Σ−1

]
= E

[
var(Y | X)‖X‖2Σ−1

]
+ E

[
bias(X)2‖X‖2Σ−1

]
where the last equality exposes the effects of the approximation error:

var(Y | X)
def
= E[(Y − E[Y | X])2 | X] and bias(X)

def
= E[Y | X]− Y∗(X).

In the regularized setting (a.k.a. ridge regression) – also not necessarily well-specified – we have

σ2 = E[‖(Y − Y∗(X))X + λw∗‖2(Σ+λI)−1 ] (12)

3.1.2. STATISTICAL UPPER AND LOWER BOUNDS

For comparison, the following corollary (of Theorem 31) provides lower and upper bounds for the
statistical rate of the ERM.

Corollary 13 (Least-squares ERM bounds) Suppose that ‖X‖2(Σ+λI)−1 ≤ κ̃ and the dimension is
d (in the infinite dimensional setting, we may take d to be the intrinsic dimension, as per Remark 32).
Let c be an appropriately chosen universal constant. For all p > 0, if p logN

N ≤ c
κ̃ , then

E[P (ŵERM
N )− P (w∗)] ≥

(
1− c

√
κ̃p log dN

N

)
σ2

N
−
√
E [Z4]

Np/2

where Z = ‖∇ψ(w∗)‖(∇2P (w∗))−1 = ‖(Y − w>∗ X)X + λw∗‖(Σ+λI)−1 .
For an upper bound, we have two cases:

11
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• (Unregularized case) Suppose λ = 0. Assume that we constrain the ERM to lie in some
compact set S (and supposing w∗ ∈ S). Then for all p > 0, if p logN

N ≤ c
κ̃ , we have

E[P (ŵERM
N )− P (w∗)] ≤

(
1 + c

√
κ̃p log dN

N

)
σ2

N
+

maxw∈S (P (w)− P (w∗))

Np

• (Regularized case) Suppose λ > 0. Then for all p > 0, if p logN
N ≤ c

κ̃ , we have

E[P (ŵERM
N )− P (w∗)] ≤

(
1 + c

√
κ̃p log dN

N

)
σ2

N
+

λmax(Σ+λ)
λ σ2

Np

(this last equation follows from a modification of the argument in Equation (38)).

Remark 14 (ERM comparisons) Interestingly, for the upper bound (when λ = 0), we see no way
to avoid constraining the ERM to lie in some compact set; this allows us to bound the loss P in the
event of some extremely low probability failure (see Theorem 31). The ERM upper bound has a
term comparable to the initial error of our algorithm. In contrast, the lower bound is for the usual
unconstrained least-squares estimator.

3.2. Logistic regression

In (binary) logistic regression, we have a distribution on (X,Y ) ∈ Rd × {0, 1}. For any w, define

P(Y = y | w,X)
def
=

exp(yXTw)

1 + exp(XTw)

for X ∈ Rd and y ∈ {0, 1}. We do not assume the best fit model w∗ is correct. The loss
function is taken to be the regularized log likelihood ψX,y(w) = − logP(Y | w,X) + λ ‖w‖22
and the objective (1) instantiates as the negative expected (regularized) log likelihood P (w) =
E[− logP(Y | w,X)] + λ ‖w‖22. Define Y∗(X) = P(Y = 1 | w∗, X) and Σ∗ = ∇2P (w∗) =
E[Y∗(X)(1 − Y∗(X))XX>] + λI. Analogous to the least-squares case, we can interpret Y∗(X)
as the conditional expectation of Y under the (possibly mis-specified) best fit model. With this
notation, σ2 is similar to its instantiation under regularized least-squares (Equation (12)):

σ2 = E
[

1

2
‖(Y − Y∗(X))X + λw∗‖2Σ−1

∗

]
Under this definition of σ2, by Corollary 5 together with the following defined quantities, the

single-pass estimator of Algorithm 1 achieves a rate competitive with that of the ERM:

Corollary 15 (Logistic regression performance) Suppose that ‖X‖2 ≤ L. Under parameters
from Corollary 5, taking µ = λ andM = αE[‖X‖3(∇2P (w∗))−1 ], and denoting ε0 = P (w̃0)−P (w∗),
we have

E[P (ŵN )− P (w∗)] ≤

(1 + 5
b

)
σ√
N

+
(
2 + 5

b

) √κσ√
N

min

{
1,
(

N
2(Mσ+1)2k0

)− p
2

}
+

√
ε0

( N
2k0

)
p+1
2

2

.

The corollary uses Lemma 17, a straightforward lemma to handle self-concordance for logistic
regression, which is included for completeness. See Bach (2010) for techniques for analyzing the
self-concordance of logistic regression.
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Appendix A. A weaker smoothness assumption

Instead, of the smoothness Assumption 2.1 in Equation 7, we could instead directly assume that:

Eψ∼D
[
‖∇ψ(w)−∇ψ(w∗)‖2

]
≤ 2L (P (w)− P (w∗)) . (13)

Our proofs only use this condition, as well as an upper bound on the Hessian of P at w∗. However,
we can show that this weaker assumption implies such an upper bound as follows.

Lemma 16 If (13) holds then∇2P (w∗) � 2LI .

Proof First we note that for all w, by (13), the convexity of P , and Jensen’s inequality, we have:

‖∇P (w)‖2 = ‖∇P (w)−∇P (w∗)‖2 ≤ Eψ∼D‖∇ψ(w)−∇ψ(w∗)‖2 ≤ 2L(P (w)−P (w∗)) . (14)

Since P is convex we also know that

P (w∗) ≥ P (w) +∇P (w)>(w∗ − w) . (15)

Combining (14) and (15) and using Cauchy-Schwarz yields that for all w,

‖∇P (w)‖2 ≤ 2L(∇P (w)>(w∗ − w)) ≤ 2L‖∇P (w)‖‖w∗ − w‖

Consequently, for all w we have that

‖∇P (w)‖ ≤ 2L‖w∗ − w‖, (16)
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Now fix any ∆ ∈ S and let g : R→ R be defined for all t ∈ R as

g∆(t)
def
= f(w∗ + t∆).

By the chain rule we know that

g′(t) = ∆>∇P (w∗ + t∆) and g′′(t) = ∆>∇2P (w∗ + t∆)∆.

Consequently, by definition and the fact that P is twice differentiable at w∗ we have

∆>∇2P (w∗)∆ = g′′(0) = lim
t→0

∆>∇P (w∗ + t∆)−∆>∇P (w∗)

t
.

Applying Cauchy-Schwarz and (16) yields that

∆>∇2P (w∗)∆ ≤ lim
t→0

‖∆‖ · ‖∇P (w∗ + t∆)‖
|t|

≤ lim
t→0

‖∆‖ · 2L|t|‖∆‖
|t|

≤ 2L‖∆‖2 .

Since ∆ was arbitrary we have the desired result.

Appendix B. Proofs of Corollaries 4 and 5

Throughout, define:
Es =

√
E[P (ŵNs)− P (w∗)]

Proof of Corollary 4. From Theorem 25, we have:√
E[P (w̃s+1)− P (w∗)] ≤

1√
1− 4η

[(√
κ

mη
+ 4η +

√
κ
α+ 2η

k

)√
E[P (w̃s)− P (w∗)] +

√
α+ 4η

σ√
k

]

Let us first show that:

Es ≤
Es−1

(
√
b)p+1

+

(
1 +

1

(
√
b)(p+1)

)
ασ√
ks−1

We do this using Theorem 25 and some explicit calculations as follows. We shall make use of that
for x ≤ 1,

√
1− x ≥ 1− x, and for 0 ≤ x ≤ 1

2 , 1
1−x ≤ 1 + x+ 2x2 ≤ 1 + 2x. We have:
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1√
1− 4η

≤ 1√
1− 1

45

≤ 1.03

1√
1− 4η

≤ 1− 8η ≤ 1 +
1

2bp+1

√
α+ 2η√
1− 4η

≤ α(1 +
√

2η)(1 +
1

2(bp+1)
)

≤ α(1 +
1

3(
√
b)p+1

)(1 +
1

2(bp+1)
)

≤ α
(

1 +
1

(
√
b)p+1

)
√

4η + κ
ηm

√
1− 4η

≤ 1.03

(√
4

20(bp+1)
+

1

20(bp+1)
)

)
≤ 0.55

(
√
b)p+1

√
κα+2η

k√
1− 4η

≤ 1.03

√
κ
α(1 + 1/40)

k
≤ 0.1

(
√
b)p+1

√
κ
mη + 4η +

√
κα+2η

k
√

1− 4η
≤ 1

(
√
b)p+1

This completes the claim, by substitution into Theorem 25.
We now show:

Es ≤
E0

(
√
b)(p+1)s

+

(
1 +

2

(
√
b)p

)
ασ√
ks−1

. (17)

We do this by induction. The claim is true for s = 1. For the inductive argument,

Es ≤
Es−1

(
√
b)p+1

+

(
1 +

1

(
√
b)(p+1)

)
ασ√
ks−1

≤ E0

(
√
b)(p+1)s

+
1

(
√
b)(p+1)

(
1 +

2

(
√
b)p

)
ασ√
ks−2

+

(
1 +

1

(
√
b)p+1

)
ασ√
ks−1

=
E0

(
√
b)(p+1)s

+

(
1 +

2

(
√
b)p

)
ασ

(
√
b)p
√
ks−1

+

(
1 +

1

(
√
b)p+1

)
ασ√
ks−1

≤ E0

(
√
b)(p+1)s

+

(
1 +

2

(
√
b)p

)
ασ√
ks−1

which completes the inductive argument.
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We now relate ks and
√
b
(p+1)s

to the sample size Ns. First, observe that m is bounded as:

m = 400b(p+1)2κ ≤ 20b(p+1)2+3κ = 20bp
2+2p+4κ

Using s > p2 + 6p,

Ns =

s∑
τ=1

(m+ kτ ) ≤ s20bp
2+2p+4κ+

ks−1

1− 1
b

=
sksb

p2+p+3

bs
+

ks

1− 1
b

≤ (1 +
1.1

b
)ks

and so:

α

(
1 +

2

(
√
b)p

)
σ√
ks−1

≤
(

1 +
2

(
√
b)p

)√
1 +

1.1

b

ασ√
Ns
≤
(

1 +
4

b

)
ασ√
Ns

(18)

Also,

(bs)p+1 = (bs)pbs =

(
ks

1

20αbp+1κ

)p
bs ≥

(
Ns

1

20(1 + 1.1
b )αbp+1κ

)p
bs

≥
(

1

ακ
Ns

)p bs

(bp+5)p

≥
(

1

ακ
Ns

)p
,

where we have used that, for s > p2 + 6p, bs

(bp+5)p
≥ 1. Hence,

1

bs(p+1)
≤ 1(

Ns
ακ

)p . (19)

The proof is completed substituting (18), (19) in (17).

Proof of Corollary 5. Under the choice of parameters and using Theorem 25, we have

Es ≤
Es−1√
b
p+1 +

σ√
ks−1

√
3κ+

1

b
.

On the other hand, suppose t0 is the first time that kt0 ≥ (Mσ+1)2400κ2b2p+3 = (Mσ+1)2k0.
When s ≥ t0, we can use Theorem 26, and under the choice of parameters we have:

Es ≤
Es−1√
b
p+1 +

σ√
ks−1

(
1 +

1

b

)
.

Now we shall prove by induction that

Es ≤
E0

√
b
(p+1)s

+
σ√
ks−1

(1 + 2/b)
√

3κ+ 1/b ·min{1, (
√
b
−p(s−t0)

)}+
σ√
ks−1

(1 + 2/b).

Here E0 is the initial error. When s = 1 the statement is true. When s ≤ t0 we use the first
recursion (from Theorem 25), clearly
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Es ≤
Es−1√
b
p+1 +

σ√
ks−1

√
3κ+

1

b

≤

(
E0

√
b
(p+1)(s−1)

+
σ√
ks−2

(1 + 2/b)
√

3κ+ 1/b+
σ√
ks−2

(1 + 2/b)

)
· 1
√
b
p+1

+
σ√
ks−1

√
3κ+

1

b

=
E0

√
b
(p+1)s

+
σ√
ks−1

√
3κ+ 1/b

(
1 + 2/b√

b
p + 1

)
+

σ√
ks−1

(1 + 2/b) · 1√
b
p

≤ E0
√
b
(p+1)s

+
σ√
ks−1

(1 + 2/b)
√

3κ+ 1/b+
σ√
ks−1

(1 + 2/b).

Here the second step uses induction hypothesis, and the third step uses the fact that ks−1/ks−2 = b
and (1 + 2/b)/

√
b
p

+ 1 ≤ 1 + 2/b.
When s > t0 we can use the second recursion (from Theorem 26), now we have

Es ≤
Es−1√
b
p+1 +

σ√
ks−1

√
1 +

1

b

≤

[
E0

√
b
(p+1)(s−1)

+
σ(1 + 2/b)√

ks−2

√
3κ+ 1/b ·

√
b
−p(s−t0−1)

+
σ(1 + 2/b)√

ks−2

]
1

√
b
p+1

+
σ√
ks−1

(
1 +

1

b

)
=

E0
√
b
(p+1)s

+
σ√
ks−1

(1 + 2/b)
√

3κ+ 1/b · (
√
b
−p(s−t0)

)

+
σ√
ks−1

(
(1 + 2/b)√

b
p + 1 +

1

b

)
≤ E0
√
b
(p+1)s

+
σ√
ks−1

(1 + 2/b)
√

3κ+ 1/b · (
√
b
−p(s−t0)

) +
σ√
ks−1

(1 + 2/b).

Again, the second step uses induction hypothesis, and final step uses ks−1/ks−2 = b and (1 +
2/b)/

√
b
p

+ 1 + 1/b ≤ 1 + 2/b. This concludes the induction.

Finally, we need to relate the values ks,
√
b
(p+1)(s+1)

,
√
b
(p+1)(s−t0)

with Ns.
First, it is clear that ks ≥ bm for all s, therefore

Ns ≤ (1 + 1/b)
s−1∑
t=0

ks ≤ ks−1(1− 1/b)−1(1 + 1/b) ≤ ks−1(1 + 3/b) ≤ 2ks−1.

Therefore we can substitute 1/
√
ks−1 with

√
1 + 3/b/

√
Ns. Also, we know Ns/2k0 ≤ bs−1,

therefore
√
b
−(p+1)s ≤

√
b
−(p+1)(s−1) ≤ (N/2k0)−(p+1)/2.

Finally, since k increase by a factor of b, we know kt0 is at most b(Mσ + 1)2k0. Therefore
Ns

2(Mσ+1)2k0
≤ bNs/2kt0 ≤ ks/kt0 = bs−t0 , which means

√
b
−p(s−t0) ≤

(
Ns

2(Mσ+1)2k0

)p/2
.
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Appendix C. Self-concordance for logistic regression

The following straightforward lemma, to handle self-concordance for logistic regression, is included
for completeness (see Bach (2010) for a more detailed treatment for analyzing the self-concordance
of logistic regression).

Lemma 17 (Self-Concordance for Logistic Regression) For the logistic regression case (as defined
in Section 3), define M = αE[‖X‖3(∇2P (w∗))−1 ], then

P (w∗) ≥ P (wt) + (w∗ − wt)>∇P (wt) +
‖wt − w∗‖2∇2P (w∗)

2(1 +M‖wt − w∗‖∇2P (w∗))
2
.

Proof For M̃ = E[‖X‖3(∇2P (w∗))−1 ], first let us show that:

P (w∗) ≥ P (wt)+(w∗−wt)>∇P (wt)+
1

2
‖wt−w∗‖2∇2P (w∗)

max

{
1

α
, 1− M̃‖wt − w∗‖∇2P (w∗)

}
(20)

By Taylor’s theorem,

P (w∗) = P (wt) + (w∗ − wt)>∇P (wt) +
1

2
(wt − w∗)>∇2P (z1)(wt − w∗)

where z1 is between w∗ and wt. Again, by Taylor’s theorem,

∇2P (z1) = ∇2P (w∗) +∇3P (z2)(z1 − w∗)

where z2 is between w∗ and z1.
By taking derivatives, we have that:

(wt − w∗)>∇2P (z1)(wt − w∗)
=(wt − w∗)>∇2P (w∗)(wt − w∗)

+ E[P(Y |z2, X)(1− P(Y |z2, X))(1− 2P(Y |z2, X))((wt − w∗)>X)2(z1 − w∗)>X]

≥‖wt − w∗‖2∇2P (w∗)
− ‖wt − w∗‖2∇2P (w∗)

‖z1 − w∗‖∇2P (w∗)E[‖X‖3(∇2P (w∗))−1 ]

≥‖wt − w∗‖2∇2P (w∗)
− ‖wt − w∗‖3∇2P (w∗)

E[‖X‖3(∇2P (w∗))−1 ]

=‖wt − w∗‖2∇2P (w∗)

(
1− M̃‖wt − w∗‖∇2P (w∗))

)
Using the definition of α, shows that Equation 20 holds.
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Now for Z > 0, consider the quantity max{ 1
α , 1−Z}, and observe that the 1−Z term achieves

the max when 1− Z ≥ 1
α or equivalently when −1 + α− αZ ≥ 0. Hence,

max

{
1

α
, 1− Z

}
= max

{
1

α
,
(1− Z)(1 + αZ)

1 + αZ

}
= max

{
1

α
,
1− Z + αZ − αZ2

1 + αZ

}
= max

{
1

α
,
1 + Z(−1 + α− αZ)

1 + αZ

}
≥ max

{
1

α
,

1

1 + αZ

}
≥ 1

1 + αZ

≥ 1

(1 + αZ)2

Using this completes the proof.

Appendix D. Probability tail inequalities

The following probability tail inequalities are used in our analysis.
The first tail inequality is for sums of bounded random vectors; it is a standard application of

Bernstein’s inequality.

Lemma 18 (Vector Bernstein bound; e.g. see Hsu et al. (2011)) Let x1, x2, . . . , xn be indepen-
dent random vectors such that

n∑
i=1

E[‖xi‖2] ≤ v and ‖xi‖ ≤ r

for all i = 1, 2, . . . , n, almost surely. Let s := x1 + x2 + · · ·+ xn. For all t > 0,

P
[
‖s‖ >

√
v(1 +

√
8t) + (4/3)rt

]
≤ e−t

The next tail inequality concerns the spectral accuracy of an empirical second moment matrix,
where we do not assume the dimension is finite.

Lemma 19 (Infinite Dimensional Matrix Bernstein bound; Hsu et al. (2012)) Let X be a ran-
dom matrix, and r > 0, v > 0, and d̃ > 0 be such that, almost surely,

E[X] = 0, λmax[X] ≤ r, λmax[E[X2]] = v, Tr(E[X2]) = vd̃.

Define d̃ as the intrinsic dimension. If X1, X2, . . . , Xn are independent copies of X , then for any
t > 0,

P

[
λmax

[
1

n

n∑
i=1

Xi

]
>

√
2vt

n
+
rt

3n

]
≤ d̃t(et − t− 1)−1.

If t ≥ 2.6, then t(et − t− 1)−1 ≤ e−t/2.
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Appendix E. Analysis of Streaming SVRG

Here we analyze Algorithm 1. Section E.1 provides useful common lemmas. Section E.2 uses these
lemmas to characterize the behavior of the Algorithm 1. These are then used to prove convergence
in terms of both α-bounded Hessians (Section E.3) and M -self-concordance (Section E.4).

E.1. Common lemmas

Our first lemma is a consequence of smoothness. It is the same observation made in Johnson and
Zhang (2013).

Lemma 20 If ψ is smooth (with probability one), then

Eψ∼D
[
‖∇ψ(w)−∇ψ(w∗)‖2

]
≤ 2L (P (w)− P (w∗)) . (21)

Remark 21 (A weaker smoothness assumption) Instead of the smoothness Assumption 2.1 in
Equation 7, it suffices to directly assume (13) and still have all results hold as presented. In do-
ing so, we incur an additional factor of 2 as in this case we have ∇2P (w∗) � 2LI by Lemma 16.
For further explanation see Appendix A.

Proof For an L-smooth function f : Rd → R, we have

f(w)−min
w′

f(w′) ≥ 1

2L
‖∇f(w)‖2. (22)

To see this, observe that

min
w′

f(w′) ≤ min
η
f(w − η∇f(w))

≤ min
η

(
f(w)− η‖∇f(w)‖2 +

1

2
η2L‖∇f(w)‖2

)
= f(w)− 1

2L
‖∇f(w)‖2

using the definition of L-smoothness.
Now define:

g(w) = ψ(w)− ψ(w∗)− (w − w∗)>∇ψ(w∗). (23)

Since ψ is L-smooth (with probability one) g is L-smooth (with probability one) and it follows that:

‖∇ψ(w)−∇ψ(w∗)‖2 = ‖∇g(w)‖2

≤ 2L(g(w)−min
w′

g(w′))

≤ 2L(g(w)− g(w∗))

= 2L(ψ(w)− ψ(w∗)− (w − w∗)>∇ψ(w∗))

where the second step follows from smoothness. The proof is completed by taking expectations and
noting that E[∇ψ(w∗)] = ∇P (w∗) = 0.

Our second lemma bounds the variance of ψ ∼ D in the (∇2P (w∗))
−1 norm.
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Lemma 22 Suppose Assumption 2.1 holds. Let w ∈ Rd and let ψ ∼ D. Then

E ‖∇ψ(w)−∇P (w)‖2(∇2P (w∗))−1 ≤ 2
(√

κ (P (w)− P (w∗)) + σ
)2

. (24)

Proof For random vectors a and b, we have

E‖a+ b‖2 = E‖a‖2 + 2Ea · b+ E‖b‖2 ≤ E‖a‖2 + 2
√
E‖a‖2E‖b‖2 + E‖b‖2

=
(√

E‖a‖2 +
√

E‖b‖2
)2

Consequently,

E ‖∇ψ(w)−∇P (w)‖2(∇2P (w∗))−1

≤
(√

E ‖∇ψ(w)−∇ψ(w∗)−∇P (w)‖2(∇2P (w∗))−1 +
√
E ‖∇ψ(w∗)‖2(∇2P (w∗))−1

)2

≤
(√

1

µ
E ‖∇ψ(w)−∇ψ(w∗)−∇P (w)‖2 +

√
2σ

)2

where the last step uses µI � ∇2P (w∗) and the definition of σ2.
Observe that

E [∇ψ(w)−∇ψ(w∗)] = ∇P (w)−∇P (w∗) = ∇P (w) .

Applying Lemma 20 and for random a, that E‖a− Ea‖2 ≤ E‖a‖2, we have

E ‖∇ψ(w)−∇ψ(w∗)−∇P (w)‖2 ≤ E ‖∇ψ(w)−∇ψ(w∗)‖2 ≤ 2L(P (w)− P (w∗)).

Combining and using the definition of κ yields the result.

E.2. Progress of the algorithm

The following bounds the progress of one step of Algorithm 1.

Lemma 23 Suppose Assumption 2.1 holds, w̃0 ∈ Rd, and ψ̃1, . . . ψ̃k are functions from Rd → R.
Suppose ψ1, . . . ψm are sampled independently from D. Set w0 = w̃0 and for t ∈ {0, 1, . . .m− 1},
set:

wt+1
def
= wt −

η

L

∇ψt(wt)−∇ψt(w̃0) +
1

k

∑
i∈[k]

∇ψ̃i(w̃0)


for some η > 0. Define:

∆
def
=

1

k

∑
i∈[k]

∇ψ̃i(w̃0)−∇P (w̃0) .

For all t let αt be such that

P (w∗) ≥ P (wt) + (w∗ − wt)>∇P (wt) +
1

2αt
‖wt − w∗‖2∇2P (w∗)

(25)
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(note that such an αt exists by Assumption 2.1, as αt ≤ κ).
Then for all t we have

EL‖wt+1 − w∗‖2 ≤ E
[
L‖wt − w∗‖2 − 2η(1− 4η) (P (wt)− P (w∗)) + 8η2 (P (w̃0)− P (w∗))

+
(
αtη + 2η2

)
‖∆‖2(∇2P (w∗))−1

]
(26)

Proof Letting

gt(w) = ψt(w)− w>
∇ψt(w̃0)− 1

k

∑
i∈[k]

∇ψ̃i(w̃0)


and recalling the definition of wt+1 and ∆ we have

Eψt∼D‖wt+1 − w∗‖2 = Eψt∼D‖wt − w∗ −
η

L
∇gt(wt)‖2

= Eψt∼D

[
‖wt − w∗‖2 − 2

η

L
(wt − w∗)>∇gt(wt) +

η2

L2
‖∇gt(wt)‖2

]
= ‖wt − w∗‖2 − 2

η

L
(wt − w∗)>(∇P (wt) + ∆) +

η2

L2
Eψt∼D‖∇gt(wt)‖2.

(27)

Now by (25) we know that

− 2(wt − w∗)>∇P (wt) ≤ −2(P (wt)− P (w∗))−
1

αt
‖wt − w∗‖2∇2P (w∗)

. (28)

Using Cauchy-Schwarz and that 2a · b ≤ a2 + b2 for scalar a and b, we have

− 2(wt − w∗)>∆ ≤ 1

αt
‖wt − w∗‖2∇2P (w∗)

+ αt ‖∆‖2(∇2P (w∗))−1 . (29)

Furthermore

Eψt∼D‖∇gt(wt)‖2

= Eψt

∥∥∥∥∥∥∇ψt(wt)−∇ψt(w̃0) +
1

k

∑
i∈[k]

∇ψ̃i(w̃0)

∥∥∥∥∥∥
2

= Eψt ‖(∇ψt(wt)−∇ψt(w∗))− (∇ψt(w̃0)−∇ψt(w∗)−∇P (w̃0)) + ∆‖2

≤ 2Eψt

∥∥(∇ψt(wt)−∇ψt(w∗))− (∇ψt(w̃0)−∇ψt(w∗)−∇P (w̃0)) ‖2 + 2‖∆
∥∥2

≤ 4Eψt ‖∇ψt(wt)−∇ψt(w∗)‖
2 + 4Eψt ‖∇ψt(w̃0)−∇ψt(w∗)−∇P (w̃0)‖2 + 2‖∆‖2

≤ 4Eψt ‖∇ψt(wt)−∇ψt(w∗)‖
2 + 4Eψt ‖∇ψt(w̃0)−∇ψt(w∗)‖2 + 2 ‖∆‖2

where we have used that E[∇ψt(w̃0) − ∇ψt(w∗) − ∇P (w̃0)] = 0 and E‖a − Ea‖2 ≤ E‖a‖2.
Applying Lemma 20 and using∇2P (w∗) � LI yields

Eψt∼D‖∇gt(wt)‖2 ≤ 8L (P (wt)− P (w∗))+8L (P (w̃0)− P (w∗))+2L ‖∆‖2(∇2P (w∗))−1 . (30)
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Combining (27), (28), (29), and (30) yields

Eψt∼D‖wt+1 − w∗‖2 ≤ ‖wt − w∗‖2 − 2
η

L
(1− 4η) (P (wt)− P (w∗)) + 8

η2

L
(P (w̃0)− P (w∗))

+

(
αt
η

L
+ 2

η2

L

)
‖∆‖2(∇2P (w∗))−1 ,

and multiplying both sides by L yields the result.

Finally we bound the progress of one stage of Algorithm 1.

Lemma 24 Under the same assumptions as Lemma 23, for m̃ chosen uniformly at random in
{1, . . .m} and w̃1

def
= wm̃, we have

E[P (w̃1)− P (w∗)] ≤
1

1− 4η

[(
κ

mη
+ 4η

)
P (w̃0)− P (w∗) + E

[
αm̃ + 2η

2

]
‖∆‖2(∇2P (w∗))−1

]
where we are conditioning on w̃0 and ψ̃1, . . . ψ̃k.

Proof Taking an unconditional expectation with respect to {ψt} and summing (26) from Lemma 23
from t = m− 1 down to t = 0 yields

L · E‖wm − w∗‖2 ≤ L · ‖w̃0 − w∗‖2 − 2η(1− 4η)

m−1∑
t=0

E (P (wt)− P (w∗))

8mη2 (EP (w̃0)− P (w∗)) +
m−1∑
t=0

E
[(
αtη + 2η2

)
‖∆‖2(∇2P (w∗))−1

]
By strong convexity,

‖w̃0 − w∗‖2 ≤
2

µ
(P (w̃0)− P (w∗))

and a little manipulation yields that:

2η(1− 4η)

m

m−1∑
t=0

E (P (wt)− P (w∗)) ≤
(

2κ

m
+ 8η2

)
(P (w̃0)− P (w∗))

+
m−1∑
t=0

E
[
αtη + 2η2

m
E ‖∆‖2(∇2P (w∗))−1

]
Rearranging terms and applying the definition of w̃1 then yields the result.
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E.3. With α-bounded Hessians

Here we prove the progress made by Algorithm 1 in a single stage under only Assumption 2.1.

Theorem 25 (Stage progress with α-bounded Hessians) Under Assumption 2.1, for Algorithm 1,
we have for all s:

E[P (w̃s+1)− P (w∗)]

≤ 1

1− 4η

[(
κ

mη
+ 4η

)
E[P (w̃s)− P (w∗)] +

α+ 2η

k

(√
κ · E[P (w̃s)− P (w∗)] + σ

)2
]
.

Proof By definition of α, we have αt ≤ α for all t in Lemma 24 and therefore

E[P (w̃s+1)−P (w∗)] ≤
1

1− 4η

[(
κ

mη
+ 4η

)
E[P (w̃s)− P (w∗)] +

α+ 2η

2
E
[
‖∆‖2(∇2P (w∗))−1

]]
Now using that the ψ̃i are independent and that E[∇ψ̃i(w̃s)] = ∇P (w̃s) we have

E[‖∆‖2(∇2P (w∗))−1 ] =
1

k
Eψ∼D

[
‖∇ψ̃1(w̃s)− P (w̃s)‖2(∇2P (w∗))−1

]
≤ 2

k
E
[
κ(P (w̃s)− P (w∗)) + σ

√
κ(P (w̃s)− P (w∗)) + σ2

]
≤ 2

k

[
κE[P (w̃s)− P (w∗)] + σ

√
κE[P (w̃s)− P (w∗)] + σ2

]
=

2

k

(√
κ · E[P (w̃s)− P (w∗)] + σ

)2

where we have also used Lemma 22 and Jensen’s inequality.

E.4. With M -self-concordance

Our main result in the self-concordant case follows.

Theorem 26 (Convergence under self-concordance) Suppose Assumption 2.1 and 2.2 hold. Un-
der Algorithm 1, for η ≤ 1

8 , k ≥ 10C, and all s, we have

E[P (w̃s+1)− P (w∗)] ≤
1

1− 4η

[(
κ

mη
+ 4η

)
E[P (w̃s)− P (w∗)]

+
1

k

(
(2Mσκ+ 9κ)

√
E[P (w̃s)− P (w∗)] +

(
1 + 2

√
η +

10Mσκ√
k

)
σ

)2
]

The proof utilizes the following lemmas. First, we show how self concordance implies that there
is a better effective strong convexity parameter in∇2P (w∗) norm when we are close to w∗.

Lemma 27 If P is M -self-concordant, then

P (w∗) ≥ P (wt) + (w∗ − wt)>∇P (wt) +
‖wt − w∗‖2∇2P (w∗)

2(1 +M‖wt − w∗‖∇2P (w∗))
2
. (31)
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Proof First we use the property of self-concordant functions: if f is M -self-concordant, then

f(t) ≥ f(0) + tf ′(0) +
4

M2

(
t
M

2

√
f ′′(0)− ln

(
1 + t

M

2

√
f ′′(0)

))
.

Apply this property to the function P restricted to the line between wt and w∗, where the 0 point
is at wt and t is ‖wt − w∗‖∇2P (wt), then we have

P (w∗) ≥ P (wt) + (w∗ − wt)>∇P (wt)

+
4

M2

(
M

2
‖wt − w∗‖∇2P (wt) − ln

(
1 +

M

2
‖wt − w∗‖∇2P (wt)

))
.

In order to convert∇2P (wt) norm to∇2P (w∗) norm, we use another property of self-concordant
function:

f ′′(t) ≥ f ′′(0)

(1 + tM2
√
f ′′(0))2

.

Again we restrict to the line betweenw∗ andwt, where 0 point corresponds tow∗, and t is ‖wt−w∗‖,
and we get

‖wt − w∗‖2∇2P (wt)
≥

‖wt − w∗‖2∇2P (w∗)

(1 + M
2 ‖wt − w∗‖∇2P (w∗))

2
.

Now consider the function let h(x) = x − ln(1 + x). The function has the following two
properties: When x ≥ 0, h(x) is monotone and h(x) ≥ x2/2(1 + x). This claim can be verified
directly by taking derivatives.

Therefore

h

(
M

2
‖wt − w∗‖∇2P (wt)

)
≥ h

(
M
2 ‖wt − w∗‖∇2P (w∗)

(1 + M
2 ‖wt − w∗‖∇2P (w∗))

)

≥
M2

4 ‖wt − w∗‖
2
∇2P (w∗)

(1 + M
2 ‖wt − w∗‖∇2P (w∗))

2
· 1

2

(
1 +

M
2
‖wt−w∗‖∇2P (w∗)

(1+M
2
‖wt−w∗‖∇2P (w∗))

)
=

M2

4 ‖wt − w∗‖
2
∇2P (w∗)

2(1 + M
2 ‖wt − w∗‖∇2P (w∗))(1 +M‖wt − w∗‖∇2P (w∗))

≥
M2‖wt − w∗‖2∇2P (w∗)

8(1 +M‖wt − w∗‖∇2P (w∗))
2
.

This concludes the proof.

Essentially, this means when ‖wt − w∗‖2∇2P (w∗)
is small the effective strong convexity in

‖·‖∇2P (w∗)
is small. In particular,

αt ≤ min

{
α,

(
1 +

M

2
‖wt − w∗‖∇2P (w∗)

)2
}
≤ min

{
κ,

(
1 +

M

2
‖wt − w∗‖∇2P (w∗)

)2
}

Thus we need to bound the residual error ‖wt − w∗‖2∇2P (w∗)
.
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Lemma 28 (Crude residual error bound) Suppose the same assumptions in Lemma 23 hold and
that η ≤ 1

8 . Then for all t, we have

E‖wt − w∗‖2∇2P (w∗)
≤ 3κ(P (w̃0)− P (w∗)) + 6κ2 ‖∆‖2(∇2P (w∗))−1

Proof Since αt ≤ κ and by Lemma 23 we have

EL‖wt+1 − w∗‖2 ≤ E
[
L‖wt − w∗‖2 − 2η(1− 4η) (P (wt)− P (w∗)) + 8η2 (P (w̃0)− P (w∗))

+
(
κη + 2η2

)
‖∆‖2(∇2P (w∗))−1

]
Using that by strong convexity P (wt)− P (w∗) ≥ µ

2‖wt − w∗‖
2 we have

EL‖wt+1 − w∗‖2 ≤ E
[(

1− η

2κ

)
L‖wt − w∗‖2

]
+ η (P (w̃0)− P (w∗)) + 2ηκ ‖∆‖2(∇2P (w∗))−1

Solving for the maximum value of L‖wt − w∗‖22 in this recurrence we have, for all t,

EL‖wt − w∗‖2 ≤
3κ

η

(
η (P (w̃0)− P (w∗)) + 2ηκ ‖∆‖2(∇2P (w∗))−1

)
Using that∇2P (w∗) � LI yields the result.

Finally, we end up needing to bound higher moments of the error from ∆. For this we provide
two technical lemmas.

Lemma 29 Suppose Assumption 2.1 and 2.2 hold. For ψ̃i sampled independently, we have

E

∥∥∥∥∥∥1

k

∑
i∈[k]

ψ̃i(w∗)

∥∥∥∥∥∥
4

(∇2P (w∗))−1

≤ 12

(
1 +

C

k

)(
σ2

k

)2

Proof By Assumption 2.2 we have

E

∥∥∥∥∥∥1

k

∑
i∈[k]

ψ̃i(w∗)

∥∥∥∥∥∥
4

(∇2P (w∗))−1

=
1

k4

[
k
(
Eψ∼D‖∇ψ(w∗)‖4(∇2P (w∗))−1

)
+ 3k(k − 1)

(
Eψ∼D‖∇ψi(w∗)‖2(∇2P (w∗))−1

)2
]

≤3k(k − 1) + Ck

k4

(
Eψ∼D‖∇ψi(w∗)‖2(∇2P (w∗))−1

)2

Recalling the definition of σ2 yields the result.

Lemma 30 Suppose a is a random variable such that E[a4] ≤ C̃ ·(E[a2])2, b is a random variable,
and c is a constant. We have

E[a2 min{b2, c}] ≤ 2E[a2]

√
C̃ · c · E[b2]. (32)
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Proof Let E1 be the indicator variable for the event a2 ≥ TE[a2] where T is chosen later. Let
E2 = 1− E1.

On one hand, we have E[a2E1]TE[a2] ≤ E[a4], therefore E[a2E1] ≤ C̃
T E[a2]. On the other

hand, E[min{b2, c}a2E2] ≤ E[b2a2E2] ≤ TE[a2]E[b2]. Combining these two cases we have:

E[min{b2, c}a2] = E[min{b2, c}a2E1] + E[min{b2, c}a2E2]

≤ cE[a2E1] + E[b2a2E2]

≤ c · C̃
T

E[a2] + TE[a2]E[b2]

= 2E[a2]

√
c · C̃E[b2].

In the last step we chose T =
√

c·C̃
E[b2]

to balance the terms.

Using these lemmas, we are ready to provide the proof.
Proof of Theorem 26. We analyze stage s of the algorithm. For notational brevity, throughout the
proof, we denote H∗ = (∇2P (w∗))

−1. Let us define the variance term (A) as

(A) = E
[(

αm̃ + 2η

2

)
‖∆‖2H∗

]
Our main goal in the proof is to bound (A). First, for all α, x, y and positive semidefinite H we
have

Eα‖x+ y‖2H = E
[
‖H−1/2√αx+H−1/2√αy‖22

]
≤
(√

E‖
√
αH−1/2x‖22 +

√
E‖
√
αH−1/2x‖22

)2

≤
(√

Eα‖x‖2H +
√
Eα‖y‖2H

)2

. (33)

By the definition of ∆ we have

(A) ≤
(√

(B) +
√

(C)
)2

where (B) and (C) are defined below. Using that E‖a − E[a]‖2H ≤ E‖a‖2H , Lemma 20, and the
strong convexity of P we have

(B) = E
(
αm̃ + 2η

2

)∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w̃s)−∇ψ̃i(w∗)−∇P (w̃s)

∥∥∥∥∥∥
2

H∗

≤
(
κ+ 2η

2

)
· 2κ

k
· E[P (w̃s)− P (w∗)]

≤ 2κ2

k
· E[P (w̃s)− P (w∗)] .
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We use that min{a, b + c} ≤ b + min{a, c} (for positive a, b, and c) by Lemma 20, the definition
of σ2, as well as (33)

(C) = E
(
αm̃ + 2η

2

)∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗

≤ 2ησ2

k
+ E

min{κ, (1 +M‖wt − w∗‖∇2P (w∗))
2}

2

∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


=

2ησ2

k
+ E

∥∥∥∥∥∥min{
√
κ, 1 +M‖wt − w∗‖∇2P (w∗)}√

2k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


≤ 2ησ2

k
+ E

∥∥∥∥∥∥ 1√
2k

∑
i∈[k]

∇ψ̃i(w∗) +
min{

√
κ,M‖wt − w∗‖∇2P (w∗)}√

2k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


≤ 2ησ2

k
+

(√
σ2

k
+
√

(D)

)2

where (D) is defined below. Using Lemma 28 and the independence of the different types of ψ

(D) = E

min{κ,M2‖wt − w∗‖2∇2P (w∗)
}

2

∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


≤ E

min
{
κ,M2

(
3κ · P (w̃s)− P (w∗) + 6κ2‖∆‖2H∗

)}
2

∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


≤ 3κ2M2σ2

k
E[P (w̃s)− P (w∗)] +

κ

2
(E)

where (E) is defined below. Using kurtosis,

E

∥∥∥∥∥∥1

k

∑
i∈[k]

ψ̃i(w∗)

∥∥∥∥∥∥
4

H∗

 ≤ 14(σ2/k)2.
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By Lemma 29 and applying Lemma 30 we have

(E) ≤ E

min
{

1, 6κM2‖∆‖2H∗
}∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


≤ E

min

1, 12κM2

∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w̃s)−∇ψ̃i(w∗)−∇P (w̃s)

∥∥∥∥∥∥
2

H∗

+

∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗

 ·
∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


≤ E

min

1, 12κM2

∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w̃s)−∇ψ̃i(w∗)−∇P (w̃s)

∥∥∥∥∥∥
2

H∗


∥∥∥∥∥∥1

k

∑
i∈[k]

∇ψ̃i(w∗)

∥∥∥∥∥∥
2

H∗


+ 170κM2

(
σ2

k

)2

≤ 4σ2

k

√
14 · 1 · 24κ2M2

P (w̃s)− P (w∗)

k
+ 170κM2

(
σ2

k

)2

≤ 2
4
√
κMσ2

k

√
96κ

P (w̃s)− P (w∗)

k
+ 170κM2

(
σ2

k

)2

by manipulation of constants

≤ 16κM2

(
σ2

k

)2

+
96κ[P (w̃s)− P (w∗)]

k
+ 170κM2

(
σ2

k

)2

since 2a · b ≤ a2 + b2

≤ 200M2κ

(
σ2

k

)2

+
96κ[P (w̃s)− P (w∗)]

k

Using that
√
|x|+ |y| ≤

√
|x|+

√
|y| this implies

(A) ≤

√2κ2

k
· E[P (w̃s)− P (w∗)] +

√√√√2ησ2

k
+

(√
σ2

k
+
√

(D)

)2


2

≤
(

2κ√
k

√
E[P (w̃s)− P (w∗)] +

2σ
√
η

√
k

+
σ√
k

+
√

(D)

)2

≤
(

2κ√
k

√
E[P (w̃s)− P (w∗)] +

2σ
√
η

√
k

+
σ√
k

+

√√√√3κ2M2σ2

k
E[P (w̃s)− P (w∗)] +

κ

2

(
200M2κ

(
σ2

k

)2

+
96κ[P (w̃s)− P (w∗)]

k

)2

≤ 1

k

(
(2κ+ 2Mσκ+ 7κ)

√
E[P (w̃s)− P (w∗)] +

(
1 + 2

√
η +

10Mσκ√
k

)
σ

)2

Using this bound in Lemma 24 then yields the result.
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Appendix F. Empirical risk minimization (M -estimation) for smooth functions

We now provide finite-sample rates for the ERM. We take the domain S to be compact in (1) (see
Remark 33). Throughout this section, define:

‖A‖∗ = ‖(∇2P (w∗))
−1/2 ·A · (∇2P (w∗))

−1/2‖

for a matrix A (of appropriate dimensions).

Theorem 31 Suppose ψ1, ψ2, . . . are an independently drawn sample from D. Assume:

1. (Convexity of ψ) Assume that ψ is convex (with probability one).

2. (Smoothness of ψ) Assume that ψ is smooth in the following sense: the first, second, and third
derivatives exist at all interior points of S (with probability one).

3. (Regularity Conditions) Suppose

(a) S is compact (so P (w) is bounded on S).

(b) w∗ is an interior point of S .

(c) ∇2P (w∗) is positive definite (and, thus, is invertible).

(d) There exists a neighborhoodB ofw∗ and a constant L3, such that (with probability one)
∇2ψ(w) is L3-Lipschitz, namely ‖∇2ψ(w) − ∇2ψ(w′)‖∗ ≤ L3‖w − w′‖∇2P (w∗), for
w,w′ in this neighborhood.

4. (Concentration at w∗) Suppose ‖∇ψ(w∗)‖(∇2P (w∗))−1 ≤ L1 and ‖∇2ψ(w∗)‖∗ ≤ L2 hold
with probability one. Suppose the dimension d is finite (or, in the infinite dimensional setting,
the intrinsic dimension is bounded, as in Remark 32).

Then:

lim
N→∞

E[P (ŵERM
N )− P (w∗)]

σ2/N
= 1

In particular, the following lower and upper bounds hold. Define

εN := c
(
L1L3 +

√
L2

)√p log dN

N

where c is an appropriately chosen universal constant. Also, let c′ be another appropriately cho-

sen universal constant. We have that for all p ≥ 2, if N is large enough so that
√

p log dN
N ≤

c′min
{

1√
L2
, 1
L1L3

, 1·diameter(B)
L1

}
, then

(1− εN )
σ2

N
−
√
E[Z4]

Np/2
≤ E[P (ŵERM

N )− P (w∗)]

≤ (1 + εN )
σ2

N
+

maxw∈S (P (w)− P (w∗))

Np
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where Z =
∥∥∥∇P̂N (w∗)

∥∥∥
(∇2P (w∗))−1

and so
√
E[Z4] ≤ L2

1. The lower bound above holds even if

S is not compact.

Remark 32 (Infinite dimensional setting) DefineM = ∇2ψ(w∗)−∇2P (w∗) and d̃ = Tr(EM2)
λmax(EM2)

,

which we assume to be finite. Here we can replace d with d̃ in the theorems. See Lemma 19.

Remark 33 (Compactness of S) The lower bound holds even if S is not compact. For the upper
bound, the proof technique uses the compactness of S to bound the contribution to the expected
regret due to a (low probability) failure event that the ERM may not lie in the ball B (or even the
interior of S). If P is regularized then this last term can be improved, as S need not be compact.

The basic idea of the proof follows that of Hsu et al. (2014), along with various arguments based
on Taylor’s theorem.
Proof Throughout the proof use ŵN to denote the ERM ŵERM

N . Define:

P̂N (w) =
1

N

N∑
i=1

ψi(w)

which is convex as it is the average of convex functions.
Throughout the proof we take t = cp log(dN) in the tail probability bounds in Appendix D (for

some universal constant c). This implies a probability of error less than 1
Np .

For all w ∈ B, the empirical function∇2P̂N (w) is L3-Lipschitz. In Lemma 19 in Appendix D,
we may take v ≤ 2

√
L2 (as all eigenvalues of of ∇2P (w∗) are one, under the choice of norm).

Using Lemma 19 in Appendix D, for w ∈ B, we have:

‖∇2P̂N (w)−∇2P (w∗)‖∗ ≤ ‖∇2P̂N (w)−∇2P̂N (w∗)‖∗ + ‖∇2P̂N (w∗)−∇2P (w∗)‖∗

≤ L3‖w − w∗‖∇2P (w∗) + c

√
L2p log dN

N
(34)

for some (other) universal constant c. Now we seek to ensure that P̂N (w) is a constant spectral
approximation to ∇2P (w∗). By choosing a sufficiently smaller ball B1 (choose B1 to have radius
of min{1/(10L3), diameter(B)}), the first term can be made small for w ∈ B1. Also, for suffi-
ciently large N , the second term can be made arbitrarily small (smaller than 1/10), which occurs if√

p log dN
N ≤ c′√

L2
. Hence, for such large enough N , we have for w ∈ B1:

1

2
∇2P̂N (w) � ∇2P (w∗) � 2∇2P̂N (w) (35)

Suppose N is at least this large from now on.
Now let us show that ŵN ∈ B1, with high probability, for N sufficiently large. By Taylor’s

theorem, for all w in the interior of S, there exists a w̃, between w∗ and w, such that:

P̂N (w) = P̂N (w∗) +∇P̂N (w∗)
>(w − w∗) +

1

2
(w − w∗)>∇2P̂N (w̃)(w − w∗)
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Hence, for all w ∈ B1 and if Equation 35 holds,

P̂N (w)− P̂N (w∗) = ∇P̂N (w∗)
>(w − w∗) +

1

2
‖w − w∗‖2∇2P (w̃)

≥ ∇P̂N (w∗)
>(w − w∗) +

1

4
‖w − w∗‖2∇2P (w∗)

≥ ‖w − w∗‖∇2P (w∗)

(
−‖∇P̂N (w∗)‖(∇2P (w∗))−1 +

1

4
‖w − w∗‖∇2P (w∗)

)
Observe that if the right hand side is positive for somew ∈ B1, thenw is not a local minimum. Also,
since ‖∇P̂N (w∗)‖ −→ 0, for a sufficiently small value of ‖∇P̂N (w∗)‖, all points on the boundary of
B1 will have values greater than that of w∗. Hence, we must have a local minimum of P̂N (w) that is
strictly inside B1 (for N large enough). We can ensure this local minimum condition is achieved by

choosing an N large enough so that
√

p logN
N ≤ c′min

{
1

L1L3
, diameter(B)

L1

}
, using Lemma 18 (and

our bound on the diameter of B1). By convexity, we have that this is the global minimum, ŵN , and
so ŵN ∈ B1 for N large enough. Assume now that N is this large from here on.

For the ERM, 0 = ∇P̂N (ŵN ). Again, by Taylor’s theorem if ŵN is an interior point, we have:

0 = ∇P̂N (ŵN ) = ∇P̂N (w∗) +∇2P̂N (w̃N )(ŵN − w∗)

for some w̃N between w∗ and ŵN . Now observe that w̃N is in B1 (since, for N large enough,
ŵN ∈ B1). Thus,

ŵN − w∗ = (∇2P̂N (w̃N ))−1∇P̂N (w∗) (36)

where the invertibility is guaranteed by Equation 35 and the positive definiteness of∇P (w∗). Using
Lemma 18 in Appendix D,

‖ŵN − w∗‖∇2P (w∗)

≤‖(∇2P (w∗))
1/2(∇2P̂N (w̃N ))−1(∇2P (w∗))

1/2‖‖∇P̂N (w∗)‖(∇2P (w∗))−1 ≤ cL1

√
p log dN

N
(37)

for some universal constant c.
Again, by Taylor’s theorem, we have that for some z̃N :

P (ŵN )− P (w∗) =
1

2
(ŵN − w∗)>∇2P (z̃N )(ŵN − w∗)

where z̃N is between w∗ and ŵN .
Observe that both w̃N and z̃N are between ŵN and w∗ , which implies w̃N → w∗ and z̃N → w∗

since ŵN → w∗. By Equations 34 and 37 (and the tail inequalities in Appendix D),

‖∇2P̂N (w̃N )−∇2P (w∗)‖∗ ≤ c
(
L1L3 +

√
L2

)√p log dN

N

‖∇2PN (z̃N )−∇2P (w∗)‖∗ ≤ L3‖z̃N − w∗‖∇2P (w∗) ≤ cL1L3

√
p log dN

N

Define:

εN = c
(
L1L3 +

√
L2

)√p log dN

N
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Here the universal constant c is chosen so that:

(1− εN )∇2P (w∗) � ∇2P (z̃N ) � (1 + εN )∇2P (w∗)

and
(1− εN )∇2P (w∗) � ∇2P̂N (w̃N ) � (1 + εN )∇2P (w∗)

(using standard matrix perturbation results).
Define:

M1,N = (∇2P (w∗))
1/2(∇2P̂N (w̃N ))−1(∇2P (w∗))

1/2

M2,N = (∇2P (w∗))
−1/2∇2P (z̃N )(∇2P (w∗))

−1/2

For a lower bound, observe that:

P (ŵN )− P (w∗) ≥
1

2
λmin(M2,N ) ‖ŵN − w∗‖2∇2P (w∗)

=
1

2
λmin(M2,N )

∥∥∥∇2P̂N (w̃N )(ŵN − w∗)
∥∥∥2

(∇2P̂N (w̃N ))−1∇2P (w∗)(∇2P̂N (w̃N ))−1

≥ 1

2
(λmin(M1,N ))2λmin(M2,N )

∥∥∥∇2P̂N (w̃N )(ŵN − w∗)
∥∥∥2

(∇2P (w∗))−1

=
1

2
(λmin(M1,N ))2λmin(M2,N )

∥∥∥∇P̂N (w∗)
∥∥∥2

(∇2P (w∗))−1

where we have used the ERM expression in Equation 36.
Let I(E) be the indicator that the desired previous events hold, which we can ensure with prob-

ability greater than 1− c
Np . We have:

E[P (ŵN )− P (w∗)]

≥ E[(P (ŵN )− P (w∗))I(E)]

≥ 1

2
E
[
(λmin(M1,N ))2λmin(M2,N )

∥∥∥∇P̂N (w∗)
∥∥∥2

(∇2P (w∗))−1
I(E)

]
≥ (1− c′εN )

1

2
E
[∥∥∥∇P̂N (w∗)

∥∥∥2

(∇2P (w∗))−1
I(E)

]
= (1− c′εN )

1

2
E
[∥∥∥∇P̂N (w∗)

∥∥∥2

(∇2P (w∗))−1
(1− I(not E))

]
= (1− c′εN )

(
σ2 − 1

2
E
[∥∥∥∇P̂N (w∗)

∥∥∥2

(∇2P (w∗))−1
I(not E)

])
≥ (1− c′εN )σ2 − E

[∥∥∥∇P̂N (w∗)
∥∥∥2

(∇2P (w∗))−1
I(not E)

]
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(for a universal constant c′). Now define the random variable Z =
∥∥∥∇P̂N (w∗)

∥∥∥
(∇2P (w∗))−1

. With

a failure event probability of less than 1
2Np , for any z0, we have:

E
[
Z2I(not E)

]
= E

[
Z2I(not E)I(Z2 ≤ z0)

]
+ E

[
Z2I(not E)I(Z2 ≥ z0)

]
≤ z0E [I(not E)] + E

[
Z2I(Z2 ≥ z0)

]
≤ z0

2Np
+ E

[
Z2Z

2

z0

]
≤ z0

2Np
+

E[Z4]

z0

≤
√
E[Z4]

Np/2

where we have chosen z0 = Np/2
√

E[Z4].
For an upper bound:

E[P (ŵN )− P (w∗)] = E[(P (ŵN )− P (w∗))I(E)] + E[(P (ŵN )− P (w∗))I(not E)] (38)

≤ E[(P (ŵN )− P (w∗))I(E)] +
maxw∈S (P (w)− P (w∗))

Np

since the probability of not E is less than 1
Np .

For an upper bound of the first term, observe that:

E[(P (ŵN )− P (w∗))I(E)]

≤ 1

2
E
[
(λmax(M1,N ))2λmax(M2,N )

∥∥∥∇P̂N (w∗)
∥∥∥2

∇2P (w∗)
I(E)

]
≤ (1 + c′εN )

1

2
E
[∥∥∥∇P̂N (w∗)

∥∥∥2

(∇2P (w∗))−1
I(E)

]
≤ (1 + c′εN )

1

2
E
[∥∥∥∇P̂N (w∗)

∥∥∥2

(∇2P (w∗))−1

]
= (1 + c′εN )

σ2

N

This completes the proof (using a different universal constant c′ in εN ).
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