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Abstract
This paper studies the problem of detecting the presence of a small dense community planted in
a large Erdős-Rényi random graph G(N, q), where the edge probability within the community
exceeds q by a constant factor. Assuming the hardness of the planted clique detection problem, we
show that the computational complexity of detecting the community exhibits the following phase
transition phenomenon: As the graph size N grows and the graph becomes sparser according to
q = N−α, there exists a critical value of α = 2

3 , below which there exists a computationally
intensive procedure that can detect far smaller communities than any computationally efficient
procedure, and above which a linear-time procedure is statistically optimal. The results also lead
to the average-case hardness results for recovering the dense community and approximating the
densest K-subgraph.

1. Introduction

Networks often exhibit community structure with many edges joining the vertices of the same com-
munity and relatively few edges joining vertices of different communities. Detecting communities
in networks has received a large amount of attention and has found numerous applications in social
and biological sciences, etc (see, e.g., the exposition Fortunato (2010) and the references therein).
While most previous work focuses on identifying the vertices in the communities, this paper studies
the more basic problem of detecting the presence of a small community in a large random graph,
proposed recently in Arias-Castro and Verzelen (2014). This problem has practical applications
including detecting new events and monitoring clusters, and is also of theoretical interest for under-
standing the statistical and algorithmic limits of community detection Chen and Xu (2014).

Inspired by the model in Arias-Castro and Verzelen (2014), we formulate this community de-
tection problem as a planted dense subgraph detection (PDS) problem. Specifically, let G(N, q)
denote the Erdős-Rényi random graph with N vertices, where each pair of vertices is connected
independently with probability q. Let G(N,K, p, q) denote the planted dense subgraph model with
N vertices where: (1) each vertex is included in the random set S independently with probability
K
N ; (2) for any two vertices, they are connected independently with probability p if both of them are
in S and with probability q otherwise, where p > q. In this case, the vertices in S form a commu-
nity with higher connectivity than elsewhere. The planted dense subgraph here has a random size
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with mean K, instead of a deterministic size K as assumed in Arias-Castro and Verzelen (2014);
Verzelen and Arias-Castro (2013).

Definition 1 The planted dense subgraph detection problem with parameters (N,K, p, q), hence-
forth denoted by PDS(N,K, p, q), refers to the problem of distinguishing hypotheses:

H0 : G ∼ G(N, q) , P0, H1 : G ∼ G(N,K, p, q) , P1.

The statistical difficulty of the problem depends on the parameters (N,K, p, q). Intuitively, if
the expected dense subgraph size K decreases, or if the edge probabilities p and q both decrease
by the same factor, or if p decreases for q fixed, the distributions under the null and alternative hy-
potheses become less distinguishable. Recent results in Arias-Castro and Verzelen (2014); Verzelen
and Arias-Castro (2013) obtained necessary and sufficient conditions for detecting planted dense
subgraphs under certain assumptions of the parameters. However, it remains unclear whether the
statistical fundamental limit can always be achieved by efficient procedures. In fact, it has been
shown in Arias-Castro and Verzelen (2014); Verzelen and Arias-Castro (2013) that many popular
low-complexity tests, such as total degree test, maximal degree test, dense subgraph test, as well
as tests based on certain convex relaxations, can be highly suboptimal. This observation prompts
us to investigate the computational limits for the PDS problem, i.e., what is the sharp condition on
(N,K, p, q) under which the problem admits a computationally efficient test with vanishing error
probability, and conversely, without which no algorithm can detect the planted dense subgraph reli-
ably in polynomial time. To this end, we focus on a particular case where the community is denser
by a constant factor than the rest of the graph, i.e., p = cq for some constant c > 1. Adopting
the standard reduction approach in complexity theory, we show that the PDS problem in some pa-
rameter regime is at least as hard as the planted clique problem in some parameter regime, which
is conjectured to be computationally intractable. Let G(n, k, γ) denote the planted clique model in
which we add edges to k vertices uniformly chosen from G(n, γ) to form a clique.

Definition 2 The PC detection problem with parameters (n, k, γ), denoted by PC(n, k, γ) hence-
forth, refers to the problem of distinguishing hypotheses:

HC
0 : G ∼ G(n, γ), HC

1 : G ∼ G(n, k, γ).

The problem of finding the planted clique has been extensively studied for γ = 1
2 and the state-

of-the-art polynomial-time algorithms Alon et al. (1998); Feige and Krauthgamer (2000); McSherry
(2001); Feige and Ron (2010); Dekel et al. (2010); Ames and Vavasis (2011); Deshpande and Mon-
tanari (2012) only work for k = Ω(

√
n). There is no known polynomial-time solver for the PC

problem for k = o(
√
n) and any constant γ > 0. It is conjectured Jerrum (1992); Hazan and

Krauthgamer (2011); Juels and Peinado (2000); Alon et al. (2007); Feldman et al. (2013) that the
PC problem cannot be solved in polynomial time for k = o(

√
n) with γ = 1

2 , which we refer to as
the PC Hypothesis.

Hypothesis 1 Fix some constant 0 < γ ≤ 1
2 . For any sequence of randomized polynomial-time

tests {ψn,kn} such that lim supn→∞
log kn
logn < 1/2,

lim inf
n→∞

PHC
0
{ψn,k(G) = 1}+ PHC

1
{ψn,k(G) = 0} ≥ 1.
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The PC Hypothesis with γ = 1
2 is similar to (Ma and Wu, 2015, Hypothesis 1) and (Berthet and

Rigollet, 2013, Hypothesis BPC). Our computational lower bounds require that the PC Hypothesis
holds for any positive constant γ. An even stronger assumption that PC Hypothesis holds for γ =
2− log0.99 n has been used in (Applebaum et al., 2010, Theorem 10.3) for public-key cryptography.
Furthermore, (Feldman et al., 2013, Corollary 5.8) shows that under a statistical query model, any

statistical algorithm requires at least nΩ( logn
log(1/γ)

) queries for detecting the planted bi-clique in an
Erdős-Rényi random bipartite graph with edge probability γ.

1.1. Main Results

We consider the PDS(N,K, p, q) problem in the following asymptotic regime:

p = cq = Θ(N−α), K = Θ(Nβ), N →∞, (1)

where c > 1 is a fixed constant, α ∈ [0, 2] governs the sparsity of the graph,1 and β ∈ [0, 1]
captures the size of the dense subgraph. Clearly the detection problem becomes more difficult if
either α increases or β decreases. Assuming the PC Hypothesis holds for any positive constant γ,
we show that the parameter space of (α, β) is partitioned into three regimes as depicted in Fig. 1:

• The Simple Regime: β > 1
2 + α

4 . The dense subgraph can be detected in linear time with
high probability by thresholding the total number of edges.

• The Hard Regime: α < β < 1
2 + α

4 . Reliable detection can be achieved by thresholding
the maximum number of edges among all subgraphs of size K; however, no polynomial-time
solver exists in this regime.

• The Impossible Regime: β < min{α, 1
2 + α

4 }. No test can detect the planted subgraph
regardless of the computational complexity.

The computational hardness of the PDS problem exhibits a phase transition at the critical value
α = 2/3: For moderately sparse graphs with α < 2/3, there exists a combinatorial algorithm
that can detect far smaller communities than any efficient procedures; For highly sparse graphs
with α > 2/3, optimal detection is achieved in linear time based on the total number of edges.
Equivalently, attaining the statistical detection limit is computationally tractable only in the large-
community regime (β > 2/3). Therefore, surprisingly, the linear-time test based on the total number
of edges is always statistically optimal among all computationally efficient procedures in the sense
that no polynomial-time algorithm can reliably detect the community when β < 1

2 + α
4 . It should

be noted that Fig. 1 only captures the leading polynomial term according to the parametrization (1);
at the boundary β = α/4 + 1/2, it is plausible that one needs to go beyond simple edge counting
in order to achieve reliable detection. This is analogous to the planted clique problem where the
maximal degree test succeeds if the clique size satisfies k = Ω(

√
n log n) Kučera (1995) and the

more sophisticated spectral method succeeds if k = Ω(
√
n) Alon et al. (1998).

The above hardness result should be contrasted with the recent study of community detection on
the stochastic block model, where the community size scales linearly with the network size. When
the edge density scales as Θ( 1

N ) Mossel et al. (2012, 2013); Massoulié (2013) (resp. Θ( logN
N )

1. The case of α > 2 is not interesting since detection is impossible even if the planted subgraph is the entire graph
(K = N ).
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Figure 1: The simple (green), hard (red), impossible (gray) regimes for detecting the planted dense
subgraph.

Abbe et al. (2014); Mossel et al. (2014); Hajek et al. (2014)), the statistically optimal threshold
for partial (resp. exact) recovery can be attained in polynomial time up to the sharp constants. In
comparison, this paper focuses on the regime when the community size grows sublinearly as Nβ

and the edge density decays more slowly as N−α. It turns out that in this case even achieving the
optimal exponent is computationally as demanding as solving the planted clique problem.

Our computational lower bound for the PDS problem also implies the average-case hardness
of approximating the planted dense subgraph or the densest K-subgraph of the random graph en-
semble G(N,K, p, q), complementing the worst-case inapproximability result in Alon et al. (2011),
which is based on the planted clique hardness as well. In particular, we show that no polynomial-
time algorithm can approximate the planted dense subgraph or the densest K-subgraph within any
constant factor in the regime of α < β < 1

2 + α
4 , which provides a partial answer to the conjecture

made in (Chen and Xu, 2014, Conjecture 2.6) and the open problem raised in (Alon et al., 2011,
Section 4) (see Section 4.1). Our approach and results can be extended to the bipartite graph case
(see Section 4.3) and shed light on the computational limits of the PDS problem with a fixed planted
dense subgraph size studied in Arias-Castro and Verzelen (2014); Verzelen and Arias-Castro (2013)
(see Section 4.2).

1.2. Connections to the Literature

This work is inspired by an emerging line of research (see, e.g., Kolar et al. (2011); Balakrishnan
et al. (2011); Berthet and Rigollet (2013); Chandrasekaran and Jordan (2013); Ma and Wu (2015);
Chen and Xu (2014); Xu et al. (2014)) which examines high-dimensional inference problems from
both the statistical and computational perspectives. Our computational lower bounds follow from a
randomized polynomial-time reduction scheme which approximately reduces the PC problem to the
PDS problem of appropriately chosen parameters. Below we discuss the connections to previous
results and highlight the main technical contributions of this paper.

PC Hypothesis Various hardness results in the theoretical computer science literature have been
established based on the PC Hypothesis with γ = 1

2 , e.g. cryptographic applications Juels and
Peinado (2000), approximating Nash equilibrium Hazan and Krauthgamer (2011), testing k-wise
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independence Alon et al. (2007), etc. More recently, the PC Hypothesis with γ = 1
2 has been used

to investigate the penalty incurred by complexity constraints on certain high-dimensional statistical
inference problems, such as detecting sparse principal components Berthet and Rigollet (2013) and
noisy biclustering (submatrix detection) Ma and Wu (2015). Compared with most previous works,
our computational lower bounds rely on the stronger assumption that the PC Hypothesis holds for
any positive constant γ. An even stronger assumption that PC Hypothesis holds for γ = 2− log0.99 n

has been used in Applebaum et al. (2010) for public-key cryptography. It is an interesting open
problem to prove that PC Hypothesis for a fixed γ ∈ (0, 1

2) follows from that for γ = 1
2 .

Reduction from the PC Problem Most previous work Hazan and Krauthgamer (2011); Alon
et al. (2007, 2011); Applebaum et al. (2010) in the theoretical computer science literature uses
the reduction from the PC problem to generate computationally hard instances of problems and
establish worst-case hardness results; the underlying distributions of the instances could be arbitrary.
The idea of proving hardness of a hypothesis testing problem by means of approximate reduction
from the planted clique problem such that the reduced instance is close to the target hypothesis in
total variation originates from the seminal work by Berthet and Rigollet (2013) and the subsequent
paper by Ma and Wu (2015). The main distinction between these results and the present paper
is that Berthet and Rigollet (2013) studied a composite-versus-composite testing problem and Ma
and Wu (2015) studied a simple-versus-composite testing problem, both in the minimax sense, as
opposed to the simple-versus-simple hypothesis considered in this paper. For composite hypothesis,
a reduction scheme works as long as the distribution of the reduced instance is close to some mixture
under the hypothesis. This freedom is absent in constructing reduction for simple hypothesis, which
renders the reduction scheme as well as the corresponding calculation of total variation in the present
paper considerably more difficult. For example, Ma and Wu (2015) studied testing a matrix θ is
either zero or block-sparse in Gaussian noise. Their reduction maps the alternative distribution of
the planted clique to a Gaussian mixtures with respect to some prior over block-sparse matrices.
However, their hardness result does not carry over if the prior is predetermined, say, uniform. In
contrast, for community detection problems, the goal is to establish the hardness of testing two
simple hypothesis, namely, G(N, q) versus G(N,K, p, q). Thus the underlying distributions of the
problem instances generated from the reduction must be close to the desired distributions in total
variation under both the null and alternative hypotheses. To this end, we start with a small dense
graph generated from G(n, γ) under H0 and G(n, k, γ) under H1, and arrive at a larger sparse
graph whose distribution is exactly G(N, q) under H0 and approximately equal to G(N,K, p, q)
under H1. Notice that simply sparsifying the PC problem does not capture the desired tradeoff
between the graph sparsity and the cluster size. Our reduction scheme differs from those used in
Berthet and Rigollet (2013); Ma and Wu (2015) which start with a large dense graph. Similar to
ours, the reduction scheme in Alon et al. (2011) also enlarges and sparsifies the graph by taking its
subset power; but the distributions of the resulting random graphs are rather complicated and not
close to the Erdős-Rényi type. The techniques of bounding the total variation distance also differs
substantially from those used in the previous work Berthet and Rigollet (2013); Ma and Wu (2015).
Notably, the use of the theory of associated random variables Dubhashi and Ranjan (1998) is a
major new ingredient in the proof.

Inapproximability of the DKS Problem The densest K-subgraph (DKS) problem refers to find-
ing the subgraph of K vertices with the maximal number of edges. In view of the NP-hardness of
the DKS problem which follows from the NP-hardness of MAXCLIQUE, it is of interest to con-
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sider an η-factor approximation algorithm, which outputs a subgraph with K vertices containing at
least a 1

η -fraction of the number of edges in the densest K-subgraph. Proving the NP-hardness of
(1 + ε)-approximation for DKS for any fixed ε > 0 is a longstanding open problem. See Alon et al.
(2011) for a comprehensive discussion. Assuming the PC Hypothesis holds with γ = 1

2 , Alon et al.
(2011) shows that the DKS problem is hard to approximate within any constant factor even if the
densestK-subgraph is a clique of sizeK = Nβ for any β < 1, whereN denotes the total number of
vertices. This worst-case inapproximability result is in stark contrast to the average-case behavior in
the planted dense subgraph model G(N,K, p, q) under the scaling (1), where it is known Chen and
Xu (2014); Ames (2013) that the planted dense subgraph can be exactly recovered in polynomial
time if β > 1

2 + α
2 (see the simple region in Fig. 2 below), implying that the densest K-subgraph

can be approximated within a factor of 1 + ε in polynomial time for any ε > 0. On the other hand,
our computational lower bound for PDS(N,K, p, q) shows that any constant-factor approximation
of the densest K-subgraph has high average-case hardness if α < β < 1

2 + α
4 (see Section 4.1).

Variants of PDS Model Three versions of the PDS model were considered in (Bhaskara et al.,
2010, Section 3). Under all three the graph under the null hypothesis is the Erdős-Rényi graph.
The versions of the alternative hypothesis, in order of increasing difficulty of detection, are: (1)
The random planted model, such that the graph under the alternative hypothesis is obtained by
generating an Erdős-Rényi graph, selecting K nodes arbitrarily, and then resampling the edges
among the K nodes with a higher probability to form a denser Erdős-Rényi subgraph. This is
somewhat more difficult to detect than the model of Arias-Castro and Verzelen (2014); Verzelen
and Arias-Castro (2013), for which the choice of which K nodes are in the planted dense subgraph
is made before any edges of the graph are independently, randomly generated. (2) The dense in
random model, such that both the nodes and edges of the planted dense K-subgraph are arbitrary;
(3) The dense versus random model, such that the entire graph under the alternative hypothesis
could be an arbitrary graph containing a dense K-subgraph. Our PDS model is closely related to
the first of these three versions, the key difference being that for our model the size of the planted
dense subgraph is binomially distributed with mean K (see Section 4.2). Thus, our hardness result
is for the easiest type of detection problem. A bipartite graph variant of the PDS model is used in
(Arora et al., 2010, p. 10) for financial applications where the total number of edges is the same
under both the null and alternative hypothesis. A hypergraph variant of the PDS problem is used in
Applebaum et al. (2010) for cryptographic applications.

1.3. Notations

For any set S, let |S| denote its cardinality. Let sn1 = {s1, . . . , sn}. For any positive integer N , let
[N ] = {1, . . . , N}. For a, b ∈ R, let a ∧ b = min{a, b} and a ∨ b = max{a, b}. We use standard
big O notations, e.g., for any sequences {an} and {bn}, an = Θ(bn) if there is an absolute constant
C > 0 such that 1/C ≤ an/bn ≤ C. Let Bern(p) denote the Bernoulli distribution with mean p and
Binom(N, p) denote the binomial distribution with N trials and success probability p. For random
variables X,Y , we write X ⊥⊥ Y if X is independent with Y . For probability measures P and Q,
let dTV(P,Q) = 1

2

∫
|dP− dQ| denote the total variation distance and χ2(P‖Q) =

∫ (dP−dQ)2

dQ the
χ2-divergence. The distribution of a random variable X is denoted by PX . We write X ∼ P if
PX = P. All logarithms are natural unless the base is explicitly specified.
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2. Statistical Limits

This section determines the statistical limit for the PDS(N,K, p, q) problem with p = cq for a fixed
constant c > 1. For a given pair (N,K), one can ask the question: What is the smallest density
q such that it is possible to reliably detect the planted dense subgraph? When the subgraph size
K is deterministic, this question has been thoroughly investigated by Arias-Castro and Verzelen
Arias-Castro and Verzelen (2014); Verzelen and Arias-Castro (2013) for general (N,K, p, q) and
the statistical limit with sharp constants has obtained in certain asymptotic regime. Their analysis
treats the dense regime log(1 ∨ (Kq)−1) = o(log N

K ) Arias-Castro and Verzelen (2014) and sparse
regime log N

K = O(log(1 ∨ (Kq)−1)) Verzelen and Arias-Castro (2013) separately. Here as we
focus on the special case of p = cq and are only interested in characterizations within absolute
constants, we provide a simple non-asymptotic analysis which treats the dense and sparse regimes
in a unified manner. Our results demonstrate that the PDS problem in Definition 1 has the same
statistical detection limit as the PDS problem with a deterministic size K studied in Arias-Castro
and Verzelen (2014); Verzelen and Arias-Castro (2013).

2.1. Lower Bound

By the definition of the total variation distance, the optimal testing error probability is determined by
the total variation distance between the distributions under the null and the alternative hypotheses:

min
φ:{0,1}N(N−1)/2→{0,1}

(P0{φ(G) = 1}+ P1{φ(G) = 0}) = 1− dTV(P0,P1).

The following result (proved in Section A.1) shows that if q = O( 1
K log eN

K ∧
N2

K4 ), then there exists
no test which can detect the planted subgraph reliably.

Proposition 3 Suppose p = cq for some constant c > 1. There exists a function h : R+ → R+

satisfying h(0+) = 0 such that the following holds: For any 1 ≤ K ≤ N , C > 0 and q ≤
C( 1

K log eN
K ∧

N2

K4 ),

dTV(P0,P1) ≤ h(Cc2) + exp(−K/8). (2)

2.2. Upper Bound

Let A denote the adjacency matrix of the graph G. The detection limit can be achieved by the
linear test statistic and scan test statistic proposed in Arias-Castro and Verzelen (2014); Verzelen
and Arias-Castro (2013):

Tlin ,
∑
i<j

Aij , Tscan , max
S′:|S′|=K

∑
i,j∈S′:i<j

Aij , (3)

which correspond to the total number of edges in the whole graph and the densest K-subgraph,
respectively. Interestingly, the exact counterparts of these tests have been proposed and shown to
be minimax optimal for detecting submatrices in Gaussian noise Butucea and Ingster (2013); Kolar
et al. (2011); Ma and Wu (2015). The following lemma bounds the error probabilities of the linear
and scan test.
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Proposition 4 Suppose p = cq for a constant c > 1. For the linear test statistic, set τ1 =
(
N
2

)
q +(

K
2

)
(p − q)/2. For the scan test statistic, set τ2 =

(
K
2

)
(p + q)/2. Then there exists a constant C

which only depends on c such that

P0[Tlin > τ1] + P1[Tlin ≤ τ1] ≤ 2 exp

(
−CK

4q

N2

)
+ exp

(
− K

200

)
P0[Tscan > τ2] + P1[Tscan ≤ τ2] ≤ 2 exp

(
K log

Ne

K
− CK2q

)
+ exp

(
− K

200

)
.

To illustrate the implications of the above lower and upper bounds, consider the PDS(N,K, p, q)
problem with the parametrization p = cq, q = N−α and K = Nβ for α > 0 and β ∈ (0, 1) and
c > 1. In this asymptotic regime, the fundamental detection limit is characterized by the following
function

β∗(α) , α ∧
(

1

2
+
α

4

)
, (4)

which gives the statistical boundary in Fig. 1. Indeed, if β < β∗(α), as a consequence of Proposi-
tion 3, P0{φ(G) = 1}+ P1{φ(G) = 0} → 1 for any sequence of tests. Conversely, if β > β∗(α),
then Proposition 4 implies that the test φ(G) = 1{Tlin>τ1 or Tscan>τ2} achieves vanishing Type-I+II
error probabilities. More precisely, the linear test succeeds in the regime β > 1

2 + α
4 , while the scan

test succeeds in the regime β > α.
Note that Tlin can be computed in linear time. However, computing Tscan amounts to enumer-

ating all subsets of [N ] of cardinality K, which can be computationally intensive. Therefore it is
unclear whether there exists a polynomial-time solver in the regime α < β < 1

2 + α
4 . Assuming the

PC Hypothesis, this question is resolved in the negative in the next section.

3. Computational Lower Bounds

In this section, we establish the computational lower bounds for the PDS problem assuming the
intractability of the planted clique problem. We show that the PDS problem can be approximately
reduced from the PC problem of appropriately chosen parameters in randomized polynomial time.
Based on this reduction scheme, we establish a formal connection between the PC problem and the
PDS problem in Proposition 5, and the desired computational lower bounds follow from Theorem 7.

We aim to reduce the PC(n, k, γ) problem to the PDS(N,K, cq, q) problem. For simplicity,
we focus on the case of c = 2; the general case follows similarly with a change in some numerical
constants that come up in the proof. We are given an adjacency matrix A ∈ {0, 1}n×n, or equiva-
lently, a graph G, and with the help of additional randomness, will map it to an adjacency matrix
Ã ∈ {0, 1}N×N , or equivalently, a graph G̃ such that the hypothesis HC

0 (resp. HC
1 ) in Defini-

tion 2 is mapped to H0 exactly (resp. H1 approximately) in Definition 1. In other words, if A is
drawn from G(n, γ), then Ã is distributed according to P0; If A is drawn from G(n, k, 1, γ), then
the distribution of Ã is close in total variation to P1.

Our reduction scheme works as follows. Each vertex in G̃ is randomly assigned a parent vertex
in G, with the choice of parent being made independently for different vertices in G̃, and uniformly
over the set [n] of vertices in G. Let Vs denote the set of vertices in G̃ with parent s ∈ [n] and let
`s = |Vs|. Then the set of children nodes {Vs : s ∈ [n]} form a random partition of [N ]. For any
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1 ≤ s ≤ t ≤ n, the number of edges, E(Vs, Vt), from vertices in Vs to vertices in Vt in G̃ will be
selected randomly with a conditional probability distribution specified below. Given E(Vs, Vt), the
particular set of edges with cardinality E(Vs, Vt) is chosen uniformly at random.

It remains to specify, for 1 ≤ s ≤ t ≤ n, the conditional distribution of E(s, t) given ls, lt,
and As,t. Ideally, conditioned on `s and `t, we want to construct a Markov kernel from As,t to
E(s, t) which maps Bern(1) to the desired edge distribution Binom(`s`t, p), and Bern(1/2) to
Binom(`s`t, q), depending on whether both s and t are in the clique or not, respectively. Such
a kernel, unfortunately, provably does not exist. Nonetheless, this objective can be accomplished
approximately in terms of the total variation. For s = t ∈ [n], let E(Vs, Vt) ∼ Binom(

(
`t
2

)
, q). For

1 ≤ s < t ≤ n, denote P`s`t , Binom(`s`t, p) and Q`s`t , Binom(`s`t, q). Fix 0 < γ ≤ 1
2 and

put m0 , blog2(1/γ)c. Define

P ′`s`t(m) =


P`s`t(m) + a`s`t for m = 0,

P`s`t(m) for 1 ≤ m ≤ m0,
1
γQ`s`t(m) for m0 < m ≤ `s`t.

where a`s`t =
∑

m0<m≤`s`t [P`s`t(m) − 1
γQ`s`t(m)]. Let Q′`s`t = 1

1−γ (Q`s`t − γP ′`s`t). As we
show later, Q′`s`t and P ′`s`t are well-defined probability distributions as long as `s, `t ≤ 2` and
16q`2 ≤ 1, where ` = N/n. Then, for 1 ≤ s < t ≤ n, let the conditional distribution of E(Vs, Vt)
given `s, `t, and As,t be given by

E(Vs, Vt) ∼


P ′`s`t if Ast = 1, `s, `t ≤ 2`

Q′`s`t if Ast = 0, `s, `t ≤ 2`

Q`s`t if max{`s, `t} > 2`.

(5)

The next proposition (proved in Section A.3) shows that the randomized reduction defined
above maps G(n, γ) into G(N, q) under the null hypothesis and G(n, k, γ) approximately into
G(N,K, p, q) under the alternative hypothesis, respectively. The intuition behind the reduction
scheme is as follows: By construction, (1− γ)Q′`s`t + γP ′`s`t = Q`s`t = Binom(`s`t, q) and there-
fore the null distribution of the PC problem is exactly matched to that of the PDS problem, i.e.,
P
G̃|HC

0
= P0. The core of the proof lies in establishing that the alternative distributions are approx-

imately matched. The key observation is that P ′`s`t is close to P`s`t = Binom(`s`t, p) and thus for
nodes with distinct parents s 6= t in the planted clique, the number of edges E(Vs, Vt) is approx-
imately distributed as the desired Binom(`s`t, p); for nodes with the same parent s in the planted
clique, even though E(Vs, Vs) is distributed as Binom(

(
`s
2

)
, q) which is not sufficiently close to the

desired Binom(
(
`s
2

)
, p), after averaging over the random partition {Vs}, the total variation distance

becomes negligible.

Proposition 5 Let `, n ∈ N, k ∈ [n] and γ ∈ (0, 1
2 ]. Let N = `n, K = k`, p = 2q and

m0 = blog2(1/γ)c. Assume that 16q`2 ≤ 1 and k ≥ 6e`. If G ∼ G(n, γ), then G̃ ∼ G(N, q), i.e.,
P
G̃|HC

0
= P0. If G ∼ G(n, k, 1, γ), then

dTV

(
P
G̃|HC

1
,P1

)
≤ e−

K
12 + 1.5ke−

`
18 + 2k2(8q`2)m0+1 + 0.5

√
e72e2q`2 − 1 +

√
0.5ke−

`
36 .

(6)

9
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An immediate consequence of Proposition 5 is the following result (proved in Section A.4)
showing that any PDS solver induces a solver for a corresponding instance of the PC problem.

Proposition 6 Let the assumption of Proposition 5 hold. Suppose φ : {0, 1}(
N
2 ) → {0, 1} is a

test for PDS(N,K, 2q, q) with Type-I+II error probability η. Then G 7→ φ(G̃) is a test for the
PC(n, k, γ) whose Type-I+II error probability is upper bounded by η + ξ with ξ given by the right-
hand side of (6).

The following theorem establishes the computational limit of the PDS problem as shown in
Fig. 1.

Theorem 7 Assume Hypothesis 1 holds for a fixed 0 < γ ≤ 1/2. Let m0 = blog2(1/γ)c. Let
α > 0 and 0 < β < 1 be such that

α < β <
1

2
+

m0α+ 4

4m0α+ 4
α− 2

m0α
. (7)

Then there exists a sequence {(N`,K`, q`)}`∈N satisfying lim`→∞
log(1/q`)

logN`
= α and lim`→∞

logK`
logN`

=

β such that for any sequence of randomized polynomial-time tests φ` : {0, 1}(
N`
2 ) → {0, 1} for the

PDS(N`,K`, 2q`, q`) problem, the Type-I+II error probability is lower bounded by

lim inf
`→∞

P0{φ`(G′) = 1}+ P1{φ`(G′) = 0} ≥ 1,

where G′ ∼ G(N, q) under H0 and G′ ∼ G(N,K, p, q) under H1. Consequently, if Hypothesis 1
holds for all 0 < γ ≤ 1/2, then the above holds for all α > 0 and 0 < β < 1 such that

α < β < β](α) ,
1

2
+
α

4
. (8)

Consider the asymptotic regime given by (1). The function β] in (8) gives the computational barrier
for the PDS(N,K, p, q) problem (see Fig. 1). Compared to the statistical limit β∗ given in (4), we
note that β∗(α) < β](α) if and only if α < 2

3 , in which case computational efficiency incurs a
significant penalty on the detection performance. Interestingly, this phenomenon is in line with the
observation reported in Ma and Wu (2015) for the noisy submatrix detection problem, where the
statistical limit can be attained if and only if the submatrix size exceeds the (2/3)th power of the
matrix size.

4. Extensions and Open Problems

In this section, we discuss the extension of our results to: (1) the planted dense subgraph recovery
and DKS problem; (2) the PDS problem where the planted dense subgraph has a deterministic size.
(3) the bipartite PDS problem.

10
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4.1. Recovering Planted Dense Subgraphs and DKS Problem

Closely related to the PDS detection problem is the recovery problem, where given a graph gener-
ated from G(N,K, p, q), the task is to recover the planted dense subgraph. As a consequence of our
computational lower bound for detection, we discuss implications on the tractability of the recovery
problem as well as the closely related DKS problem as illustrated in Fig. 2.

Consider the asymptotic regime of (1), where it has been shown Chen and Xu (2014); Ames
(2013) that recovery is possible if and only if β > α and α < 1. Note that in this case the
recovery problem is harder than finding the DKS, because if the planted dense subgraph is recovered
with high probability, we can obtain a (1 + ε)-approximation of the densest K-subgraph for any
ε > 0 in polynomial time.2 Results in Chen and Xu (2014); Ames (2013) imply that the planted
dense subgraph can be recovered in polynomial time in the simple (green) regime of Fig. 2 where
β > 1

2 + α
2 . Consequently (1+ε)-approximation of the DKS can be found efficiently in this regime.

Conversely, given a polynomial time η-factor approximation algorithm to the DKS problem
with the output Ŝ, we can distinguish H0 : G ∼ G(N, q) versus H1 : G ∼ G(N,K, p = cq, q) if
β > α and c > η in polynomial time as follows: Fix any positive ε > 0 such that (1−ε)c > (1+ε)η.
Declare H1 if the density of Ŝ is larger than (1 + ε)q and H0 otherwise. Assuming β > α, one can
show that the density of Ŝ is at most (1 + ε)q under H0 and at least (1 − ε)p/η under H1. Hence,
our computational lower bounds for the PC problem imply that the densest K-subgraph as well as
the planted dense subgraph is hard to approximate to any constant factor if α < β < β](α) (the red
regime in Fig. 1). Whether DKS is hard to approximate with any constant factor in the blue regime
of β](α) ∨ α ≤ β ≤ 1

2 + α
2 is left as an interesting open problem.

1

1

p = cq = Θ(n−α)

K = Θ(nβ)

1/2

impossible

simple

1/2

hard

open

O α

β

Figure 2: The simple (green), hard (red), impossible (gray) regimes for recovering planted dense
subgraphs, and the hardness in the blue regime remains open.

4.2. PDS Problem with a Deterministic Size

In the PDS problem with a deterministic size K, the null distribution corresponds to the Erdős-
Rényi graph G(N, q); under the alternative, we choose K vertices uniformly at random to plant
a dense subgraph with edge probability p. Although the subgraph size under our PDS model is
binomially distributed, which, in the asymptotic regime (1), is sharply concentrated near its mean

2. If the planted dense subgraph size is smaller than K, output any K-subgraph containing it; otherwise output any of
its K-subgraph.

11
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K, it is not entirely clear whether these two models are equivalent. Although our reduction scheme
in Section 3 extends to the fixed-size model with V n

1 being the random `-partition of [N ] with
|Vt| = ` for all t ∈ [n], so far we have not been able to prove the alternative distributions are
approximately matched: The main technical hurdle lies in controlling the total variation between
the distribution of {E(Vt, Vt), t ∈ [n]} after averaging over the random `-partition {Vt} and the
desired distribution.

Nonetheless, our result on the hardness of solving the PDS problem extends to the case of
deterministic dense subgraph size if the tests are required to be monotone. (A test φ is monotone
if φ(G) = 1 implies φ(G′) = 1 whenever G′ is obtained by adding edges to G.) It is intuitive to
assume that any reasonable test should be more likely to declare the existence of the planted dense
subgraph if the graph contains more edges, such as the linear and scan test defined in (3). Moreover,
by the monotonicity of the likelihood ratio, the statistically optimal test is also monotone. If we
restrict our scope to monotone tests, then our computational lower bound implies that for the PDS
problem with a deterministic size, there is no efficiently computable monotone test in the hard
regime of α < β < β] in Fig. 1. In fact, for a given monotone polynomial-time solver φ for the
PDS problem with size K, the PDS(N, 2K, p, q) can be solved by φ in polynomial time because
with high probability the planted dense subgraph is of size at least K. We conjecture that the
computational limit of PDS of fixed size is identical to that of the random size, which can indeed by
established in the bipartite case as discussed in the next subsection. Also, we can show that the PDS
recovery problem with a deterministic planted dense subgraph sizeK is computationally intractable
if α < β < β](α) (the red regime in Fig. 1). See Appendix B for a formal statement and the proof.

4.3. Bipartite PDS Problem

Let Gb(N, q) denote the bipartite Erdős-Rényi random graph model with N top vertices and N
bottom vertices. Let Gb(N,K, p, q) denote the bipartite variant of the planted densest subgraph
model in Definition 1 with a planted dense subgraph of K top vertices and K bottom vertices on
average. The bipartite PDS problem with parameters (N,K, p, q), denoted by BPDS(N,K, p, q),
refers to the problem of testing H0 : G ∼ Gb(N, q) versus H1 : G ∼ Gb(N,K, p, q).

Consider the asymptotic regime of (1). Following the arguments in Section 2, one can show
that the statistical limit is given by β∗ defined in (4). To derive computational lower bounds, we use
the reduction from the bipartite PC problem with parameters (n, k, γ), denoted by BPC(n, k, γ),
which tests H0 : G ∼ Gb(n, γ) versus H1 : G ∼ Gb(n, k, γ), where Gb(n, k, γ) is the bipartite
variant of the planted clique model with a planted bi-clique of size k × k. The BPC Hypothe-
sis refers to the assumption that for some constant 0 < γ ≤ 1/2, no sequence of randomized
polynomial-time tests for BPC succeeds if lim supn→∞

log kn
logn < 1/2. The reduction scheme from

BPC(n, k, γ) to BPDS(N,K, 2q, q) is analogue to the scheme used in non-bipartite case. The proof
of computational lower bounds in bipartite graph is much simpler. In particular, under the null hy-
pothesis, G ∼ Gb(n, γ) and one can verify that G̃ ∼ Gb(N, q). Under the alternative hypothesis,
G ∼ Gb(n, k, γ). Lemma 8 directly implies that the total variation distance between the distribu-
tion of G̃ and Gb(N,K, 2q, q) is on the order of k2(q`2)(m0+1). Then, following the arguments in
Proposition 6 and Theorem 7, we conclude that if the BPC Hypothesis holds for any positive γ, then
no efficiently computable test can solve BPDS(N,K, 2q, q) in the regime α < β < β](α) given by
(8). The same conclusion also carries over to the bipartite PDS problem with a deterministic size
K and the statistical and computational limits shown in Fig. 1 apply verbatim.

12
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Appendix A. Proofs

A.1. Proof of Proposition 3

Proof Let PA||S| denote the distribution of A conditional on |S| under the alternative hypothesis.
Since |S| ∼ Binom(N,K/N), by the Chernoff bound, P[|S| > 2K] ≤ exp(−K/8). Therefore,

dTV(P0,P1) = dTV(P0,E|S|[PA||S|])
≤ E|S|

[
dTV(P0,PA||S|)

]
≤ exp(−K/8) +

∑
K′≤2K

dTV(P0,PA||S|=K′)P[|S| = K ′], (9)

where the first inequality follows from the convexity of (P,Q) 7→ dTV(P,Q), Next we condition
on |S| = K ′ for a fixed K ′ ≤ 2K. Then S is uniformly distributed over all subsets of size K ′. Let
S̃ be an independent copy of S. Then |S ∩ S̃| ∼ Hypergeometric(N,K ′,K ′). By the definition of
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the χ2-divergence and Fubini’s theorem,

χ2(PA||S|=K′‖P0) =

∫ ES [PA|S ]E
S̃

[P
A|S̃ ]

P0
− 1

= E
S⊥⊥S̃

[∫ PA|SPA|S̃

P0

]
− 1

= E
S⊥⊥S̃

(1 +
(p− q)2

q(1− q)

)(|S∩S̃|2 )
− 1

≤ E
S⊥⊥S̃

[
exp

(
(c− 1)2q

1− q

(
|S ∩ S̃|

2

))]
− 1

(a)

≤ E
[
exp

(
(c− 1)cq|S ∩ S̃|2

)]
− 1

(b)

≤ τ(Cc2)− 1,

where (a) is due to the fact that q = p
c ≤

1
c ; (b) follows from Lemma 14 in Appendix C with an

appropriate choice of function τ : R+ → R+ satisfying τ(0+) = 1. Therefore, we get that

2d2
TV(P0,PA||S|=K′) ≤ log(χ2(PA||S|=K′‖P0) + 1) ≤ log(τ(Cc2)), (10)

Combining (9) and (10) yields (2) with h , log ◦τ .

A.2. Proof of Proposition 4

Proof Let C > 0 denote a constant whose value only depends on c and may change line by line.
Under P0, Tlin ∼ Binom

((
N
2

)
, q
)

. By the Bernstein inequality,

P0[Tlin > τ1] ≤ exp

(
−

(
K
2

)2
(p− q)2/4

2
(
N
2

)
q +

(
K
2

)
(p− q)/3

)
≤ exp

(
−CK

4q

N2

)
.

Under P1, Since |S| ∼ Binom(N,K/N), by the Chernoff bound, P1[|S| < 0.9K] ≤ exp(−K/200).
Conditional on |S| = K ′ for some K ′ ≥ 0.9K, then Tlin is distributed as an independent sum of
Binom

((
K′

2

)
, p
)

and Binom
((

N
2

)
−
(
K′

2

)
, q
)

. By the multiplicative Chernoff bound (see, e.g.,
(Mitzenmacher and Upfal, 2005, Theorem 4.5)),

P1[Tlin ≤ τ1] ≤ P1[|S| < 0.9K] + exp

−
(

2
(
K′

2

)
−
(
K
2

))2
(p− q)2

8
((

N
2

)
q +

(
K′

2

)
(p− q)

)


≤ exp

(
− K

200

)
+ exp

(
−CK

4q

N2

)
.
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For the scan test statistic, under the null hypothesis, for any fixed subset S of size K,
∑

i,j∈S Aij ∼
Binom

((
K
2

)
, q
)

. By the union bound and the Bernstein inequality,

P0[Tscan > τ2] ≤
(
N

K

)
P0[

∑
1≤i<j≤K

Aij > τ2] ≤
(
Ne

K

)K
exp

(
−

(
K
2

)2
(p− q)2/4

2
(
K
2

)
q +

(
K
2

)
(p− q)/3

)

≤ exp

(
K log

Ne

K
− CK2q

)
.

Under the alternative hypothesis, conditional on |S| = K ′ for some K ′ ≥ 0.9K,
∑

i,j∈S Aij ∼
Binom

((
K′

2

)
, p
)

and thus Tscan is stochastically dominated by Binom
((

K′∧K
2

)
, p
)

. By the mul-
tiplicative Chernoff bound,

P1[Tscan ≤ τ2] ≤ P1[|S| < 0.9K] + exp

−
(

2
(
K′∧K

2

)
−
(
K
2

))2
(p− q)2

8
(
K′∧K

2

)
p


≤ exp

(
− K

200

)
+ exp

(
−CK2q

)
.

A.3. Proof of Proposition 5

We first introduce several key auxiliary results used in the proof. The following lemma ensures that
P ′`s`t and Q′`s`t are well-defined under suitable conditions and that P ′`s`t and P`s,`t are close in total
variation.

Lemma 8 Suppose that p = 2q and 16q`2 ≤ 1. Fix {`t} such that `t ≤ 2` for all t ∈ [k]. Then for
all 1 ≤ s < t ≤ k, P ′`s`t and Q′`s`t are probability measures and

dTV(P ′`s`t , P`s`t) ≤ 4(8q`2)(m0+1).

Proof Fix an (s, t) such that 1 ≤ s < t ≤ k. We first show that P ′`s`t and Q′`s`t are well-defined.
By definition,

∑`s`t
m=0 P

′
`s`t

(m) =
∑`s`t

m=0Q
′
`s`t

(m) = 1 and it suffices to show positivity, i.e.,

P`s`t(0) + a`s`t ≥ 0, (11)

Q`s`t(m) ≥ γP ′`s`t(m), ∀0 ≤ m ≤ m0. (12)

Recall that P`s`t ∼ Binom(`s`t, p) and Q`s`t ∼ Binom(`s`t, q). Therefore,

Q`s`t(m) =

(
`s`t
m

)
qm(1− q)`s`t−m, P`s`t(m) =

(
`s`t
m

)
pm(1− p)`s`t−m, ∀0 ≤ m ≤ `s`t,

It follows that

1

γ
Q`s`t(m)− P`s`t(m) =

1

γ

(
`s`t
m

)
qm(1− 2q)`s`t−m

[(
1− q
1− 2q

)`s`t−m
− 2mγ

]
.
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Recall that m0 = blog2(1/γ)c and thus Q`s`t(m) ≥ γP`s`t(m) for all m ≤ m0. Furthermore,

Q`s`t(0) = (1− q)`s`t ≥ (1− q`s`t) ≥ 1− 4q`2 ≥ 3

4
≥ γ ≥ γP ′`s`t(0),

and thus (12) holds. Recall that

a`s`t =
∑

m0<m≤`s`t

(
P`s`t(m)− 1

γ
Q`s`t(m)

)

Since 2m0+1γ > 1 and 8q`2 ≤ 1/2, it follows that

1

γ

∑
m0<m≤`s`t

Q`s`t(m) ≤ 1

γ

∑
m0<m≤`s`t

(
`s`t
m

)
qm ≤

∑
m>m0

(2`s`tq)
m ≤ 2(8q`2)(m0+1), (13)

and therefore a`s`t ≥ −1/2. Furthermore,

P`s`t(0) = (1− p)`s`t ≥ 1− p`s`t ≥ 1− 8q`2 ≥ 1/2,

and thus (11) holds.
Next we bound dTV

(
P ′`s`t , P`s`t

)
. Notice that

∑
m0<m≤`s`t

P`s`t(m) ≤
∑

m0<m≤`s`t

(
`s`t
m

)
pm ≤

∑
m>m0

(`s`tp)
m ≤ 2(8q`2)(m0+1). (14)

Therefore, by the definition of the total variation distance and a`s`t ,

dTV(P ′`s`t , P`s`t) =
1

2
|a`s`t |+

1

2

∑
m0<m≤`s`t

∣∣∣∣P`s`t(m)− 1

γ
Q`s`t(m)

∣∣∣∣
≤

∑
m0<m≤`s`t

(
P`s`t(m) +

1

γ
Q`s`t(m)

)
≤ 4(8q`2)(m0+1),

where the last inequality follows from (13) and (14).

The following lemma is useful for upper bounding the total variation distance between a trun-
cated mixture of product distribution PY and a product distribution QY .

Lemma 9 Let PY |X be a Markov kernel from X to Y and denote the marginal of Y by PY =
EX∼PX [PY |X ]. Let QY be such that PY |X=x � QY for all x. Let E be a measurable subset of X .
Define g : X 2 → R̄+ by

g(x, x̃) ,
∫

dPY |X=xdPY |X=x̃

dQ
.

Then

dTV(PY , QY ) ≤ 1

2
PX(Ec) +

1

2

√
E
[
g(X, X̃)1E(X)1E(X̃)

]
− 1 + 2PX(Ec), (15)

where X̃ is an independent copy of X ∼ PX .
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Proof By definition of the total variation distance,

dTV(PY , QY ) =
1

2
‖PY −QY ‖1 ≤

1

2
‖E[PY |X ]−E[PY |X1{X∈E}]‖1+

1

2
‖E[PY |X1{X∈E}]−QY ‖1,

where the first term is ‖E[PY |X ] − E[PY |X1{X∈E}]‖1 = ‖E[PY |X1{X 6∈E}]‖1 = P {X 6∈ E}. The
second term is controlled by

‖E[PY |X1{X∈E}]−QY ‖21 =

(
EQY

[∣∣∣∣∣E
[
PY |X1{X∈E}

]
QY

− 1

∣∣∣∣∣
])2

≤ EQY

(E
[
PY |X1{X∈E}

]
QY

− 1

)2
 (16)

= EQY

(E
[
PY |X1{X∈E}

]
QY

)2
+ 1− 2E[E

[
PY |X1{X∈E}

]
] (17)

= E
[
g(X, X̃)1E(X)1E(X̃)

]
+ 1− 2P {X ∈ E}, (18)

where (16) is Cauchy-Schwartz inequality, (18) follows from Fubini theorem. This proves the de-
sired (15).

Note that {Vt : t ∈ [n]} can be equivalently generated as follows: Throw balls indexed by [N ]
into bins indexed by [n] independently and uniformly at random; let Vt denote the set of balls in
the tth bin. Furthermore, Fix a subset C ⊂ [n] and let S = ∪t∈CVt. Conditioned on S, {Vt : t ∈
C} can be generated by throwing balls indexed by S into bins indexed by C independently and
uniformly at random. We need the following negative association property (Dubhashi and Ranjan,
1998, Definition 1).

Lemma 10 Fix a subset C ⊂ [n] and let S = ∪t∈CVt. Let {Ṽt : t ∈ C} be an independent copy
of {Vt : t ∈ C} conditioned on S. Then conditioned on S, the full vector {|Vs ∩ Ṽt| : s, t ∈ C} is
negatively associated, i.e., for every two disjoint index sets I, J ⊂ C × C,

E[f(Vs ∩ Ṽt, (s, t) ∈ I)g(Vs ∩ Ṽt, (s, t) ∈ J)] ≤ E[f(Vs ∩ Ṽt, (s, t) ∈ I)]E[g(Vs ∩ Ṽt, (s, t) ∈ J)],

for all functions f : R|I| → R and g : R|J | → R that are either both non-decreasing or both
non-increasing in every argument.

Proof Define the indicator random variables Zm,s,t for m ∈ S, s, t ∈ C as

Zm,s,t =

{
1 if the mth ball is contained in Vs and Ṽt,
0 otherwise .

By (Dubhashi and Ranjan, 1998, Proposition 12), the full vector {Zm,s,t : m ∈ S, s, t ∈ C} is
negatively associated. By definition, we have

|Vs ∩ Ṽt| =
∑
m∈S

Zm,s,t,
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which is a non-decreasing function of {Zm,s,t : m ∈ S}. Moreover, for distinct pairs (s, t) 6=
(s′, t′), the sets {(m, s, t) : m ∈ S} and {(m, s′, t′) : m ∈ S} are disjoint. Applying (Dubhashi
and Ranjan, 1998, Proposition 8) yields the desired statement.

The negative association property of {|Vs ∩ Ṽt| : s, t ∈ C} allows us to bound the expectation
of any non-decreasing function of {|Vs ∩ Ṽt| : s, t ∈ C} conditional on C and S as if they were
independent (Dubhashi and Ranjan, 1998, Lemma 2), i.e., for any collection of non-decreasing
functions {fs,t : s, t ∈ [n]},

E

 ∏
s,t∈C

fs,t(|Vs ∩ Ṽt|)
∣∣∣∣ C, S

 ≤ ∏
s,t∈C

E
[
fs,t(|Vs ∩ Ṽt|)

∣∣∣∣ C, S] . (19)

Lemma 11 Suppose that X ∼ Binom(1.5K, 1
k2

) and Y ∼ Binom(3`, ek ) with K = k` and
k ≥ 6e`. Then for all 1 ≤ m ≤ 2`− 1,

P[X = m] ≤ P[Y = m],

and P[X ≥ 2`] ≤ P[Y = 2`].

Proof In view of the fact that ( nm)m ≤
(
n
m

)
≤ ( enm )m, we have for 1 ≤ m ≤ 2`,

P[X = m] =

(
1.5K

m

)(
1

k2

)m(
1− 1

k2

)1.5K−m
≤
(

1.5eK

mk2

)m
.

Therefore,

P[X ≥ 2`] ≤
∞∑

m=2`

(
1.5e`

km

)m
≤

∞∑
m=2`

(
3e

4k

)m
≤ (0.75e/k)2`

1− 0.75e/k
.

On the other hand, for 1 ≤ m ≤ 2`− 1

P[Y = m] =

(
3`

m

)( e
k

)m (
1− e

k

)3`−m

≥
(

3e`

mk

)m(
1− 3e`

k

)
≥ 2m−1

(
1.5e`

mk

)m
≥ P[X = m].

Moreover, P[Y = 2`] ≥ P[X ≥ 2`].

Lemma 12 Let T ∼ Binom(`, τ) and λ > 0. Assume that λ` ≤ 1
16 . Then

E[exp(λT (T − 1))] ≤ exp
(
16λ`2τ2

)
. (20)
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Proof Let (s1, . . . , s`, t1, . . . , t`)
i.i.d.∼ Bern(τ), S =

∑`
i=1 si and T =

∑`
i=1 ti. Next we use a

decoupling argument to replace T 2 − T by ST :

E [exp (λT (T − 1))] = E

[
exp

(
λ
∑
i 6=j

titj

)]

≤ E

[
exp

(
4λ
∑
i 6=j

sitj

)]
, (21)

≤ E [exp (4λST )] ,

where (21) is a standard decoupling inequality (see, e.g., (Vershynin, 2011, Theorem 1)). Since
λT ≤ λ` ≤ 1

16 and exp(x)− 1 ≤ exp(a)x for all x ∈ [0, a], the desired (20) follows from

E [exp (4λST )] = E
[
(1 + τ(exp(4λT )− 1))`

]
≤ E

[
(1 + 8τλT )`

]
≤ E [exp (8τλ`T )]

= (1 + τ (exp (8τλ`)− 1))`

≤ exp
(
16τ2λ`2

)
.

Proof [Proof of Proposition 5] Let [i, j] denote the unordered pair of i and j. For any set I ⊂ [N ], let
E(I) denote the set of unordered pairs of distinct elements in I , i.e., E(I) = {[i, j] : i, j ∈ S, i 6= j},
and let E(I)c = E([N ]) \ E(I). For s, t ∈ [n] with s 6= t, let G̃VsVt denote the bipartite graph where
the set of left (right) vertices is Vs (resp. Vt) and the set of edges is the set of edges in G̃ from
vertices in Vs to vertices in Vt. For s ∈ [n], let G̃VsVs denote the subgraph of G̃ induced by Vs. Let
P̃VsVt denote the edge distribution of G̃VsVt for s, t ∈ [n].

First, we show that the null distributions are exactly matched by the reduction scheme. Lemma 8
implies that P ′`s`t andQ′`s`t are well-defined probability measures, and by definition, (1−γ)Q′`s`t +
γP ′`s`t = Q`s`t = Binom(`s`t, q). Under the null hypothesis, G ∼ G(n, γ) and therefore,
according to our reduction scheme, E(Vs, Vt) ∼ Binom(`s`t, q) for s < t and E(Vt, Vt) ∼
Binom(

(
`t
2

)
, q). Since the vertices in Vs and Vt are connected uniformly at random such that the

total number of edges is E(Vs, Vt), it follows that P̃VsVt =
∏

(i,j)∈Vs×Vt Bern(q) for s < t and

P̃VsVt =
∏

[i,j]∈E(Vs)
Bern(q) for s = t. Conditional on V n

1 , {E(Vs, Vt) : 1 ≤ s ≤ t ≤ n} are inde-

pendent and so are {G̃VsVt : 1 ≤ s ≤ t ≤ n}. Consequently, P
G̃|HC

0
= P0 =

∏
[i,j]∈E([N ]) Bern(q)

and G̃ ∼ G(N, q).
Next, we proceed to consider the alternative hypothesis, under which G is drawn from the

planted clique model G(n, k, γ). Let C ⊂ [n] denote the planted clique. Define S = ∪t∈CVt and
recall K = k`. Then |S| ∼ Binom(N,K/N) and conditional on |S|, S is uniformly distributed
over all possible subsets of size |S| in [N ]. By the symmetry of the vertices of G, the distribution of
Ã conditional on C does not depend on C. Hence, without loss of generality, we shall assume that
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C = [k] henceforth. The distribution of Ã can be written as a mixture distribution indexed by the
random set S as

Ã ∼ P̃1 , ES

P̃SS × ∏
[i,j]∈E(S)c

Bern(q)

 ,
By the definition of P1,

dTV(P̃1,P1) = dTV

ES

P̃SS × ∏
[i,j]∈E(S)c

Bern(q)

 ,ES
 ∏

[i,j]∈E(S)

Bern(p)
∏

[i,j]∈E(S)c

Bern(q)


≤ ES

dTV

P̃SS × ∏
[i,j]∈E(S)c

Bern(q),
∏

[i,j]∈E(S)

Bern(p)
∏

[i,j]∈E(S)c

Bern(q)


= ES

dTV

P̃SS , ∏
[i,j]∈E(S)

Bern(p)


≤ ES

dTV

P̃SS , ∏
[i,j]∈E(S)

Bern(p)

1{|S|≤1.5K}

+ exp(−K/12), (22)

where the first inequality follows from the convexity of (P,Q) 7→ dTV(P,Q), and the last inequality
follows from applying the Chernoff bound to |S|. Fix an S ⊂ [N ] such that |S| ≤ 1.5K. Define
PVtVt =

∏
[i,j]∈E(Vt)

Bern(q) for t ∈ [k] and PVsVt =
∏

(i,j)∈Vs×Vt Bern(p) for 1 ≤ s < t ≤ k. By
the triangle inequality,

dTV

P̃SS , ∏
[i,j]∈E(S)

Bern(p)

 ≤ dTV

P̃SS ,EV k1
 ∏

1≤s≤t≤k
PVsVt

∣∣∣∣ S
 (23)

+ dTV

EV k1

 ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
 , ∏

[i,j]∈E(S)

Bern(p)

 .

(24)

To bound the term in (23), first note that conditional on S, {V k
1 } can be generated as follows:

Throw balls indexed by S into bins indexed by [k] independently and uniformly at random; let Vt
is the set of balls in the tth bin. Define the event E = {V k

1 : |Vt| ≤ 2`, t ∈ [k]}. Since |Vt| ∼
Binom(|S|, 1/k) is stochastically dominated by Binom(1.5K, 1/k) for each fixed 1 ≤ t ≤ k, it
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follows from the Chernoff bound and the union bound that P{Ec} ≤ k exp(−`/18).

dTV

P̃SS ,EV k1
 ∏

1≤s≤t≤k
PVsVt

∣∣∣∣ S


(a)
= dTV

EV k1

 ∏
1≤s≤t≤k

P̃VsVt

∣∣∣∣ S
 ,EV k1

 ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S


≤ EV k1

dTV

 ∏
1≤s≤t≤k

P̃VsVt ,
∏

1≤s≤t≤k
PVsVt

 ∣∣∣∣ S


≤ EV k1

dTV

 ∏
1≤s≤t≤k

P̃VsVt ,
∏

1≤s≤t≤k
PVsVt

1{V k1 ∈E}

∣∣∣∣ S
+ k exp(−`/18),

where (a) holds because conditional on V k
1 ,
{
ÃVsVt : s, t ∈ [k]

}
are independent. Recall that `t =

|Vt|. For any fixed V k
1 ∈ E, we have

dTV

 ∏
1≤s≤t≤k

P̃VsVt ,
∏

1≤s≤t≤k
PVsVt

 (a)
= dTV

 ∏
1≤s<t≤k

P̃VsVt ,
∏

1≤s<t≤k
PVsVt


(b)
= dTV

 ∏
1≤s<t≤k

P ′`s`t ,
∏

1≤s<t≤k
P`s`t


≤ dTV

 ∏
1≤s<t≤k

P ′`s`t ,
∏

1≤s<t≤k
P`s`t


≤

∑
1≤s<t≤k

dTV

(
P ′`s`t , P`s`t

) (c)

≤ 2k2(8q`2)(m0+1),

where (a) follows since P̃VtVt = PVtVt for all t ∈ [k]; (b) is because the number of edges E(Vs, Vt)
is a sufficient statistic for testing P̃VsVt versus PVsVt on the submatrixAVsVt of the adjacency matrix;
(c) follows from Lemma 8. Therefore,

dTV

P̃SS ,EV k1
 ∏

1≤s≤t≤k
PVsVt

∣∣∣∣ S
 ≤ 2k2(8q`2)(m0+1) + k exp(−`/18). (25)

To bound the term in (24), applying Lemma 9 yields

dTV

EV k1

 ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
 , ∏

[i,j]∈E(S)

Bern(p)


≤ 1

2
P {Ec}+

1

2

√
E
V k1 ;Ṽ k1

[
g(V k

1 , Ṽ
k

1 )1{V k1 ∈E}1{Ṽ k1 ∈E}

∣∣∣∣ S]− 1 + 2P {Ec}, (26)
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where

g(V k
1 , Ṽ

k
1 ) =

∫ ∏
1≤s≤t≤k PVsVt

∏
1≤s≤t≤k PṼsṼt∏

[i,j]∈E(S) Bern(p)

=
k∏

s,t=1

(
q2

p
+

(1− q)2

1− p

)(|Vs∩Ṽt|2 )

=
k∏

s,t=1

(
1− 3

2q

1− 2q

)(|Vs∩Ṽt|2 )

.

Let X ∼ Bin(1.5K, 1
k2

) and Y ∼ Bin(3`, e/k). It follows that

E
V k1 ;Ṽ k1

 k∏
s,t=1

(
1− 3

2q

1− 2q

)(|Vs∩Ṽt|2 ) k∏
s,t=1

1{|Vs|≤2`,|Ṽt|≤2`}

∣∣∣∣ S


(a)

≤ E
V k1 ;Ṽ k1

 k∏
s,t=1

eq(
|Vs∩Ṽt|∧2`

2 )
∣∣∣∣ S


(b)

≤
k∏

s,t=1

E
[
eq(
|Vs∩Ṽt|∧2`

2 )
∣∣∣∣ S]

(c)

≤
(
E
[
eq(

X∧2`
2 )
])k2 (d)

≤ E
[
eq(

Y
2)
]k2 (e)

≤ exp(72e2q`2), (27)

where (a) follows from 1 + x ≤ ex for all x ≥ 0 and q < 1/4; (b) follows from the negative
association property of {|Vs ∩ Ṽt| : s, t ∈ [k]} proved in Lemma 10 and (19), in view of the
monotonicity of x 7→ eq(

x∧2`
2 ) on R+; (c) follows because |Vs ∩ Ṽt| is stochastically dominated by

Binom(1.5K, 1/k2) for all (s, t) ∈ [k]2; (d) follows from Lemma 11; (e) follows from Lemma 12
with λ = q/2 and q` ≤ 1/8. Therefore, by (26)

dTV

P̃SS , ∏
[i,j]∈E(S)

Bern(p)

 ≤ 0.5ke−
`
18 + 0.5

√
e72e2q`2 − 1 + 2ke−

`
18

≤ 0.5ke−
`
18 + 0.5

√
e72e2q`2 − 1 +

√
0.5ke−

`
36 . (28)

The proposition follows by combining (22), (23), (24), (25) and (28).

A.4. Proof of Proposition 6

Proof By assumption the test φ satisfies

P0{φ(G′) = 1}+ P1{φ(G′) = 0} = η,
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where G′ is the graph in PDS(N,K, 2q, q) distributed according to either P0 or P1. Let G denote
the graph in the PC(n, k, γ) and G̃ denote the corresponding output of the randomized reduction
scheme. Proposition 5 implies that G̃ ∼ G(N, q) under HC

0 . Therefore PHC
0
{φ(G̃) = 1} =

P0{φ(G′) = 1}. Moreover,

|PHC
1
{φ(G̃) = 0} − P1{φ(G′) = 0}| ≤ dTV(P

G̃|HC
1
,P1) ≤ ξ.

It follows that

PHC
0
{φ(G̃) = 1}+ PHC

1
{φ(G̃) = 0} ≤ η + ξ.

A.5. Proof of Theorem 7

Proof Fix α > 0 and 0 < β < 1 that satisfy (7). Let δ = 2/(m0α). Then it is straightforward to
verify that 2+m0δ

4+2δ α ≤
1
2 − δ + 1+2δ

4+2δα. It follows from the assumption (7) that

α < β < min

{
2 +m0δ

4 + 2δ
α,

1

2
− δ +

1 + 2δ

4 + 2δ
α

}
. (29)

Let ` ∈ N and q` = `−(2+δ). Define

n` = b`
2+δ
α
−1c, k` = b`

(2+δ)β
α
−1c, N` = n``, K` = k``. (30)

Then

lim
`→∞

log 1
q`

logN`
=

(2 + δ)

(2 + δ)/α− 1 + 1
= α, lim

`→∞

logK`

logN`
=

(2 + δ)β/α− 1 + 1

(2 + δ)/α− 1 + 1
= β. (31)

Suppose that for the sake of contradiction there exists a small ε > 0 and a sequence of randomized
polynomial-time tests {φ`} for PDS(N`,K`, 2q`, q`), such that

P0{φN`,K`(G
′) = 1}+ P1{φN`,K`(G

′) = 0} ≤ 1− ε

holds for arbitrarily large `, where G′ is the graph in the PDS(N`,K`, 2q`, q`). Since β > α,
we have k` ≥ `1+δ. Therefore, 16q``

2 ≤ 1 and k` ≥ 6e` for all sufficiently large `. Applying
Proposition 6, we conclude that G 7→ φ(G̃) is a randomized polynomial-time test for PC(n`, k`, γ)
whose Type-I+II error probability satisfies

PHC
0
{φ`(G̃) = 1}+ PHC

1
{φ`(G̃) = 0} ≤ 1− ε+ ξ, (32)

where ξ is given by the right-hand side of (6). By the definition of q`, we have q``2 = `−δ and thus

k2
` (q``

2)m0+1 ≤ `2((2+δ)β/α−1)−(m0+1)δ ≤ `−δ,
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where the last inequality follows from (29). Therefore ξ → 0 as `→∞. Moreover, by the definition
in (30),

lim
`→∞

log k`
log n`

=
(2 + δ)β/α− 1

(2 + δ)/α− 1
≤ 1

2
− δ,

where the above inequality follows from (29). Therefore, (32) contradicts our assumption that Hy-
pothesis 1 holds for γ. Finally, if Hypothesis 1 holds for any γ > 0, (8) follows from (7) by sending
γ ↓ 0.

Appendix B. Computational Lower Bounds for Approximately Recovering a
Planted Dense Subgraph with Deterministic Size

Let G̃(N,K, p, q) denote the planted dense subgraph model with N vertices and a deterministic
dense subgraph size K: (1) A random set S of size K is uniformly chosen from [N ]; (2) for any
two vertices, they are connected with probability p if both of them are in S and with probability
q otherwise, where p > q. Let PDSR (n,K, p, q, ε) denote the planted dense subgraph recovery
problem, where given a graph generated from G̃(N,K, p, q) and an ε < 1, the task is to output a set
Ŝ of size K such that Ŝ is a (1 − ε)-approximation of S, i.e., |Ŝ ∩ S| ≥ (1 − ε)K. The following
theorem implies that PDSR (N,K, p = cq, q, ε) is at least as hard as PDS (N,K, p = cq, q) if
Kq = Ω(logN). Notice that in PDSR (N,K, p, q, ε), the planted dense subgraph has a deter-
ministic size K, while in PDS (N,K, p, q), the size of the planted dense subgraph is binomially
distributed with mean K.

Theorem 13 For any constant ε < 1 and c > 0, suppose there is an algorithm AN with running
time TN that solves the PDSR (N,K, cq, q, ε) problem with probability 1− ηN . Then there exists a
test φN with running time at most N2 +NTN +NK2 that solves the PDS (N, 2K, cq, q) problem
with Type-I+II error probabilities at most ηN + e−CK + 2Ne−CK

2q+K logN , where the constant
C > 0 only depends on ε and c.

Proof Given a graph G, we construct a sequence of graphs G1, . . . , GN sequentially as follows:
Choose a permutation π on the N vertices uniformly at random. Let G0 = G. For each t ∈ [N ],
replace the vertex π(t) in Gt−1 with a new vertex that connects to all other vertices independently
at random with probability q. We run the given algorithm AN on G1, . . . , GN and let S1, . . . , SN
denote the outputs which are sets of K vertices. Let E(Si, Si) denote the total number of edges in
Si and τ = q + (1 − ε)2(p − q)/2. Define a test φ : G → {0, 1} such that φ(G) = 1 if and only
if maxi∈[N ]E(Si, Si) > τ

(
K
2

)
. The construction of each Gi takes N time units; the running time

of A on Gi is at most TN time units; the computation of E(Si, Si) takes at most K2 time units.
Therefore, the total running time of φ is at most N2 +NTN +NK2.

Next we upper bound the Type-I and II error probabilities of φ. Let C = C(ε, c) denote a pos-
itive constant whose value may depend on the context. If G ∼ G(N, q), then all Gi are distributed
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according to G(N, q). By the union bound and the Bernstein inequality,

P0{φ(G) = 1} ≤
N∑
i=1

P0

{
E(Si, Si) ≥ τ

(
K

2

)}

≤
N∑
i=1

∑
S′:S′⊂[N ],|S′|=K

P0

{
E(S′, S′) ≥ τ

(
K

2

)}

≤ N
(
N

K

)
exp

(
−

(
K
2

)2
(1− ε)4(p− q)2/4

2
(
K
2

)
q +

(
K
2

)
(1− ε)2(p− q)/3

)
≤ N exp(−CK2q +K logN).

If G ∼ G(N, 2K, p, q), let S denote the set of vertices in the planted dense subgraph. Then |S| ∼
Binom(N, 2K

N ) and by the Chernoff bound, P1[|S| < K] ≤ exp(−CK). If |S| = K ′ ≥ K, then
there must exist some I ∈ [N ] such that GI is distributed exactly as G̃(N,K, p, q). Let S∗ denote
the set of vertices in the planted dense subgraph of GI such that |S∗| = K. Then conditional on
I = i and the success of AN on Gi, |Si ∩ S∗| ≥ (1 − ε)K. Thus by the union bound and the
Bernstein inequality, for K ′ ≥ K,

P1{φ(G) = 0||S| = K ′, I = i}

≤ ηN +
∑

S′⊂[N ]:|S′|=K,|S′∩S∗|≥(1−ε)K

P1

{
E(S′, S′) ≤ τ

(
K

2

)∣∣∣∣|S| = K ′, I = i

}

≤ ηN +

K∑
t≥(1−ε)K

(
K

t

)(
N −K
K − t

)
exp

(
−

(
K
2

)2
(1− ε)4(p− q)2/4

2
(
K
2

)
p+

(
K
2

)
(1− ε)2(p− q)/3

)
≤ ηN +K exp(−CK2q +K logN).

It follows that

P1{φ(G) = 0}

≤ P1{|S| < K}+
∑
K′≥K

N∑
i=1

P1{|S| = K ′, I = i}P1{φ(G) = 0||S| = K ′, I = i}

≤ exp(−CK) + ηN +K exp(−CK2q +K logN).

Appendix C. A Lemma on Hypergeometric Distributions

Lemma 14 There exists a function τ : R+ → R+ satisfying τ(0+) = 1 such that the following
holds: For any p ∈ N and m ∈ [p], let H ∼ Hypergeometric(p,m,m) and λ = b

(
1
m log ep

m ∧
p2

m4

)
with 0 < b < 1/(16e). Then

E
[
exp

(
λH2

)]
≤ τ(b). (33)
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Proof Notice that if p ≤ 64, then the lemma trivially holds. Hence, assume p ≥ 64 in the
rest of the proof. We consider three separate cases depending on the value of m. We first deal
with the case of m ≥ p

4 . Then λ = bp2

m4 ≤ 256b
p2

. Since H ≤ p with probability 1, we have
E
[
exp

(
λH2

)]
≤ exp(256b).

Next assume thatm ≤ log ep
m . Thenm ≤ log p and λ = b

m log ep
m . Let (s1, . . . , sm)

i.i.d.∼ Bern( m
p−m).

Then S =
∑m

i=1 si ∼ Bin(m, m
p−m) which dominates H stochastically. It follows that

E
[
exp

(
λH2

)]
≤ E [exp (λmS)]

=

[
1 +

m

p−m

(
eλm − 1

)]m
(a)

≤ exp

(
2m2

p

((ep

m

)b
− 1

))
(b)

≤ exp

(
2(log p)2

p

((
ep

log p

)b
− 1

))
(c)

≤ max
1≤p≤512

{
exp

(
2(log p)2

p

((
ep

log p

)b
− 1

))}
:= τ(b), (34)

where (a) follows because 1 + x ≤ exp(x) for all x ∈ R and m ≤ p/2; (b) follows because
m ≤ log p and f(x) = 2x2

p

(( ep
x

)b − 1
)

in non-decreasing in x; (c) follows because g(x) =

2(log x)2

x

[(
ex

log x

)b
− 1

]
is non-increasing when x ≥ 512; τ(0+) = 1 by definition.

In the rest of the proof we shall focus on the intermediate regime: log ep
m ≤ m ≤ p

4 . Since S
dominates H stochastically,

E
[
exp

(
λH2

)]
≤ E

[
exp

(
λS2

)]
. (35)

Let (t1, . . . , tm)
i.i.d.∼ Bern( m

p−m) and T =
∑m

i=1 ti, which is an independent copy of S. Next we
use a decoupling argument to replace S2 by ST :

(
E
[
exp

(
λS2

)])2
=

E

[
exp

(
λ

m∑
i=1

s2
i + λ

∑
i 6=j

sisj

)]2

≤ E [exp (2λS)]E

[
exp

(
2λ
∑
i 6=j

sisj

)]
(36)

≤ E [exp (2λS)]E

[
exp

(
8λ
∑
i 6=j

sitj

)]
, (37)

≤ E [exp (2λS)]E [exp (8λST )] , (38)

where (36) is by Cauchy-Schwartz inequality and (37) is a standard decoupling inequality (see, e.g.,
(Vershynin, 2011, Theorem 1)).
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The first expectation on the right-hand side (38) can be easily upper bounded as follows: Since
m ≥ log ep

m , we have λ ≤ b. Using the convexity of the exponential function:

exp(ax)− 1 ≤ (ea − 1)x, x ∈ [0, 1], (39)

we have

E [exp (2λS)] ≤ exp

(
m2

p−m

(
e2λ − 1

))
≤ exp

(
4
(
e2b − 1

)
m2λ

bp

)

≤ exp

(
4
(

e2b − 1
) m log ep

m

p

)
≤ exp

(
4
(

e2b − 1
))

, (40)

where the last inequality follows from max0≤x≤1 x log e
x = 1.

Next we prove that for some function τ ′ : R+ → R+ satisfying τ ′(0+) = 1,

E [exp (8λST )] ≤ τ ′(b), (41)

which, in view of (35), (38) and (40), completes the proof of the lemma. We proceed toward this
end by truncating on the value of T . First note that

E
[
exp (8λST )1{T> 1

8λ}
]
≤ E

[
exp

(
8bT log

ep

m

)
1{T> 1

8λ}
]

(42)

where the last inequality follows from S ≤ m and λm ≤ b log ep
m . It follows from the definition

that

E
[
exp

(
8bT log

ep

m

)
1{T> 1

8λ}
]

≤
∑

t≥1/(8λ)

exp
(

8bt log
ep

m

)(m
t

)(
m

p−m

)t
(a)

≤
∑

t≥1/(8λ)

exp
(

8bt log
ep

m
+ t log

em

t
− t log

p

2m

)
(b)

≤
∑

t≥1/(8λ)

exp
(

8bt log
ep

m
+ t log

(
8eb log

ep

m

)
− t log

p

2m

)
(c)

≤
∑

t≥1/(8λ)

exp [−t (log 2− 8b log(4e)− log (8eb log(4e)))]

(d)

≤
∑

t≥1/(8b)

exp [−t (log 2− 8b log(4e)− log (8eb log(4e)))] := τ ′′(b) (43)

where (a) follows because
(
m
t

)
≤
(
em
t

)t andm ≤ p/2; (b) follows because m
t ≤ 8mλ ≤ 8b log ep

m ;
(c) follows because m ≤ p/4 and b ≤ 1/(16e); (d) follows because λ ≤ b; τ ′′(0+) = 0 holds
because log 2 < 8b log(4e) + log (8eb log(4e)) for b ≤ 1/(16e).

Recall that m ≥ log ep
m . Then λ = b

(
1
m log ep

m ∧
p2

m4

)
≤ b

(
1 ∧ p2

m4

)
. Hence, we have

m2λ

p
≤ b

(
m2

p
∧ p

m2

)
≤ b (44)
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By conditioning on T and averaging with respect to S, we have

E
[
exp (8λST )1{T≤ 1

8λ}
]
≤ E

[
exp

(
2m2

p
(exp(8λT )− 1)

)
1{T≤ 1

8λ}

]
(a)

≤ E
[
exp

(
16em2

p
λT

)]
(b)

≤ exp

{
2m2

p

(
exp

(
16em2λ

p

)
− 1

)}
(c)

≤ exp

{
32e2m4

p2
λ

}
(d)

≤ exp(32e2b), (45)

where (a) follows from ex − 1 ≤ eax for x ∈ [0, a]; (b) follows because T ∼ Bin(m, m
p−m) and

p ≥ 2m; (c) follows due to (44) and 16eb ≤ 1; (d) follows because λ ≤ b p
2

m4 . Assembling (42),
(43) and (45), we complete the proof of (41), hence the lemma.

30


	Introduction
	Main Results
	Connections to the Literature
	Notations

	Statistical Limits
	Lower Bound
	Upper Bound

	Computational Lower Bounds
	Extensions and Open Problems
	Recovering Planted Dense Subgraphs and DKS Problem
	PDS Problem with a Deterministic Size
	Bipartite PDS Problem

	Proofs
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Theorem 7

	Computational Lower Bounds for Approximately Recovering a Planted Dense Subgraph with Deterministic Size
	A Lemma on Hypergeometric Distributions

