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Abstract
We study a statistical model for the tensor principal component analysis problem introduced

by Montanari and Richard: Given a order-3 tensor T of the form T = τ · v⊗3
0 + A, where τ > 0 is

a signal-to-noise ratio, v0 is a unit vector, and A is a random noise tensor, the goal is to recover
the planted vector v0. For the case that A has iid standard Gaussian entries, we give an efficient
algorithm to recover v0 whenever τ > ω(n3/4 log(n)1/4), and certify that the recovered vector is close
to a maximum likelihood estimator, all with high probability over the random choice of A. The
previous best algorithms with provable guarantees required τ > Ω(n).

In the regime τ 6 o(n), natural tensor-unfolding-based spectral relaxations for the underlying
optimization problem break down. To go beyond this barrier, we use convex relaxations based
on the sum-of-squares method. Our recovery algorithm proceeds by rounding a degree-4 sum-of-
squares relaxations of the maximum-likelihood-estimation problem for the statistical model. To
complement our algorithmic results, we show that degree-4 sum-of-squares relaxations break down
for τ 6 O(n3/4/ log(n)1/4), which demonstrates that improving our current guarantees (by more than
logarithmic factors) would require new techniques or might even be intractable.

Finally, we show how to exploit additional problem structure in order to solve our sum-of-
squares relaxations, up to some approximation, very efficiently. Our fastest algorithm runs in
nearly-linear time using shifted (matrix) power iteration and has similar guarantees as above. The
analysis of this algorithm also confirms a variant of a conjecture of Montanari and Richard about
singular vectors of tensor unfoldings.
Keywords: Tensors, principal component analysis, parameter estimation, sum-of-squares method,
semidefinite programming, spectral algorithms, shifted power iteration.

1. Introduction

Principal component analysis (PCA), the process of identifying a direction of largest possible variance
from a matrix of pairwise correlations, is among the most basic tools for data analysis in a wide
range of disciplines. In recent years, variants of PCA have been proposed that promise to give
better statistical guarantees for many applications. These variants include restricting directions to
the nonnegative orthant (nonnegative matrix factorization) or to directions that are sparse linear
combinations of a fixed basis (SPARSE PCA). Often we have access to not only pairwise but also
higher-order correlations. In this case, an analog of PCA is to find a direction with largest possible
third moment or other higher-order moment (higher-order PCA or TENSOR PCA).

All of these variants of PCA share that the underlying optimization problem is NP-hard for general
instances (often even if we allow approximation), whereas vanilla PCA boils down to an efficient
eigenvector computation for the input matrix. However, these hardness result are not predictive in
statistical settings where inputs are drawn from particular families of distributions, where efficent
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algorithm can often achieve much stronger guarantees than for general instances. Understanding the
power and limitations of efficient algorithms for statistical models of NP-hard optimization problems
is typically very challenging: it is not clear what kind of algorithms can exploit the additional
structure afforded by statistical instances, but, at the same time, there are very few tools for reasoning
about the computational complexity of statistical / average-case problems. (See (Berthet and Rigollet,
2013) and (Barak et al., 2013) for discussions about the computational complexity of statistical
models for SPARSE PCA and random constraint satisfaction problems.)

We study a statistical model for the tensor principal component analysis problem introduced
by Montanari and Richard (2014) through the lens of a meta-algorithm called the sum-of-squares
method, based on semidefinite programming. This method can capture a wide range of algorithmic
techniques including linear programming and spectral algorithms. We show that this method can
exploit the structure of statistical TENSOR PCA instances in non-trivial ways and achieves guarantees
that improve over the previous ones. On the other hand, we show that those guarantees are nearly
tight if we restrict the complexity of the sum-of-squares meta-algorithm at a particular level. This
result rules out better guarantees for a fairly wide range of potential algorithms. Finally, we develop
techniques to turn algorithms based on the sum-of-squares meta-algorithm into algorithms that are
truely efficient (and even easy to implement).

Montanari and Richard propose the following statistical model1 for TENSOR PCA.

Problem 1 (Spiked Tensor Model for TENSOR PCA, Asymmetric) Given an input tensor T =

τ · v⊗3 + A, where v ∈ Rn is an arbitrary unit vector, τ > 0 is the signal-to-noise ratio, and A is a
random noise tensor with iid standard Gaussian entries, recover the signal v approximately.

Montanari and Richard show that when τ 6 o(
√

n) Problem 1 becomes information-theoretically
unsovlable, while for τ > ω(

√
n) the maximum likelihood estimator (MLE) recovers v′ with

〈v, v′〉 > 1 − o(1).
The maximum-likelihood-estimator (MLE) problem for Problem 1 is an instance of the following

meta-problem for k = 3 and f : x 7→
∑

i jk Ti jkxix jxk (Montanari and Richard, 2014).

Problem 2 Given a homogeneous, degree-k function f on Rn, find a unit vector v ∈ Rn so as to
maximize f (v) approximately.

For k = 2, this problem is just an eigenvector computation. Already for k = 3, it is NP-hard. Our
algorithms proceed by relaxing Problem 2 to a convex problem. The latter can be solved either exactly
or approximately (as will be the case of our faster algorithms). Under the Gaussian assumption on
the noise in Problem 1, we show that for τ > ω(n3/4 log(n)1/4) the relaxation does not substantially
change the global optimum.

Noise Symmetry. Montanari and Richard actually consider two variants of this model. The first
we have already described. In the second, the noise is symmetrized, (to match the symmetry of
potential signal tensors v⊗3).

Problem 3 (Spiked Tensor Model for TENSOR PCA, Symmetric) Given an input tensor T = τ ·

v⊗3 + A, where v ∈ Rn is an arbitrary unit vector, τ > 0 is the signal-to-noise ratio, and A is a
random symmetric noise tensor—that is, Ai jk = Aπ(i)π( j)π(k) for any permutation π—with otherwise
iid standard Gaussian entries, recover the signal v approximately.

1. Montanari and Richard use a different normalization for the signal-to-noise ratio. Using their notation, β ≈ τ/
√

n.
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It turns out that for our algorithms based on the sum-of-squares method, this kind of symmetriza-
tion is already built-in. Hence there is no difference between Problem 1 and Problem 3 for those
algorithms. For our faster algorithms, such symmetrization is not built in. Nonetheless, we show
that a variant of our nearly-linear-time algorithm for Problem 1 also solves Problem 3 with matching
guarantees.

1.1. Results

Sum-of-squares relaxation. We consider the degree-4 sum-of-squares relaxation for the MLE
problem. (See Section 1.2 for a brief discussion about sum-of-squares. All necessary definitions are
in Section 2. See (Barak and Steurer, 2014) for more detailed discussion.) Note that the planted
vector v has objective value (1 − o(1))τ for the MLE problem with high probability (assuming
τ = Ω(

√
n) which will always be the case for us).

Theorem 1 There exists a polynomial-time algorithm based on the degree-4 sum-of-squares relax-
ation for the MLE problem that given an instance of Problem 1 or Problem 3 with τ > n3/4(log n)1/4/ε

outputs a unit vector v′ with 〈v, v′〉 > 1 − O(ε) with probability 1 − O(n−10) over the randomness in
the input. Furthermore, the algorithm works by rounding any solution to the relaxation with objective
value at least (1 − o(1))τ. Finally, the algorithm also certifies that all unit vectors bounded away
from v′ have objective value significantly smaller than τ for the MLE problem Problem 2.

We complement the above algorithmic result by the following lower bound.

Theorem 2 (Informal Version) There is τ : N→ R with τ 6 O(n3/4/ log(n)1/4) so that when T is
an instance of Problem 1 with signal-to-noise ratio τ, with probability 1 − O(n−10), there exists a
solution to the degree-4 sum-of-squares relaxation for the MLE problem with objective value at least
τ that does not depend on the planted vector v. In particular, no algorithm can reliably recover from
this solution a vector v′ that is significantly correlated with v.

Faster algorithms. We interpret a tensor-unfolding algorithm studied by Montanari and Richard
as a spectral relaxation of the degree-4 sum-of-squares program for the MLE problem. This interpre-
tation leads to an analysis that gives better guarantees in terms of signal-to-noise ratio τ and also
informs a more efficient implementation based on shifted matrix power iteration.

Theorem 3 There exists an algorithm with running time Õ(n3), which is linear in the size of the
input, that given an instance of Problem 1 or Problem 3 with τ > n3/4/ε outputs with probability
1 − O(n−10) a unit vector v′ with 〈v, v′〉 > 1 − O(ε).

We remark that unlike the previous polynomial-time algorithm this linear time algorithm does not
come with a certification guarantee. In Section 4.1, we show that small adversarial perturbations can
cause this algorithm to fail, whereas the previous algorithm is robust against such perturbations. We
also devise an algorithm with the certification property and running time Õ(n4) (which is subquadratic
in the size n3 of the input).

Theorem 4 There exists an algorithm with running time Õ(n4) (for inputs of size n3) that given an
instance of Problem 1 with τ > n3/4(log n)1/4/ε for some ε, outputs with probability 1 − O(n−10) a
unit vector v′ with 〈v, v′〉 > 1 − O(ε) and certifies that all vectors bounded away from v′ have MLE
objective value significantly less than τ.
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Higher-order tensors. Our algorithmic results also extend in a straightforward way to tensors of
order higher than 3. (See Section C for some details.) For simplicity we give some of these results
only for the higher-order analogue of Problem 1; we conjecture however that all our results for
Problem 3 generalize in similar fashion.

Theorem 5 Let k be an odd integer, v0 ∈ R
n a unit vector, τ > nk/4 log(n)1/4/ε, and A an order-k

tensor with independent unit Gaussian entries. Let T(x) = τ · 〈v0, x〉k + A(x).

1. There is a polynomial-time algorithm, based on semidefinite programming, which on input
T(x) = τ · 〈v0, x〉k + A(x) returns a unit vector v with 〈v0, v〉 > 1 − O(ε) with probability
1 − O(n−10) over random choice of A.

2. There is a polynomial-time algorithm, based on semidefinite programming, which on input
T(x) = τ · 〈v0, x〉k + A(x) certifies that T(x) 6 τ · 〈v, x〉k + O(nk/4 log(n)1/4) for some unit v
with probability 1 − O(n−10) over random choice of A. This guarantees in particular that v is
close to a maximum likelihood estimator for the problem of recovering the signal v0 from the
input τ · v⊗k

0 + A.

3. By solving the semidefinite relaxation approximately, both algorithms can be implemented in
time Õ(m1+1/k), where m = nk is the input size.

For even k, the above all hold, except now we recover v with 〈v0, v〉2 > 1 − O(ε), and the algorithms
can be implemented in nearly linear time.

Remark 6 When A is a symmetric noise tensor (the higher-order analogue of Problem 3), (1–2)
above hold. We conjecture that (3) does as well.

The last theorem, the higher-order generalization of Theorem 3, almost completely resolves a
conjecture of Montanari and Richard regarding tensor unfolding algorithms for odd k. We are able
to prove their conjectured signal-to-noise ratio τ for an algorithm that works mainly by using an
unfolding of the input tensor, but our algorithm includes an extra random-rotation step to handle
sparse signals. We conjecture but cannot prove that the necessity of this step is an artifact of the
analysis.

Theorem 7 Let k be an odd integer, v0 ∈ R
n a unit vector, τ > nk/4/ε, and A an order-k tensor

with independent unit Gaussian entries. There is a nearly-linear-time algorithm, based on tensor
unfolding, which, with probability 1 − O(n−10) over random choice of A, recovers a vector v with
〈v, v0〉

2 > 1 − O(ε). This continues to hold when A is replaced by a symmetric noise tensor (the
higher-order analogue of Problem 3).

1.2. Techniques

We arrive at our results via an analysis of Problem 2 for the function f (x) =
∑

i jk Ti jkxix jxk, where T
is an instance of Problem 1. The function f decomposes as f = g + h for a signal g(x) = τ · 〈v, x〉3

and noise h(x) =
∑

i jk ai jkxix jx j where {ai jk} are iid standard Gaussians. The signal g is maximized
at x = v, where it takes the value τ. The noise part, h, is with high probability at most Õ(

√
n) over the

unit sphere. We have insisted that τ be much greater than
√

n, so f has a unique global maximum,
dominated by the signal g. The main problem is to find it.
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To maximize g, we apply the Sum of Squares meta-algorithm (SoS). SoS provides a hierarchy
of strong convex relaxations of Problem 2. Using convex duality, we can recast the optimization
problem as one of efficiently certifying the upper bound on h which shows that optima of g are
dominated by the signal. SoS efficiently finds boundedness certificates for h of the form

c − h(x) = s1(x)2 + · · · + sk(x)2

where “=” denotes equality in the ring R[x]/(‖x‖2 − 1) and where s1, . . . , sk have bounded degree,
when such certificates exist. (The polynomials {si} and {t j} certify that h(x) 6 c. Otherwise c − h(x)
would be negative, but this is impossible by the nonnegativity of squared polynomials.)

Our main technical contribution is an almost-complete characterization of certificates like these
for such degree-3 random polynomials h when the polynomials {si} have degree at most four. In
particular, we show that with high probability in the random case a degree-4 certificate exists for
c = Õ(n3/4), and that with high probability, no significantly better degree-four certificate exists.

We apply this characterization in three ways to obtain three different algorithms. The first
application shows the existence of a polynomial-time algorithm that maximizes f when τ > Ω̃(n3/4)
(and thus solves TPCA in the spiked tensor model for τ > Ω̃(n3/4).) This first algorithm involves
solving a large semidefinite program associated to the SoS relaxation. As a second application of
this characterization, we avoid solving the semidefinite program. Instead, we give an algorithm
running in time Õ(n4) which quickly constructs only a small portion of an almost-optimal SoS
boundedness certificate; in the random case this turns out to be enough to find the signal v and certify
the boundedness of g. (Note that this running time is only a factor of n polylog n greater than the
input size n3.)

Finally, we analyze a third algorithm for TPCA which simply computes the highest singular
vector of a matrix unfolding of the input tensor. This algorithm was considered in depth by Montanari
and Richard, who fully characterized its behavior in the case of even-order tensors (corresponding to
k = 4, 6, 8, · · · in Problem 2). They conjectured that this algorithm successfully recovers the signal
v at the signal-to-noise ratio τ of Theorem 4 for Problem 1 and Problem 3. Up to an extra random
rotations step before the tensor unfolding in the case that the input comes from Problem 3 (and up to
logarithmic factors in τ) we confirm their conjecture. We observe that their algorithm can be viewed
as a method of rounding a non-optimal solution to the SoS relaxation to find the signal. We show,
also, that for k = 4, the degree-4 SoS relaxation does no better than the simpler tensor unfolding
algorithm as far as signal-to-noise ratio is concerned. However, for odd-order tensors this unfolding
algorithm does not certify its own success in the way our other algorithms do.

1.3. Related Work

There is a vast literature on tensor analogues of linear algebra problems—too vast to attempt any
survey here. Tensor methods for machine learning, in particular for learning latent variable models,
have garnered recent attention, e.g., with works of Anandkumar et al. (Anandkumar et al., 2014b,
2013). These approaches generally involve decomposing a tensor which captures some aggregate
statistics of input data into rank-one components. A recent series of papers analyzes the tensor power
method, a direct analogue of the matrix power method, as a way to find rank-one components of
random-case tensors (Anandkumar et al., 2014c,a).

Another recent line of work applies the Sum of Squares (a.k.a. Lasserre or Lasserre/Parrilo)
hierarchy of convex relaxations to learning problems. See the survey of Barak and Steurer for

5



HOPKINS SHI STEURER

references and discussion of these relaxations (Barak and Steurer, 2014). Barak, Kelner, and Steurer
show how to use SoS to efficiently find sparse vectors planted in random linear subspaces, and the
same authors give an algorithm for dictionary learning with strong provable statistical guarantees
(Barak et al., 2014a,b). These algorithms, too, proceed by decomposition of an underlying random
tensor; they exploit the strong (in many cases, the strongest-known) algorithmic guarantees offered
by SoS for this problem in a variety of average-case settings.

Concurrently and independently of us, and also inspired by the recently-discovered applicability
of tensor methods to machine learning, Barak and Moitra use SoS techniques formally related to ours
to address the tensor prediction problem: given a low-rank tensor (perhaps measured with noise) only
a subset of whose entries are revealed, predict the rest of the tensor entries (Barak and Moitra, 2015).
They work with worst-case noise and study the number of revealed entries necessary for the SoS
hierarchy to successfully predict the tensor. By constrast, in our setting, the entire tensor is revealed,
and we study the signal-to-noise threshold necessary for SoS to recover its principal component
under distributional assumptions on the noise that allow us to avoid worst-case hardness behavior.

Since Barak and Moitra work in a setting where few tensor entries are revealed, they are able to
use algorithmic techniques and lower bounds from the study of sparse random constraint satisfaction
problems (CSPs), in particular random 3XOR (Goerdt and Krivelevich, 2001; Friedman et al., 2005;
Feige and Ofek, 2007; Feige et al., 2006). The tensors we study are much denser. In spite of the
density (and even though our setting is real-valued), our algorithmic techniques are related to the
same spectral refutations of random CSPs. However our lower bound techniques do not seem to
be related to the proof-complexity techniques that go into sum-of-squares lower bound results for
random CSPs.

The analysis of tractable tensor decomposition in the rank one plus noise model that we consider
here (the spiked tensor model) was initiated by Montanari and Richard, whose work inspired the
current paper (Montanari and Richard, 2014). They analyze a number of natural algorithms and find
that tensor unfolding algorithms, which use the spectrum of a matrix unfolding of the input tensor,
are most robust to noise. Here we consider more powerful convex relaxations, and in the process we
tighten Montanari and Richard’s analysis of tensor unfolding in the case of odd-order tensors.

Related to our lower bound, Montanari, Reichman, and Zeitouni prove strong impossibility results
for the problem of detecting rank-one perturbations of Gaussian matrices and tensors using any
eigenvalue of the matrix or unfolded tensor; they are able to characterize the precise threshold below
which the entire spectrum of a perturbed noise matrix or unfolded tensor becomes indistinguishable
from pure noise (Montanari et al., 2014). Our lower bounds are much coarser, applying only to the
objective value of a relaxation (the analogue of just the top eigenvalue of an unfolding), but they
apply to all degree-4 SoS-based algorithms, which are a priori a major generalization of spectral
methods.

2. Preliminaries

2.1. Notation

We use x = (x1, . . . , xn) to denote a vector of indeterminates. The letters u, v,w are generally reserved
for real vectors. The letters α, β are reserved for multi-indices; that is, for tuples (i1, . . . , ik) of indices.
For f , g : N → R we write f - g for f = O(g) and f % g for f = Ω(g). We write f = Õ(g) if
f (n) 6 g(n) · polylog n, and f = Ω̃(g) if f > g(n)/ polylog n.

We employ the usual Loewner (a.k.a. positive semi-definite) ordering � on Hermitian matrices.
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We will be heavily concerned with tensors and matrix flattenings thereof. In general, boldface
capital letters T denote tensors and ordinary capital letters denote matrices A. We adopt the convention
that unless otherwise noted for a tensor T the matrix T is the squarest-possible unfolding of T. If T
has even order k then T has dimensions nk/2 × nk/2. For odd k it has dimensions nbk/2c × ndk/2e. All
tensors, matrices, vectors, and scalars in this paper are real.

We use 〈·, ·〉 to denote the usual entrywise inner product of vectors, matrices, and tensors. For a
vector v, we use ‖v‖ to denote its `2 norm. For a matrix A, we use ‖A‖ to denote its operator norm
(also known as the spectral or `2-to-`2 norm).

For a k-tensor T, we write T(v) for 〈v⊗k,T〉. Thus, T(x) is a homogeneous real polynomial of
degree k.

We use Sk to denote the symmetric group on k elements. For a k-tensor T and π ∈ Sk, we
denote by Tπ the k-tensor with indices permuted according to π, so that Tπ

α = Tπ−1(α). A tensor
T is symmetric if for all π ∈ Sk it is the case that Tπ = T. (Such tensors are sometimes called
“supersymmetric.”)

For clarity, most of our presentation focuses on 3-tensors. For an n × n 3-tensor T, we use Ti to
denote its n × n matrix slices along the first mode, i.e., (Ti) j,k = Ti, j,k.

We often say that an sequence {En}n∈N of events occurs with high probability, which for us means
that P(En fails) = O(n−10). (Any other n−c would do, with appropriate modifications of constants
elsewhere.)

2.2. Polynomials and Matrices

Let R[x]6d be the vector space of polynomials with real coefficients in variables x = (x1, . . . , xn),
of degree at most d. We can represent a homogeneous even-degree polynomial p ∈ R[x]d by an
nd/2 × nd/2 matrix: a matrix M is a matrix representation for p if p(x) = 〈x⊗d/2,Mx⊗d/2〉. If p has a
matrix representation M � 0, then p =

∑
i pi(x)2 for some polynomials pi.

2.3. The Sum of Squares (SoS) Algorithm

Definition 8 Let L : R[x]6d → R be a linear functional on polynomials of degree at most d for some
d even. Suppose that

• L 1 = 1.

• L p(x)2 > 0 for all p ∈ R[x]6d/2.

ThenL is a degree-d pseudo-expectation. We often use the suggestive notation Ẽ for such a functional,
and think of Ẽ p(x) as giving the expectation of the polynomial p(x) under a pseudo-distribution over
{x}.

For p ∈ R[x]6d we say that the pseudo-distribution {x} (or, equivalently, the functional Ẽ) satisfies
{p(x) = 0} if Ẽ p(x)q(x) = 0 for all q(x) such that p(x)q(x) ∈ R[x]6d.

Pseudo-distributions were first introduced in (Barak et al., 2012) and are surveyed in (Barak and
Steurer, 2014).

We employ the standard result that, up to negligible issues of numerical accuracy, if there exists a
degree-d pseudo-distribution satisfying constraints {p0(x) = 0, . . . , pm(x) = 0}, then it can be found
in time nO(d) by solving a semidefinite program of size nO(d). (See (Barak and Steurer, 2014) for
references.)
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3. Certifying Bounds on Random Polynomials

Let f ∈ R[x]d be a homogeneous degree-d polynomial. When d is even, f has square matrix
representations of dimension nd/2 × nd/2. The maximal eigenvalue of a matrix representation M of f
provides a natural certifiable upper bound on max‖v‖=1 f (v), as

f (v) = 〈v⊗d/2,Mv⊗d/2〉 6 max
w∈Rnd/2

〈w,Mw〉
〈w,w〉

= ‖M‖ .

When f (x) = A(x) for an even-order tensor A with independent random entries, the quality of this
certificate is well characterized by random matrix theory. In the case where the entries of A are
standard Gaussians, for instance, ‖M‖ = ‖A + AT ‖ 6 Õ(nd/4) with high probability, thus certifying
that max‖v‖=1 f (v) 6 Õ(nd/4).

A similar story applies to f of odd degree with random coefficients, but with a catch: the
certificates are not as good. For example, we expect a degree-3 random polynomial to be a smaller
and simpler object than one of degree-4, and so we should be able to certify a tighter upper bound
on max‖v‖=1 f (v). The matrix representations of f are now rectangular n2 × n matrices whose top
singular values are certifiable upper bounds on max‖v‖=1 f (v). But in random matrix theory, this
maximum singular value depends (to a first approximation) only on the longer dimension n2, which
is the same here as in the degree-4 case. Again when f (x) = A(x), this time where A is an order-3
tensor of independent standard Gaussian entries, ‖M‖ =

√
‖AAT ‖ > Ω̃(n), so that this method cannot

certify better than max‖v‖=1 f (v) 6 Õ(n). Thus, the natural spectral certificates are unable to exploit
the decrease in degree from 4 to 3 to improve the certified bounds.

To better exploit the benefits of square matrices, we bound the maxima of degree-3 homogeneous
f by a degree-4 polynomial. In the case that f is multi-linear, we have the polynomial identity
f (x) = 1

3 〈x,∇ f (x)〉. Using Cauchy-Schwarz, we then get f (x) 6 1
3‖x‖‖∇ f (x)‖. This inequality

suggests using the degree-4 polynomial ‖∇ f (x)‖2 as a bound on f . Note that local optima of f on
the sphere occur where ∇ f (v) ∝ v, and so this bound is tight at local maxima. Given a random
homogeneous f , we will associate a degree-4 polynomial related to ‖∇ f ‖2 and show that this
polynomial yields the best possible degree-4 SoS-certifiable bound on max‖v‖=1 f (v).

Definition 9 Let f ∈ R[x]3 be a homogeneous degree-3 polynomial with indeterminates x =

(x1, . . . , xn). Suppose A1, . . . , An are matrices such that f =
∑

i xi〈x, Aix〉. We say that f is λ-
bounded if there are matrices A1, . . . , An as above and a matrix representation M of ‖x‖4 so that∑

i Ai ⊗ Ai � λ
2 · M.

We observe that for f multi-linear in the coordinates xi of x, up to a constant factor we may take
the matrices Ai to be matrix representations of ∂i f , so that

∑
i Ai ⊗ Ai is a matrix representation of

the polynomial ‖∇ f ‖2. This choice of Ai may not, however, yield the optimal spectral bound λ2.
The following theorem is the reason for our definition of λ-boundedness.

Theorem 10 Let f ∈ R[x]3 be λ-bounded. Then max‖v‖=1 f (v) 6 λ, and the degree-4 SoS algorithm
certifies this. In particular, every degree-4 pseudo-distribution {x} over Rn satisfies

Ẽ f 6 λ ·
(
Ẽ‖x‖4

)3/4
.
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Proof By Cauchy–Schwarz for pseudo-expectations, the pseudo-distribution satisfies
(
Ẽ‖x‖2

)2
6

Ẽ‖x‖4 and
(
Ẽ

∑
i xi〈x, Aix〉

)2
6

(
Ẽ

∑
i x2

i

)
·
(∑

i〈x, Aix〉2
)
. Therefore,

Ẽ f = Ẽ
∑

i
xi · 〈x, Aix〉

6
(
Ẽ

∑
i
x2

i

)1/2
·

(
Ẽ

∑
i
〈x, Aix〉2

)1/2

=
(
Ẽ‖x‖2

)1/2
·

(
Ẽ〈x⊗2,

(∑
i
Ai ⊗ Ai

)
x⊗2〉

)1/2

6
(
Ẽ‖x‖4

)1/4
·
(
Ẽ〈x⊗2, λ2 · Mx⊗2〉

)1/2

= λ ·
(
Ẽ‖x‖4

)3/4
.

The last inequality also uses the premise
(∑

i Ai ⊗ Ai
)
� λ2 · M for some matrix representation M of

‖x‖4, in the following way. Since M′ := λ2 · M −
(∑

i Ai ⊗ Ai
)
� 0, the polynomial 〈x⊗2,M′x⊗2〉 is a

sum of squared polynomials. Thus, Ẽ〈x⊗2,M′x⊗2〉 > 0 and the desired inequality follows.

We now state the degree-3 case of a general λ-boundedness fact for homogeneous polynomials
with random coefficients. The SoS-certifiable bound for a random degree-3 polynomial this provides
is the backbone of our SoS algorithm for tensor PCA in the spiked tensor model.

Theorem 11 Let A be a 3-tensor with independent entries from N(0, 1). Then A(x) is λ-bounded
with λ = O(n3/4 log(n)1/4), with high probability.

The full statement and proof of this theorem, generalized to arbitrary-degree homogeneous polyno-
mials, may be found as Theorem 56; we prove the statement above as a corollary in Section E. Here
provide a proof sketch.
Proof [Proof sketch] We first note that the matrix slices Ai of A satisfy A(x) =

∑
i xi〈x, Aix〉. Using

the matrix Bernstein inequality, we show that
∑

i Ai ⊗ Ai − E
∑

i Ai ⊗ Ai � O(n3/2(log n)1/2) · Id with
high probability. At the same time, a straightforward computation shows that 1

n E
∑

i Ai ⊗ Ai is a
matrix representation of ‖x‖4. Since Id is as well, we get that

∑
i Ai ⊗ Ai � λ

2 · M , where M is some
matrix representation of ‖x‖4 which combines Id and E

∑
i Ai ⊗ Ai, and λ = O(n3/4(log n)1/4).

Corollary 12 Let A be a 3-tensor with independent entries fromN(0, 1). Then, with high probability,
the degree-4 SoS algorithm certifies that max‖v‖=1 A(v) 6 O(n3/4(log n)1/4). Furthermore, also with
high probability, every pseudo-distribution {x} over Rn satisfies

ẼA(x) 6 O(n3/4(log n)1/4)(Ẽ ‖x‖4)3/4 .

Proof Immediate by combining Theorem 11 with Theorem 10.

9
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4. Polynomial-Time Recovery via Sum of Squares

Here we give our first algorithm for tensor PCA: we analyze the quality of the natural SoS relaxation
of tensor PCA using our previous discussion of boundedness certificates for random polynomials,
and we show how to round this relaxation. We discuss also the robustness of the SoS-based algorithm
to some amount of additional worst-case noise in the input. For now, to obtain a solution to the SoS
relaxation we will solve a large semidefinite program. Thus, the algorithm discussed here is not yet
enough to prove Theorem 4 and Corollary 4: the running time, while still polynomial, is somewhat
greater than Õ(n4).

Tensor PCA with Semidefinite Programming

Input: T = τ · v⊗3
0 + A, where v ∈ Rn and A is some order-3 tensor.

Goal: Find v ∈ Rn with |〈v, v0〉| > 1 − o(1).

Algorithm 1 (Recovery) Using semidefinite programming, find the degree-4 pseudo-distribution
{x} satisfying {‖x‖2 = 1} which maximizes ẼT(x). Output Ẽ x/‖ Ẽ x‖.

Algorithm 2 (Certification) Run Algorithm 1 to obtain v. Using semidefinite programming, find
the degree-4 pseudo-distribution {x} satisfying {‖x‖ = 1} which maximizes ẼT(x) − τ · 〈v, x〉3. If
ẼT(x) − τ · 〈v, x〉3 6 O(n3/4 log(n)1/4), output CERTIFY. Otherwise, output FAIL.

The following theorem characterizes the success of Algorithm 1 and Algorithm 2

Theorem 13 (Formal version of Theorem 1) Let T = τ · v⊗3
0 + A, where v0 ∈ R

n and A has
independent entries from N(0, 1). Let τ % n3/4 log(n)1/4/ε. Then with high probability over random
choice of A, on input T or T′ := τ · v⊗3

0 + 1
|S3 |

∑
π∈S3 Aπ, Algorithm 1 outputs a vector v with

〈v, v0〉 > 1 − O(ε). In other words, for this τ, Algorithm 1 solves both Problem 1 and Problem 3.
For any unit v0 ∈ R

n and A, if Algorithm 2 outputs CERTIFY then T(x) 6 τ · 〈v, x〉3 +

O(n3/4 log(n)1/4). For A as described in either Problem 1 or Problem 3 and τ % n3/4 log(n)1/4/ε,
Algorithm 2 outputs CERTIFY with high probability.

The analysis has two parts. We show that

1. if there exists a sufficiently good upper bound on A(x) (or in the case of the symmetric noise
input, on Aπ(x) for every π ∈ S3) which is degree-4 SoS certifiable, then the vector recovered
by the algorithm will be very close to v, and that

2. in the case of A with independent entries fromN(0, 1), such a bound exists with high probabil-
ity.

Conveniently, Item 2 is precisely the content of Corollary 12. The following lemma expresses Item 1.

Lemma 14 Suppose A(x) ∈ R[x]3 is such that | ẼA(x)| 6 ετ · (Ẽ ‖x‖4)3/4 for any degree-4 pseudo-
distribution {x}. Then on input τ · v⊗3

0 + A, Algorithm 1 outputs a unit vector v with 〈v, v0〉 > 1−O(ε).

Proof Algorithm 1 outputs v = Ẽ x/‖ Ẽ x‖ for the pseudo-distribution that it finds, so we’d like to
show 〈v0, Ẽ x/‖ Ẽ x‖〉 > 1 − O(ε). By pseudo-Cauchy-Schwarz (Lemma 47), ‖ Ẽ x‖2 6 Ẽ ‖x‖2 = 1, so
it will suffice to prove just that 〈v0, Ẽ x〉 > 1 − O(ε).

10
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If Ẽ〈v0, x〉3 > 1 − O(ε), then by Lemma 50 (and linearity of pseudo-expectation) we would have

〈v0, Ẽ x〉 = Ẽ〈v0, x〉 > 1 − O(2ε) = 1 − O(ε)

So it suffices to show that Ẽ〈v0, x〉3 is close to 1.
Recall that Algorithm 1 finds a pseudo-distribution that maximizes ẼT(x). We split ẼT(x) into

the signal Ẽ〈v⊗3
0 , x⊗3〉 and noise ẼA(x) components and use our hypothesized SoS upper bound on

the noise.

ẼT(x) = τ · (Ẽ〈v⊗3
0 , x⊗3〉) + ẼA(x) 6 τ · (Ẽ〈v⊗3

0 , x⊗3〉) + ετ .

Rewriting 〈v⊗3
0 , x⊗3〉 as 〈v0, x〉3, we obtain

Ẽ〈v0, x〉3 >
1
τ
· ẼT(x) − ε .

Finally, there exists a pseudo-distribution that achieves ẼT(x) > τ − ετ. Indeed, the trivial
distribution giving probability 1 to v0 is such a pseudo-distribution:

T(v0) = τ + A(v0) > τ − ετ.

Putting it together,

Ẽ〈v0, x〉3 >
1
τ
· ẼT(x) − ε >

(1 − ε)τ
τ

− ε = 1 − O(ε) .

Proof [Proof of Theorem 13] We first address Algorithm 1. Let τ,T,T′ be as in the theorem
statement. By Lemma 14, it will be enough to show that with high probability every degree-4 pseudo-
distribution {x} has ẼA(x) 6 ε′τ · (Ẽ ‖x‖4)3/4 and 1

S3
ẼAπ(x) 6 ε′τ · (Ẽ ‖x‖4)3/4 for some ε′ = Θ(ε).

By Corollary 12 and our assumptions on τ this happens for each permutation Aπ individually with
high probability, so a union bound over Aπ for π ∈ S3 completes the proof.

Turning to Algorithm 2, the simple fact that SoS only certifies true upper bounds implies that the
algorithm is never wrong when it outputs CERTIFY. It is not hard to see that whenever Algorithm 1
has succeeded in recovering v because ẼA(x) is bounded, which as above happens with high
probability, Algorithm 2 will output CERTIFY.

4.1. Semi-Random Tensor PCA

We discuss here a modified TPCA model, which will illustrate the qualitative differences between
the new tensor PCA algorithms we propose in this paper and previously-known algorithms. The
model is semi-random and semi-adversarial. Such models are often used in average-case complexity
theory to distinguish between algorithms which work by solving robust maximum-likelihood-style
problems and those which work by exploiting some more fragile property of a particular choice of
input distribution.
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Problem 4 (Tensor PCA in the Semi-Random Model) Let T = τ · v⊗3
0 + A, where v0 ∈ R

n and A
has independent entries from N(0, 1). Let Q ∈ Rn×n with ‖ Id − Q‖ 6 O(n−1/4), chosen adversarially
depending on T. Let T′ be the 3-tensor whose n2 × n matrix flattening is T Q. (That is, each row of T
has been multiplied by a matrix which is close to identity.) On input T′, recover v.

Here we show that Algorithm 1 succeeds in recovering v in the semi-random model.

Theorem 15 Let T′ be the semi-random-model tensor PCA input, with τ > n3/4 log(n)1/4/ε. With
high probability over randomness in T′, Algorithm 1 outputs a vector v with 〈v, v0〉 > 1 − O(ε).

Proof By Lemma 14, it will suffice to show that B := (T′ − τ · v⊗3
0 ) has ẼB(x) 6 ε′τ · (Ẽ ‖x‖4)3/4 for

any degree-4 pseudo-distribution {x}, for some ε′ = Θ(ε). We rewrite B as

B = (A + τ · v0(v0 ⊗ v0)T )(Q − Id) + A

where A has independent entries from N(0, 1). Let {x} be a degree-4 pseudo-distribution. Let f (x) =

〈x⊗2, (A + τ · v0(v0 ⊗ v0)T )(Q− Id)x〉. By Corollary 12, ẼB(x) = Ẽ f (x) + O(n3/4 log(n)1/4)(Ẽ ‖x‖4)3/4

with high probability. By triangle inequality and sub-multiplicativity of the operator norm, we get
that with high probability

‖(A + τ · v0(v0 ⊗ v0))(Q − Id)‖ 6 (‖A‖ + τ)‖Q − Id ‖ 6 O(n3/4) ,

where we have also used Lemma 55 to bound ‖A‖ 6 O(n) with high probability and our assumptions
on τ and ‖Q − Id ‖. By an argument similar to that in the proof of Theorem 10 (which may be found
in Lemma 51), this yields Ẽ f (x) 6 O(n3/4)(Ẽ ‖x‖4)3/4 as desired.

5. Conclusion

5.1. Open Problems

One theme in this work has been efficiently certifying upper bounds on homogeneous polynomials
with random coefficients. It is an interesting question to see whether one can (perhaps with the degree
d > 4 SoS meta-algorithm) give an algorithm certifying a bound of n3/4−δ over the unit sphere on
a degree 3 polynomial with standard Gaussian coefficients. Such an algorithm would likely yield
improved signal-to-noise guarantees for tensor PCA, and would be of interest in its own right.

Conversely, another problem is to extend our lower bound to handle degree d > 4 SoS. Together,
these two problems suggest (as was independently suggested to us by Boaz Barak) the problem of
characterizing the SoS degree required to certify a bound of n3/4−δ as above.

Another problem is to simplify the linear time algorithm we give for tensor PCA under symmetric
noise. Montanari and Richard’s conjecture can be interpreted to say that the random rotations and
decomposition into submatrices involved in our algorithm are unnecessary, and that in fact our linear
time algorithm for recovery under asymmetric noise actually succeeds in the symmetric case.
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Our SoS algorithm in the preceding section turned on the existence of the λ-boundedness
certificate

∑
i Ai ⊗ Ai, where Ai are the slices of a random tensor A. Let T = τ · v⊗3

0 + A be the spiked-
tensor input to tensor PCA. We could look at the matrix

∑
i Ti ⊗ Ti as a candidate λ-boundedness

certificate for T(x). The spectrum of this matrix must not admit the spectral bound that
∑

i Ai ⊗ Ai

does, because T(x) is not globally bounded: it has a large global maximum near the signal v. This
maximum plants a single large singular value in the spectrum of

∑
i Ti ⊗ Ti. The associated singular

vector is readily decoded to recover the signal.
Before stating and analyzing this fast linear-algebraic algorithm, we situate it more firmly in the

SoS framework. In the following, we discuss spectral SoS, a convex relaxation of Problem 2 obtained
by weakening the full-power SoS relaxation. We show that the spectrum of the aforementioned∑

i Ti ⊗ Ti can be viewed as approximately solving the spectral SoS relaxation. This gives the
fast, certifying algorithm of Theorem 4. We also interpret the tensor unfolding algorithm given by
Montanari and Richard for TPCA in the spiked tensor model as giving a more subtle approximate
solution to the spectral SoS relaxation. We prove a conjecture by those authors that the algorithm
successfully recovers the TPCA signal at the same signal-to-noise ratio as our other algorithms, up to
a small pre-processing step in the algorithm; this proves Theorem 3 (Montanari and Richard, 2014).
This last algorithm, however, succeeds for somewhat different reasons than the others, and we will
show that it consequently fails to certify its own success and that it is not robust to a certain kind of
semi-adversarial choice of noise.

A.1. The Spectral SoS Relaxation

A.1.1. THE SOS ALGORITHM: MATRIX VIEW

To obtain spectral SoS, the convex relaxation of Problem 2 which we will be able to (approximately)
solve quickly in the random case, we first need to return to the full-strength SoS relaxation and
examine it from a more linear-algebraic standpoint.

We have seen in Section 2.2 that a homogeneous p ∈ R[x]2d may be represented as an nd × nd

matrix whose entries correspond to coefficients of p. A similar fact is true for non-homogeneous
p. Let #tuples(d) = 1 + n + n2 + · · · + nd/2. Let x⊗6d/2 := (x⊗0, x, x⊗2, . . . , x⊗d/2). Then p ∈ R[x]6d

can be represented as an #tuples(d) × #tuples(d) matrix; we say a matrix M of these dimensions is a
matrix representation of p if 〈x6⊗d/2,Mx6⊗d/2〉 = p(x). For this section, we letMp denote the set of
all such matrix representation of p.

A degree-d pseudo-distribution {x} can similarly be represented as an R#tuples(d)×#tuples(d) matrix.
We say that M is a matrix representation for {x} if M[α, β] = Ẽ xαxβ wheneverα and β are multi-
indices with |α|, |β| 6 d.

Formulated this way, if M{x} is the matrix representation of {x} and Mp ∈ Mp for some p ∈
R[x]62d, then Ẽ p(x) = 〈M{x},Mp〉. In this sense, pseudo-distributions and polynomials, each
represented as matrices, are dual under the trace inner product on matrices.

We are interested in optimization of polynomials over the sphere, and we have been looking at
pseudo-distribution {x} satisfying {‖x‖2 − 1 = 0}. From this matrix point of view, the polynomial
‖x‖2 − 1 corresponds to a vector w ∈ R#tuples(d) (in particular, the vector w so that wwT is a matrix
representation of (‖x‖2 − 1)2), and a degree-4 pseudo-distribution {x} satisfies {‖x‖2 − 1 = 0} if and
only if w ∈ ker M{x}.

A polynomial may have many matrix representations, but a pseudo-distribution has just one: a
matrix representation of a pseudo-distribution must obey strong symmetry conditions in order to
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assign the same pseudo-expectation to every representation of the same polynomial. We will have
much more to say about constructing matrices satisfying these symmetry conditions when we state
and prove our lower bounds, but here we will in fact profit from relaxing these symmetry constraints.

Let p ∈ R[x]62d. In the matrix view, the SoS relaxation of the problem max‖x‖2=1 p(x) is the
following convex program.

max
M:w∈ker M

M�0
〈M,M1〉=1

min
Mp∈Mp

〈M,Mp〉 . (A.1)

It may not be immediately obvious why this program optimizes only over M which are matrix
representations of pseudo-distributions. If, however, some M does not obey the requisite symmetries,
then minMp∈Mp〈M,Mp〉 = −∞, since the asymmetry may be exploited by careful choice of Mp ∈ Mp.
Thus, at optimality this program yields M which is the matrix representation of a pseudo-distribution
{x} satisfying {‖x‖2 − 1 = 0}.

A.1.2. RELAXING TO THE DEGREE-4 DUAL

We now formulate spectral SoS. In our analysis of full-power SoS for tensor PCA we have primarily
considered pseudo-expectations of homogeneous degree-4 polynomials; our first step in further
relaxing SoS is to project from R[x]64 to R[x]4. Thus, now our matrices M,M′ will be in Rn2×n2

rather than R#tuples(2)×#tuples(2). The projection of the constraint on the kernel in the non-homogeneous
case implies Tr M = 1 in the homogeneous case. The projected program is

max
Tr M=1

M�0

min
Mp∈Mp

〈M,M′〉 .

We modify this a bit to make explicit that the relaxation is allowed to add and subtract arbitrary
matrix representations of the zero polynomial; in particular M‖x‖4 − Id for any M‖x‖4 ∈ M‖x‖4 . This
program is the same as the one which precedes it.

max
Tr M=1

M�0

min
Mp∈Mp

M
‖x‖4∈M‖x‖4

c∈R

〈M,Mp − c · M‖x‖4〉 + c . (A.2)

By weak duality, we can interchange the min and the max in (A.2) to obtain the dual program:

max
Tr M=1

M�0

min
Mp∈Mp

M
‖x‖4∈M‖x‖4

c∈R

〈M,Mp − c · M‖x‖4〉 6 min
Mp∈Mp

M
‖x‖4∈M‖x‖4

c∈R

max
Tr M=1

M�0

〈M,Mp − c · M‖x‖4〉 + c (A.3)

= min
Mp∈Mp

M
‖x‖4∈M‖x‖4

c∈R

max
‖v‖=1
〈vvT ,Mp − c · M‖x‖4〉 + c (A.4)

We call this dual program the spectral SoS relaxation of max‖x‖=1 p(x). If p =
∑

i〈x, Aix〉 for A with
independent entries fromN(0, 1), the spectral SoS relaxation achieves the same bound as our analysis
of the full-strength SoS relaxation: for such p, the spectral SoS relaxation is at most O(n3/2 log(n)1/2)
with high probability. The reason is exactly the same as in our analysis of the full-strength SoS
relaxation: the matrix

∑
i Ai ⊗ Ai, whose spectrum we used before to bound the full-strength SoS

relaxation, is still a feasible dual solution.
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A.2. Recovery via the
∑

i Ti ⊗ Ti Spectral SoS Solution

Let T = τ·v⊗3
0 +A be the spiked-tensor input to tensor PCA. We know from our initial characterization

of SoS proofs of boundedness for degree-3 polynomials that the polynomial T′(x) := (x⊗ x)T (
∑

i Ti⊗

Ti)(x ⊗ x) gives SoS-certifiable upper bounds on T(x) on the unit sphere. We consider the spectral
SoS relaxation of max‖x‖=1 T′(x),

min
MT(x)∈MT(x)
M
‖x‖4∈M‖x‖4

c∈R

‖MT(x) − c · M‖x‖4‖ + c .

Our goal now is to guess a good M′ ∈ MT(x). We will take as our dual-feasible solution the top
singular vector of

∑
i Ti ⊗ Ti −E

∑
i Ai ⊗ Ai. This is dual feasible with c = n, since routine calculation

gives 〈x⊗2, (E
∑

i Ai ⊗ Ai)x⊗2〉 = ‖x‖4. This top singular vector, which differentiates the spectrum of∑
i Ti ⊗ Ti from that of

∑
i Ai ⊗ Ai, is exactly the manifestation of the signal v0 which differentiates

T(x) from A(x). The following algorithm and analysis captures this.

Recovery and Certification with
∑

i Ti ⊗ Ti

Input: T = τ · v⊗3
0 + A, where v0 ∈ R

n and A is a 3-tensor.
Goal: Find v ∈ Rn with |〈v, v0〉| > 1 − o(1).

Algorithm 3 (Recovery) Compute the top (left or right) singular vector v′ of M :=
∑

i Ti ⊗ Ti −

E
∑

i Ai ⊗ Ai. Reshape v′ into an n × n matrix V ′. Compute the top singular vector v of V ′. Output
v/‖v‖.

Algorithm 4 (Certification) Run Algorithm 3 to obtain v. Let S := T − v⊗3. Compute the top
singular value λ of ∑

i

S i ⊗ S i − E
∑

i

Ai ⊗ Ai .

If λ 6 O(n3/2 log(n)1/2), output CERTIFY. Otherwise, output FAIL.

The following theorem describes the behavior of Algorithm 3 and Algorithm 4 and gives a proof of
Theorem 4 and Corollary 4.

Theorem 16 (Formal version of Theorem 4) Let T = τ · v⊗3
0 + A, where v0 ∈ R

n and A has
independent entries from N(0, 1). In other words, we are given an instance of Problem 1. Let
τ > n3/4 log(n)1/4/ε. Then:

— With high probability, Algorithm 3 returns v with 〈v, v0〉
2 > 1 − O(ε).

— If Algorithm 4 outputs CERTIFY then T(x) 6 τ · 〈v, x〉3 + O(n3/4 log(n)1/4) (regardless of the
distribution of A). If A is distributed as above, then Algorithm 4 outputs CERTIFY with high
probability.

— Both Algorithm 3 and Algorithm 4 can be implemented in time O(n4 log(1/ε)).
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The argument that Algorithm 3 recovers a good vector in the spiked tensor model comes in three
parts: we show that under appropriate regularity conditions on the noise A that

∑
i Ti ⊗ Ti − E Ai ⊗ Ai

has a good singular vector, then that with high probability in the spiked tensor model those regularity
conditions hold, and finally that the good singular vector can be used to recover the signal.

Lemma 17 Let T = τ ·v⊗3
0 +A be an input tensor. Suppose ‖

∑
i Ai⊗Ai−E

∑
i Ai⊗Ai‖ 6 ετ

2 and that
‖
∑

i v0(i)Ai‖ 6 ετ. Then the top (left or right) singular vector v′ of M has 〈v′, v0 ⊗ v0〉
2 > 1 − O(ε).

Lemma 18 Let T = τ · v⊗3
0 + A. Suppose A has independent entries from N(0, 1). Then with high

probability we have ‖
∑

i Ai ⊗ Ai − E
∑

i Ai ⊗ Ai‖ 6 O(n3/2 log(n)1/2) and ‖
∑

i v0(i)Ai‖ 6 O(
√

n).

Lemma 19 Let v0 ∈ R
n and v′ ∈ Rn2

be unit vectors so that 〈v′, v0 ⊗ v0〉 > 1 − O(ε). Then the top
right singular vector v of the n × n matrix folding V ′ of v′ satisfies 〈v, v0〉 > 1 − O(ε).

A similar fact to Lemma 19 appears in (Montanari and Richard, 2014).
The proofs of Lemma 17 and Lemma 19 follow here. The proof of Lemma 18 uses only standard

concentration of measure arguments; we defer it to Section E.
Proof [Proof of Lemma 17] We expand M as follows.

M =
∑

i

τ2 · (v⊗3
0 )i ⊗ (v⊗3

0 )i + τ · ((v⊗3
0 )i ⊗ Ai + Ai ⊗ (v⊗3

0 )i) + Ai ⊗ Ai − E Ai ⊗ Ai

= τ2 · (v0 ⊗ v0)(v0 ⊗ v0)T + τ · v0vT
0 ⊗

∑
i

v0(i)Ai + τ ·
∑

i

v0(i)Ai ⊗ v0vT
0 + Ai ⊗ Ai − E Ai ⊗ Ai .

By assumption, the noise term is bounded in operator norm: we have ‖
∑

i Ai⊗Ai−E
∑

i Ai⊗Ai‖ 6 ετ
2.

Similarly, by assumption the cross-term has ‖τ · v0vT
0 ⊗

∑
i v0(i)Ai‖ 6 ετ

2.

τ ·
∑

i

Pu⊥((v⊗3
0 )i ⊗ Ai + Ai ⊗ (v⊗3

0 )i)Pu⊥ = τ ·
∑

i

v0(i)Pu⊥(v0vT
0 ⊗ Ai + Ai ⊗ v0vT

0 )Pu⊥ .

All in all, by triangle inequality,∥∥∥∥∥∥∥τ · v0vT
0 ⊗

∑
i

v0(i)Ai + τ ·
∑

i

v0(i)Ai ⊗ v0vT
0 + Ai ⊗ Ai − E Ai ⊗ Ai

∥∥∥∥∥∥∥ 6 O(ετ2) .

Again by triangle inequality,

‖M‖ > (v0 ⊗ v0)T M(v0 ⊗ v0) = τ2 − O(ετ2) .

Let u,w be the top left and right singular vectors of M. We have

uT Mw = τ2 · 〈u, v0 ⊗ v0〉〈w, v0 ⊗ v0〉 + O(ετ2) > τ2 − O(ετ2) ,

so rearranging gives the result.

Proof [Proof of Lemma 19] Let v0, v′,V ′, v, be as in the lemma statement. We know v is the
maximizer of max‖w‖,‖w′‖=1 wT V ′w′. By assumption,

vT
0 V ′v0 = 〈v′, v0 ⊗ v0〉 > 1 − O(ε).

18



TENSOR PCA

Thus, the top singular value of V ′ is at least 1 − O(ε), and since ‖v′‖ is a unit vector, the Frobenius
norm of V ′ is 1 and so all the rest of the singular values are O(ε). Expressing v0 in the right singular
basis of V ′ and examining the norm of V ′v0 completes the proof.

Proof [Proof of Theorem 16] The first claim, that Algorithm 3 returns a good vector, follows from
the previous three lemmas, Lemma 17, Lemma 18, Lemma 19. The next, for Algorithm 4, follows
from noting that

∑
i S i ⊗ S i − E

∑
i Ai ⊗ Ai is a feasible solution to the spectral SoS dual. For the

claimed runtime, since we are working with matrices of size n4, it will be enough to show that the
top singular vector of M and the top singular value of

∑
i S i ⊗ S i − E

∑
i Ai ⊗ Ai can be recovered

with O(poly log(n)) matrix-vector multiplies.
In the first case, we start by observing that it is enough to find a vector w which has 〈w, v′〉 > 1−ε,

where v′ is a top singular vector of M. Let λ1, λ2 be the top two singular values of M. The analysis
of the algorithm already showed that λ1/λ2 > Ω(1/ε). Standard analysis of the matrix power method
now yields that O(log(1/ε)) iterations will suffice.

We finally turn to the top singular value of
∑

i S i ⊗ S i − E
∑

i Ai ⊗ Ai. Here the matrix may not
have a spectral gap, but all we need to do is ensure that the top singular value is no more than
O(n3/2 log(n)1/2). We may assume that some singular value is greater than O(n3/2 log(n)1/2). If all of
them are, then a single matrix-vector multiply initialized with a random vector will discover this.
Otherwise, there is a constant spectral gap, so a standard analysis of matrix power method says that
within O(log n) iterations a singular value greater than O(n3/2 log(n)1/2) will be found, if it exists.

A.3. Nearly-Linear-Time Recovery via Tensor Unfolding and Spectral SoS

On input T = τ · v⊗3
0 + A, where as usual v0 ∈ R

n and A has independent entries from N(0, 1),
Montanari and Richard’s Tensor Unfolding algorithm computes the top singular vector u of the
squarest-possible flattening of T into a matrix. It then extracts v with 〈v, v0〉

2 > 1 − o(1) from u with
a second singular vector computation.

Recovery with TT T , a.k.a. Tensor Unfolding

Input: T = τ · v⊗3
0 + A, where v0 ∈ R

n and A is a 3-tensor.
Goal: Find v ∈ Rn with |〈v, v0〉| > 1 − o(1).

Algorithm 5 (Recovery) Compute the top eigenvector v of M := T T T. Output v.

We show that this algorithm successfully recovers a vector v with 〈v, v0〉
2 > 1 − O(ε) when

τ > n3/4/ε. Montanari and Richard conjectured this but were only able to show it when τ > n. We
also show how to implement the algorithm in time Õ(n3), that is to say, in time nearly-linear in the
input size.

Despite its a priori simplicity, the analysis of Algorithm 5 is more subtle than for any of our other
algorithms. This would not be true for even-order tensors, for which the square matrix unfolding
tensor has one singular value asymptotically larger than all the rest, and indeed the corresponding
singular vector is well-correlated with v0. However, in the case of odd-order tensors the unfolding
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has no spectral gap. Instead, the signal v0 has some second-order effect on the spectrum of the matrix
unfolding, which is enough to recover it.

We first situate this algorithm in the SoS framework. In the previous section we examined the
feasible solution

∑
i Ti ⊗ Ti − E

∑
i Ai ⊗ Ai to the spectral SoS relaxation of max‖x‖=1 T(x). The tensor

unfolding algorithm works by examining the top singular vector of the flattening T of T, which is the
top eigenvector of the n × n matrix M = T T T , which in turn has the same spectrum as the n2 × n2

matrix TT T . The latter is also a feasible dual solution to the spectral SoS relaxation of max‖x‖=1 T(x).
However, the bound it provides on max‖x‖=1 T(x) is much worse than that given by

∑
i Ti ⊗ Ti. The

latter, as we saw in the preceding section, gives the bound O(n3/4 log(n)1/4). The former, by contrast,
gives only O(n), which is the operator norm of a random n2 × n matrix (see Lemma 55). This n
versus n3/4 is the same as the gap between Montanari and Richard’s conjectured bound and what
they were able to prove.

Theorem 20 For an instance of Problem 1 with τ > n3/4/ε, with high probability Algorithm 5
recovers a vector v with 〈v, v0〉

2 > 1 − O(ε). Furthermore, Algorithm 5 can be implemented in time
Õ(n3).

Lemma 21 Let T = τ · v⊗3
0 + A where v0 ∈ R

n is a unit vector, so an instance of Problem 1. Suppose
A satisfies AT A = C · Idn×n + E for some C > 0 and E with ‖E‖ 6 ετ2 and that ‖AT (v0 ⊗ v0)‖ 6 ετ.
Let u be the top left singular vector of the matrix T . Then 〈v0, u〉2 > 1 − O(ε).

Proof The vector u is the top eigenvector of the n × n matrix TT T , which is also the top eigenvector
of M := TT T −C · Id. We expand:

uT Mu = uT
[
τ2 · v0vT

0 + τ · v0(v0 ⊗ v0)T A + τ · AT (v0 ⊗ v0)vT
0 + E

]
u

= τ2 · 〈u, v0〉
2 + uT

[
τ · v0(v0 ⊗ v0)T A + τ · AT (v0 ⊗ v0)vT

0 + E
]

u

6 τ2〈u, v0〉
2 + O(ετ2) .

Again by triangle inequality, uT Mu > vT
0 Mv = τ2−O(ετ2). So rearranging we get 〈u, v0〉

2 > 1−O(ε)
as desired.

The following lemma is a consequence of standard matrix concentration inequalities; we defer
its proof to Section E, Lemma 61.

Lemma 22 Let A have independent entries from N(0, 1). Let v0 ∈ R
n be a unit vector. With

high probability, the matrix A satisfies AT A = n2 · Id + E for some E with ‖E‖ 6 O(n3/2) and
‖AT (v0 ⊗ v0)‖ 6 O(

√
n log n).

The final component of a proof of Theorem 20 is to show how it can be implemented in time
Õ(n3). Since M factors as T T T , a matrix-vector multiply by M can be implemented in time O(n3).
Unfortunately, M does not have an adequate eigenvalue gap to make matrix power method efficient.
As we know from Lemma 22, suppressing εs and constants, M has eigenvalues in the range n2 ± n3/2.
Thus, the eigenvalue gap of M is at most g = O(1 + 1/

√
n). For any number k of matrix-vector

multiplies with k 6 n1/2−δ, the eigenvalue gap will become at most (1 + 1/
√

n)n1/2−δ, which is
subconstant. To get around this problem, we employ a standard trick to improve spectral gaps of
matrices close to C · Id: remove C · Id.
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Lemma 23 Under the assumptions of Theorem 20, Algorithm 5 can be implemented in time (n3)
(which is linear in the input size, n3).

Proof Note that the top eigenvector of M is the same as that of M − n2 · Id. The latter matrix, by the
same analysis as in Lemma 21, is given by

M − n2 · Id = τ2 · v0vT
0 + M′

where ‖M′‖ = O(ετ2). Note also that a matrix-vector multiply by M − n2 · Id can still be done in time
O(n3). Thus, M − n2 · Id has eigenvalue gap Ω(1/ε), which is enough so that the whole algorithm
runs in time Õ(n3).

Proof [Proof of Theorem 20] Immediate from Lemma 21, Lemma 22, and Lemma 23.

A.4. Fast Recovery in the Semi-Random Model

There is a qualitative difference between the aggregate matrix statistics needed by our certifying
algorithms (Algorithm 1, Algorithm 2, Algorithm 3, Algorithm 4) and those needed by rounding the
tensor unfolding solution spectral SoS Algorithm 5. In a precise sense, the needs of the latter are
greater. The former algorithms rely only on first-order behavior of the spectra of a tensor unfolding,
while the latter relies on second-order spectral behavior. Since it uses second-order properties of the
randomness, Algorithm 5 fails in the semi-random model.

Theorem 24 Let T = τ · v⊗3
0 + A, where v0 ∈ R

n is a unit vector and A has independent entries from
N(0, 1). There is τ = Ω(n7/8) so that with high probability there is an adversarial choice of Q with
‖Q − Id ‖ 6 O(n−1/4) so that the matrix (T Q)T T Q = n2 · Id. In particular, for such τ, Algorithm 5
cannot recover the signal v0.

Proof Let M be the n × n matrix M := T T T . Let Q = n ·M−1/2. It is clear that (T Q)T T Q = n2 Id. It
suffices to show that ‖Q − Id ‖ 6 n1/4 with high probability. We expand the matrix M as

M = τ2 · v0vT
0 + τ · v0(v0 ⊗ v0)T A + τ · AT (v0 ⊗ v0)vT

0 + AT A .

By Lemma 22, AT A = n2 · Id + E for some E with ‖E‖ 6 O(n3/2) and ‖AT (v0 ⊗ v0)‖ 6 O(
√

n log n),
both with high probability. Thus, the eigenvalues of M all lie in the range n2±n1+3/4. The eigenvalues
of Q in turn lie in the range

n
(n2 ± O(n1+3/4))1/2 =

1
(1 ± O(n−1/4))1/2 =

1
1 ± O(n1/4)

.

Finally, the eigenvalues of Q − Id lie in the range 1
1±O(n1/4) − 1 = ±O(n−1/4), so we are done.

The argument that that Algorithm 3 and Algorithm 4 still succeed in the semi-random model is
routine; for completeness we discuss here the necessary changes to the proof of Theorem 16. The
non-probabilistic certification claims made in Theorem 16 are independent of the input model, so we
show that Algorithm 3 still finds the signal with high probability and that Algorithm 4 still fails only
with only a small probability.
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Theorem 25 In the semi-random model, ε > n−1/4 and τ > n3/4 log(n)1/4/ε, with high probability,
Algorithm 3 returns v with 〈v, v0〉

2 > 1 − O(ε) and Algorithm 4 outputs CERTIFY.

Proof We discuss the necessary modifications to the proof of Theorem 16. Since ε > n−1/4,
we have that ‖(Q − Id)v0‖ 6 O(ε). It suffices then to show that the probabilistic bounds in
Lemma 18 hold with A replaced by AQ. Note that this means each Ai becomes AiQ. By assumption,
‖Q ⊗ Q − Id ⊗ Id ‖ 6 O(ε), so the probabilistic bound on ‖

∑
i Ai ⊗ Ai = E

∑
i Ai ⊗ Ai‖ carries over to

the semi-random setting. A similar argument holds for
∑

i v0(i)AiQ, which is enough to complete the
proof.

A.5. Fast Recovery with Symmetric Noise

We suppose now that A is a symmetric Gaussian noise tensor; that is, that A is the average of Aπ
0

over all π ∈ Sk, for some order-3 tensor A0 with iid standard Gaussian entries.
It was conjectured by Montanari and Richard (Montanari and Richard, 2014) that the tensor

unfolding technique can recover the signal vector v0 in the single-spike model T = τv⊗3
0 + A with

signal-to-noise ratio τ > Ω̃(n3/4) under both asymmetric and symmetric noise.
Our previous techniques fail in this symmetric noise scenario due to lack of independence

between the entries of the noise tensor. However, we sidestep that issue here by restricting our
attention to an asymmetric block of the input tensor.

The resulting algorithm is not precisely identical to the tensor unfolding algorithm investigated
by Montanari and Richard, but is based on tensor unfolding with only superficial modifications.

Fast Recovery under Symmetric Noise

Input: T = τ · v⊗3
0 + A, where v0 ∈ R

n and A is a 3-tensor.
Goal: Find v ∈ Rn with |〈v, v0〉| > 1 − o(1).

Algorithm 6 (Recovery) Take X,Y,Z a random partition of [n], and R a random rotation of Rn.
Let PX , PY , and PZ be the diagonal projectors onto the coordinates indicated by X, Y, and Z. Let
U := R⊗3T, so that we have the matrix unfolding U := (R ⊗ R)TRT Using the matrix power method,
compute the top singular vectors vX , vY , and vZ respectively of the matrices

MX := PXUT (PY ⊗ PZ)UPX − n2/9 · Id

MY := PYUT (PZ ⊗ PX)UPY − n2/9 · Id

MZ := PZUT (PX ⊗ PY )UPZ − n2/9 · Id .

Output the normalization of R−1(vX + vY + vZ).

Remark 26 (Implementation of Algorithm 6 in nearly-linear time.) It is possible to implement
each iteration of the matrix power method in Algorithm 6 in linear time. We focus on multiplying a
vector by MX in linear time; the other cases follow similarly.

We can expand MX = PXRT T (R ⊗ R)T (PY ⊗ PZ)(R ⊗ R)TRT PX − n2/9 · Id. It is simple enough
to multiply an n-dimensional vector by PX , R, RT , T , and Id in linear time. Furthermore multiplying
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an n2-dimensional vector by T T is also a simple linear time operation. The trickier part lies in
multiplying an n2-dimensional vector, say v, by the n2-by-n2 matrix (R ⊗ R)T (PY ⊗ PZ)(R ⊗ R).

To accomplish this, we simply reflatten our tensors. Let V be the n-by-n matrix flattening of v.
Then we compute the matrix RT PYR·V ·RT PZ

T R, and return its flattening back into an n2-dimensional
vector, and this will be equal to (R ⊗ R)T (PY ⊗ PZ)(R ⊗ R) v.

Lemma 27 Given a unit vector u ∈ Rn, a random rotation R over Rn, and a projection P to an
m-dimensional subspace, with high probability∣∣∣∣‖PRu‖2 − m/n

∣∣∣∣ 6 O(
√

m/n2 log m) .

Proof Let γ be a random variable distributed as the norm of a vector in Rn with entries independently
drawn from N(0, 1/n). Then because Gaussian vectors are rotationally invariant and Ru is a random
unit vector, the coordinates of γRu are independent and Gaussian in any orthogonal basis.

So γ2‖PRu‖2 is the sum of the squares of m independent variables drawn from N(0, 1/n). By
a Bernstein inequality,

∣∣∣γ2‖PRu‖2 − m/n
∣∣∣ 6 O(

√
m/n2 log m) with high probability. Also by a

Bernstein inequality, γ2 − 1 < O(
√

1/n log n) with high probability.

Theorem 28 For τ > n3/4/ε, with high probability, Algorithm 6 recovers a vector v with 〈v, v0〉 >
1 − O(ε) when A is a symmetric Gaussian noise tensor (as in Problem 3) and ε > log(n)/

√
n.

Furthermore the matrix power iteration steps in Algorithm 6 each converge within Õ(− log(ε))
steps, so that the algorithm overall runs in almost linear time Õ(n3 log(1/ε)).

Proof Name the projections UX := (PY ⊗PZ)UPX , UY := (PZ ⊗PX)UPY , and UZ := (PX ⊗PY )UPZ .
First off, U = τ(Rv0)⊗3 + A′ where A′ is a symmetric Gaussian tensor (distributed identically to

A). This follows by noting that multiplication by R⊗3 commutes with permutation of indices, so that
(R⊗3A)π = R⊗3Aπ, and from the rotational symmetry of Gaussian tensors.

Thus UX = τ(PY ⊗ PZ)(R ⊗ R)(v0 ⊗ v0)(PXRv0)T + (PY ⊗ PZ)A′PX , and

MX + n2/9 · Id = UT
X UX

= τ2‖PYRv0‖
2‖PZRv0‖

2(PXRv0)(PXRv0)T (A.5)

+ τ(PXRv0)(v0 ⊗ v0)T (R ⊗ R)T (PY ⊗ PZ)A′PX (A.6)

+ τPXA′T (PY ⊗ PZ)(R ⊗ R)(v0 ⊗ v0)(PXRv0)T (A.7)

+ PXA′T (PY ⊗ PZ)A′PX . (A.8)

Let S refer to Expression A.5. By Lemma 27,
∣∣∣‖PRv0‖

2 − 1
3

∣∣∣ < O(
√

1/n log n) with high
probability for P ∈ {PX , PY , PZ}. Hence S = ( 1

9 ± O(
√

1/n log n))τ2(PXRv0)(PXRv0)T and ‖S ‖ =

( 1
27 ± O(

√
1/n log n))τ2.

Let C refer to Expression A.6 so that Expression A.7 is CT . Let also A′′ = (PY ⊗ PZ)A′PX .
Note that, once the identically-zero rows and columns of A′′ are removed, A′′ is a matrix of iid
standard Gaussian entries. Finally, let v′′ = PYRv0 ⊗ PZRv0. By some substitution and by noting that
‖PXR‖ 6 1, we have that ‖C‖ 6 τ ‖v0v′′T A′′‖. Hence by Lemma 61, ‖C‖ 6 O(ετ2).

Let N refer to Expression A.8. Note that N = A′′T A′′. Therefore by Lemma 22, ‖N −n2/9 · Id ‖ 6
O(n3/2).
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Thus MX = S + C + (N − n2/9 · Id), so that ‖MX − S ‖ 6 O(ετ2). Since S is rank-one and has
‖S ‖ > Ω(τ2), we conclude that matrix power iteration converges in Õ(− log ε) steps.

The recovered eigenvector vX satisfies 〈vX ,MXvX〉 > Ω(τ2) and 〈vX , (MX − S )vX〉 6 O(ετ2) and
therefore 〈vX , S vX〉 = ( 1

27 ± O(ε +
√

1/n log n))τ2. Substituting in the expression for S , we conclude
that 〈PXRv0, vX〉 = ( 1√

3
± O(ε +

√
1/n log n)).

The analyses for vY and vZ follow in the same way. Hence

〈vX + vY + vZ ,Rv0〉 = 〈vX , PXRv0〉 + 〈vY , PYRv0〉 + 〈vZ , PZRv0〉

>
√

3 − O(ε +
√

1/n log n) .

At the same time, since vX , vY , and vZ are each orthogonal to each other, ‖vX + vY + vZ‖ =
√

3. Hence
with the output vector being v := R−1(vX + vY + vZ)/‖vX + vY + vZ‖, we have

〈v, v0〉 = 〈Rv,Rv0〉 = 1√
3
〈vX + vY + vZ ,Rv0〉 > 1 − O(ε +

√
1/n log n) .

A.6. Numerical Simulations
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Figure 1: Numerical simulation of Algorithm 3 (“Nearly-optimal spectral SoS” implemented with matrix power method),
and two implementations of Algorithm 5 (“Accelerated power method”/“Nearly-linear tensor unfolding” and “Naive power
method”/“Naive tensor unfolding”. Simulations were run in Julia on a Dell Optiplex 7010 running Ubuntu 12.04 with two
Intel Core i7 3770 processors at 3.40 ghz and 16GB of RAM. Plots created with Gadfly. Error bars denote 95% confidence
intervals. Matrix-vector multiply experiments were conducted with n = 200. Reported matrix-vector multiply counts are
the average of 50 independent trials. Reported times are in cpu-seconds and are the average of 10 independent trials. Note
that both axes in the right-hand plot are log scaled.

We report now the results of some simple numerical simulations of the algorithms from this
section. In particular, we show that the asymptotic running time differences among Algorithm 3,
Algorithm 5 implemented naïvely, and the linear-time implementation of Algorithm 5 are apparent
at reasonable values of n, e.g. n = 200.
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Specifics of our experiments are given in Figure 1. We find pronounced differences between all
three algorithms. The naïve implementation of Algorithm 5 is markedly slower than the linear imple-
mentation, as measured either by number of matrix-vector multiplies or processor time. Algorithm 3
suffers greatly from the need to construct an n2 × n2 matrix; although we do not count the time to
construct this matrix against its reported running time, the memory requirements are so punishing
that we were unable to collect data beyond n = 100 for this algorithm.

Appendix B. Lower Bounds

We will now prove lower bounds on the performance of degree-4 SoS on random instances of the
degree-4 and degree-3 homogeneous polynomial maximization problems. As an application, we
show that our analysis of degree-4 for Tensor PCA is tight up to a small logarithmic factor in the
signal-to-noise ratio.

Theorem 29 (Part one of formal version of Theorem 2) There is τ = Ω(n) and a function η :
A 7→ {x} mapping 4-tensors to degree-4 pseudo-distributions satisfying {‖x‖2 = 1} so that for every
unit vector v0, if A has unit Gaussian entries, then, with high probability over random choice
of A, the pseudo-expectation Ẽx∼η(A) τ · 〈v0, x〉4 + A(x) is maximal up to constant factors among
Ẽ τ · 〈v0, y〉4 + A(y) over all degree-4 pseudo-distributions {y} satisfying {‖y‖2 = 1}.

Theorem 30 (Part two of formal version of Theorem 2) There is τ = Ω(n3/4/(log n)1/4) and a
function η : A 7→ {x} mapping 3-tensors to degree-4 pseudo-distributions satisfying {‖x‖2 = 1} so
that for every unit vector v0, if A has unit Gaussian entries, then, with high probability over random
choice of A, the pseudo-expectation Ẽx∼η(A) τ · 〈v0, x〉3 + A(x) is maximal up to logarithmic factors
among Ẽ τ · 〈v0, y〉3 + A(y) over all degree-4 pseudo-distributions {y} satisfying {‖y‖2 = 1}.

The existence of the maps η depending only on the random part A of the tensor PCA input
v⊗3

0 + A formalizes the claim from Theorem 2 that no algorithm can reliably recover v0 from the
pseudo-distribution η(A).

The rest of this section is devoted to proving these theorems, which we eventually accomplish in
Section B.2.

B.0.1. DISCUSSION AND OUTLINE OF PROOF

Given a random 3-tensor A, we will take the degree-3 pseudo-moments of our η(A) to be εA, for some
small ε, so that Ẽx∼η(A) A(x) is large. The main question is how to give degree-4 pseudo-moments to
go with this. We will construct these from AAT and its permutations as a 4-tensor under the action of
S4.

We have already seen that a spectral upper bound on one of these permutations,
∑

i Ai ⊗ Ai,
provides a performance guarantee for degree-4 SoS optimization of degree-3 polynomials. It
is not a coincidence that this SoS lower bound depends on the negative eigenvalues of the per-
mutations of AAT . Running the argument for the upper bound in reverse, a pseudo-distribution
{x} satisfying {‖x‖22 = 1} and with ẼA(x) large must (by pseudo-Cauchy-Schwarz) also have
Ẽ〈x⊗2,

(∑
i Ai ⊗ Ai

)
x⊗2〉 large. The permutations of AAT are all matrix representations of that same

polynomial, 〈x⊗2,
(∑

i Ai ⊗ Ai
)

x⊗2〉. Hence ẼA(x) will be large only if the matrix representation
of the pseudo-distribution {x} is well correlated with the permutations of AAT . Since this matrix
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representation will also need to be positive-semidefinite, control on the spectra of permutations of
AAT is therefore the key to our approach.

The general outline of the proof will be as follows:

1. Construct a pseudo-distribution that is well correlated with the permutations of AAT and gives
a large value to ẼA(x), but which is not on the unit sphere.

2. Use a procedure modifying the first and second degree moments of the pseudo-distribution to
force it onto a sphere, at the cost of violating the condition that Ẽ p(X)2 > 0 for all p ∈ R[x]62,
then rescale so it lives on the unit sphere. Thus, we end up with an object that is no longer a
valid pseudo-distribution but a more general linear functional L on polynomials.

3. Quantitatively bound the failure of L to be a pseudo-distribution, and repair it by statistically
mixing the almost-pseudo-distribution with a small amount of the uniform distribution over
the sphere. Show that ẼA(x) is still large for this new pseudo-distribution over the unit sphere.

But before we can state a formal version of our theorem, we will need a few facts about
polynomials, pseudo-distributions, matrices, vectors, and how they are related by symmetries under
actions of permutation groups.

B.1. Polynomials, Vectors, Matrices, and Symmetries, Redux

Here we further develop the matrix view of SoS presented in Section A.1.1.
We will need to use general linear functionals L : R[x]64 → R on polynomials as an inter-

mediate step between matrices and pseudo-distributions. Like pseudo-distributions, each such
linear-functional L has a unique matrix representation ML satisfying certain maximal symmetry
constraints. The matrix ML is positive-semidefinite if and only if L p(x)2 > 0 for every p. If L
satisfies this and L 1 = 1, then L is a pseudo-expectation, and ML is the matrix representation of the
corresponding pseudo-distribution.

B.1.1. MATRICES FOR LINEAR FUNCTIONALS AND MAXIMAL SYMMETRY

Let L : R[x]6d → R. L can be represented as an n#tuples(d) × n#tuples(d) matrix indexed by all d′-tuples
over [n] with d′ 6 d/2. For tuples α, β, this matrix ML is given by

ML[α, β] def
= L xαxβ .

For a linear functional L : R[x]6d → R, a polynomial p(x) ∈ R[x]6d, and a matrix representation Mp

for p we thus have 〈ML,Mp〉 = L p(x).
A polynomial in R[x]6d may have many matrix representations, while for us, a linear functional

L has just one: the matrix ML. This is because in our definition we have required that ML obey the
constraints

ML[α, β] = ML[α′, β′] when xαxβ = xα
′

xβ
′

.

in order that they assign consistent values to each representation of the same polynomial. We call
such matrices maximally symmetric (following Doherty and Wehner (Doherty and Wehner, 2012)).

We have particular interest in the maximally-symmetric version of the identity matrix. The
degree-d symmetrized identity matrix Idsym is the unique maximally symmetric matrix so that

〈x⊗d/2, Idsym x⊗d/2〉 = ‖x‖d2. (B.1)
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The degree d will always be clear from context.
In addition to being a matrix representation of the polynomial ‖x‖d2, the maximally symmetric

matrix Idsym also serves a dual purpose as a linear functional. We will often be concerned with
the expectation operator Eµ for the uniform distribution over the n-sphere, and indeed for every
polynomial p(x) with matrix representation Mp,

Eµ p(x) =
1

n2 + 2n
〈Idsym ,Mp〉 ,

and so Idsym /(n2 + 2n) is the unique matrix representation of Eµ.

B.1.2. THE MONOMIAL-INDEXED (I.E. SYMMETRIC) SUBSPACE

We will also require vector representations of polynomials. We note that R[x]6d/2 has a canonical
embedding into R#tuples(d) as the subspace given by the following family of constraints, expressed in
the basis of d′-tuples for d′ 6 d/2:

R[x]6d/2 ' {p ∈ R#tuples(d) such that pα = pα′ if α′ is a permutation of α } .

We let Π be the projector to this subspace. For any maximally-symmetric M we have ΠMΠ = M,
but the reverse implication is not true (for readers familiar with quantum information: any M which
has M = ΠMΠ is Bose-symmetric, but may not be PPT-symmetric; maximally symmetric matrices
are both. See (Doherty and Wehner, 2012) for further discussion.)

If we restrict attention to the embedding this induces of R[x]d/2 (i.e. the homogeneous degree-d/2
polynomials) into Rnd/2

, the resulting subspace is sometimes called the symmetric subspace and in
other works is denoted by ∨d/2Rn. We sometimes abuse notation and let Π be the projector from
Rnd/2

to the canonical embedding of R[x]d/2.

B.1.3. MAXIMALLY-SYMMETRIC MATRICES FROM TENSORS

The group Sd acts on the set of d-tensors (canonically flattened to matrices Rnbd/2c×ndd/2e) by permuta-
tion of indices. To any such flattened M ∈ Rnbd/2c×ndd/2e , we associate a family of maximally-symmetric
matrices Sym M given by

Sym M def
=

t
∑
π∈Sd

π · M for all t > 0

 .

That is, Sym M represents all scaled averages of M over different possible flattenings of its corre-
sponding d-tensor. The following conditions on a matrix M are thus equivalent: (1) M ∈ Sym M, (2)
M is maximally symmetric, (3) a tensor that flattens to M is invariant under the index-permutation
action of Sd, and (4) M may be considered as a linear functional on the space of homogeneous
polynomials R[x]d. When we construct maximally-symmetric matrices from un-symmetric ones, the
choice of t is somewhat subtle and will be important in not being too wasteful in intermediate steps
of our construction.

There is a more complex group action characterizing maximally-symmetric matrices in
R#tuples(d)×#tuples(d), which projects to the action of Sd′ under the projection of R#tuples(d)×#tuples(d)

to Rnd′/2×nd′/2
. We will never have to work explicitly with this full symmetry group; instead we

will be able to construct linear functionals on R[x]6d (i.e. maximally symmetric matrices in
R#tuples(d)×#tuples(d)) by symmetrizing each degree (i.e. each d′ 6 d) more or less separately.
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B.2. Formal Statement of the Lower Bound

We will warm up with the degree-4 lower bound, which is conceptually somewhat simpler.

Theorem 31 (Degree-4 Lower Bound, General Version) Let A be a 4-tensor and let λ > 0 be a
function of n. Suppose the following conditions hold:

— A is significantly correlated with
∑
π∈S4 Aπ.

〈A,
∑
π∈S4 Aπ〉 > Ω(n4).

— Permutations have lower-bounded spectrum.
For every π ∈ S4, the Hermitian n2 × n2 unfolding 1

2 (Aπ + (Aπ)T ) of Aπ has no eigenvalues
smaller than −λ2.

— Using A as 4-th pseudo-moments does not imply that ‖x‖4 is too large.
For every π ∈ S4, we have 〈Idsym , Aπ〉 6 O(λ2n3/2)

— Using A for 4-th pseudo-moments does not imply first and second degree moments are too
large.
Let L : R[x]4 → R be the linear functional given by the matrix representation ML :=

1
λ2n2

∑
π∈S4 Aπ. Let

δ2
def
= max

i, j

∣∣∣L‖x‖22xix j
∣∣∣

δ′2
def
= max

i

∣∣∣L‖x‖22x2
i

∣∣∣
Then n3/2δ′2 + n2δ2 6 O(1).

Then there is a degree-4 pseudo-distribution {x} satisfying {‖x‖22 = 1} so that ẼA(x) > Ω(n2/λ2) +

Θ(Eµ A(x)).

The degree-3 version of our lower bound requires bounds on the spectra of the flattenings not
just of the 3-tensor A itself but also of the flattenings of an associated 4-tensor, which represents the
polynomial 〈x⊗2, (

∑
i Ai ⊗ Ai)x⊗2〉.

Theorem 32 (Degree-3 Lower Bound, General Version) Let A be a 3-tensor and let λ > 0 be a
function of n. Suppose the following conditions hold:

— A is significantly correlated with
∑
π∈S3 Aπ.

〈A,
∑
π∈S3 Aπ〉 > Ω(n3).

— Permutations have lower-bounded spectrum.
For every π ∈ S3, we have

−2λ2 · Π Id Π �
1
2

Π(σ · Aπ(Aπ)T + σ2 · Aπ(Aπ)T )Π +
1
2

Π(σ · Aπ(Aπ)T + σ2 · Aπ(Aπ)T )T Π .

— Using AAT for 4-th moments does not imply ‖x‖4 is too large.
For every π ∈ S3, we have 〈Idsym , Aπ(Aπ)T 〉 6 O(λ2n2)
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— Using A and AAT for 3rd and 4th moments do not imply first and second degree moments are
too large.
Let π ∈ S3. Let L : R[x]4 → R be the linear functional given by the matrix representation
ML := 1

λ2n2

∑
π′∈S4 π

′ · AAT . Let

δ1
def
= max

i

∣∣∣∣∣ 1
λn3/2 〈Idn×n , Aπi 〉

∣∣∣∣∣
δ2

def
= max

i, j

∣∣∣L‖x‖22xix j
∣∣∣

δ′2
def
= max

i

∣∣∣L‖x‖22x2
i −

1
n L‖x‖

4
2

∣∣∣
Then nδ1 + n3/2δ′2 + n2δ2 6 O(1).

Then there is a degree-4 pseudo-distribution {x} satisfying {‖x‖22 = 1} so that

ẼA(x) > Ω

(
n3/2

λ

)
+ Θ(Eµ A(x)) .

B.2.1. PROOF OF THEOREM 30

We prove the degree-3 corollary; the degree-4 case is almost identical using Theorem 31 and
Lemma 63 in place of their degree-3 counterparts.
Proof Let A be a 3-tensor. If A satisfies the conditions of Theorem 32 with λ = O(n3/4 log(n)1/4),
we let η(A) be the pseudo-distribution described there, with

Ẽx∼η(A) A(x) > Ω

(
n3/2

λ

)
+ Θ(Eµ A(x))

If A does not satisfy the regularity conditions, we let η(A) be the uniform distribution on the unit
sphere. If A has unit Gaussian entries, then Lemma 62 says that the regularity conditions are
satisfied with this choice of λ with high probability. The operator norm of A is at most O(

√
n), so

Eµ A(x) = O(
√

n) (all with high probability) (Tomioka and Suzuki, 2014). We have chosen λ and τ
so that when the conditions of Theorem 32 and the bound on Eµ A(x), obtain,

Ẽx∼η(A) τ · 〈v0, x〉3 + A(x) > Ω

(
n3/4

log(n)1/4

)
.

On the other hand, our arguments on degree-4 SoS certificates for random polynomials
say with high probability every degree-4 pseudo-distribution {y} satisfying {‖y‖2 = 1} has
Ẽ τ · 〈v, y〉3 + A(y) 6 O(n3/4 log(n)1/4). Thus, {x} is nearly optimal and we are done.

B.3. In-depth Preliminaries for Pseudo-Expectation Symmetries

This section gives the preliminaries we will need to construct maximally-symmetric matrices (a.k.a.
functionals L : R[x]64 → R) in what follows. For a non-maximally-symmetric M ∈ Rn2×n2

under
the action of S4 by permutation of indices, the subgroup C3 < S4 represents all the significant
permutations whose spectra may differ from one another in a nontrivial way. The lemmas that follow
will make this more precise. For concreteness, we take C3 = 〈σ〉 with σ = (234), but any other
choice of 3-cycle would lead to a merely syntactic change in the proof.
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Lemma 33 LetD8 < S4 be given byD8 = 〈(12), (34), (13)(24)〉. Let C3 = {(), σ, σ2} = 〈σ〉, where
() denotes the identity in S4. Then {gh : g ∈ D8, h ∈ C3} = S4.

Proof The proof is routine; we provide it here for completeness. Note that C3 is a subgroup of
order 3 in the alternating group A4. This alternating group can be decomposed as A4 = K4 · C3,
where K4 = 〈(12)(34), (13)(24)〉 is a normal subgroup ofA4. We can also decompose S4 = C2 · A4
where C2 = 〈(12)〉 and A4 is a normal subgroup of S4. Finally, D8 = C2 · K4 so by associativity,
S4 = C2 · A4 = C2 · K4 · C3 = D8 · C3.

This lemma has two useful corollaries:

Corollary 34 For any subset S ⊆ S4, we have {ghs : g ∈ D8, h ∈ C3, s ∈ S } = S4.

Corollary 35 Let M ∈ Rn2×n2
. Let the matrix M′ be given by

M′ def
=

1
2

Π
(
M + σ · M + σ2 · M

)
Π +

1
2

Π
(
M + σ · M + σ2 · M

)T
Π .

Then M′ ∈ Sym M.

Proof Observe first that M + σ · M + σ2 · M =
∑
π∈C3 π · M. For arbitrary N ∈ Rn2×n2

, we show that
1
2ΠNΠ + 1

2ΠNT Π = 1
8
∑
π∈D8 π · N. First, conjugation by Π corresponds to averaging M over the

group 〈(12), (34)〉 generated by interchange of indices in row and column indexing pairs, individually.
At the same time, N + NT is the average of M over the matrix transposition permutation group
〈(13)(24)〉. All together,

M′ =
1
8

∑
g∈D8

∑
h∈C3

(gh) · M =
1
8

∑
π∈S4

π · M

and so M′ ∈ Sym M.

We make an useful observation about the nontrivial permutations of M, in the special case that
M = AAT for some 3-tensor A.

Lemma 36 Let A be a 3-tensor and let A ∈ Rn2×n be its flattening, where the first and third modes
lie on the longer axis and the third mode lies on the shorter axis. Let Ai be the n × n matrix slices of
A along the first mode, so that

A =


A1
A2
...

An

 .
Let P : Rn2

→ Rn2
be the orthogonal linear operator so that [Px](i, j) = x( j, i). Then

σ · AAT =

∑
i

Ai ⊗ Ai

 P and σ2 · AAT =
∑

i

Ai ⊗ AT
i .

Proof We observe that AAT [( j1, j2), ( j3, j4)] =
∑

i Ai j1 j2 Ai j3 j4 and that (
∑

i Ai⊗Ai)[( j1, j2), ( j3, j4)] =∑
i Ai j1 j3 Ai j2 j4 . Multiplication by P on the right has the effect of switching the order of the second

indexing pair, so [(
∑

i Ai ⊗ Ai)P][( j1, j2), ( j3, j4)] =
∑

i Ai j1 j4 Ai j2 j3 . From this it is easy to see that
σ · AAT = (234) · AAT = (

∑
i Ai ⊗ Ai)P.
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Similarly, we have that

(σ2AAT )[( j1, j2), ( j3, j4)] = ((243) · AAT )[( j1, j2), ( j3, j4)] =
∑

k

Ai j1 j3 Ai j4 j2 ,

from which we see that σ2 · AAT =
∑

i Ai ⊗ AT
i .

Permutations of the Identity Matrix. The nontrivial permutations of Idn2×n2 are:

Id [( j, k), ( j′, k′)] = δ( j, k)δ( j′, k′)

σ · Id [( j, k), ( j′, k′)] = δ( j, j′)δ(k, k′)

σ2 · Id [( j, k), ( j′, k′)] = δ( j, k′)δ( j′, k) .

Since (Id +σ · Id +σ2 · Id) is invariant under the action ofD8, we have (Id +σ · Id +σ2 · Id) ∈ Sym M;
up to scaling this matrix is the same as Idsym defined in (B.1). We record the following observations:

— Id, σ · Id, and σ2 · Id are all symmetric matrices.

— Up to scaling, Id + σ2 Id projects to identity on the canonical embedding of R[x]2.

— The matrix σ · Id is rank-1, positive-semidefinite, and has Π(σ · Id)Π = σ · Id.

— The scaling [1/(n2 + 2n)](Id + σ · Id + σ2 · Id) is equal to a linear functional Eµ : R[x]4 → R

giving the expectation under the uniform distribution over the unit sphere S n−1.

B.4. Construction of Initial Pseudo-Distributions

We begin by discussing how to create an initial guess at a pseudo-distribution whose third moments
are highly correlated with the polynomial A(x). This initial guess will be a valid pseudo-distribution,
but will fail to be on the unit sphere, and so will require some repairing later on. For now, the method
of creating this initial pseudo-distribution involves using a combination of symmetrization techniques
to ensure that the matrices we construct are well defined as linear functionals over polynomials, and
spectral techniques to establish positive-semidefiniteness of these matrices.

B.4.1. EXTENDING PSEUDO-DISTRIBUTIONS TO DEGREE FOUR

In this section we discuss a construction that takes a linear functional L : R[x]63 → R over degree-3
polynomials and yields a degree-4 pseudo-distribution {x}. We begin by reminding the reader of the
Schur complement criterion for positive-semidefiniteness of block matrices.

Theorem 37 Let M be the following block matrix.

M def
=

(
B CT

C D

)
where B � 0 and is full rank. Then M � 0 if and only if D � CB−1CT .

Suppose we are given a linear functional L : R[x]63 → R with L 1 = 1. Let L |1 be L restricted
to R[x]1 and similarly for L |2 and L |3. We define the following matrices:
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— ML |1 ∈ R
n×1 is the matrix representation of L |1.

— ML |2 ∈ R
n×n is the matrix representation of L |2.

— ML |3 ∈ R
n2×n is the matrix representation of L |3.

— VL |2 ∈ R
n2×1 is the vector flattening of ML |2 .

Consider the block matrix M ∈ R#tuples(2)×#tuples(2) given by

M def
=


1 MT

L |1
VT
L |2

ML |1 ML |2 MT
L |3

VL |2 ML |3 D

 ,
with D ∈ Rn2×n2

yet to be chosen. By taking

B =

(
1 MT

L |1

ML |1 ML |2

)
C =

(
VL |2 ML |3

)
,

we see by the Schur complement criterion that M is positive-semidefinite so long as D � CB−1CT .
However, not any choice of D will yield M maximally symmetric, which is necessary for M to define
a pseudo-expectation operator Ẽ.

We would ideally take D to be the spectrally-least maximally-symmetric matrix so that D �
CB−1CT . But this object might not be well defined, so we instead take the following substitute.

Definition 38 Let L, B,C as be as above. The symmetric Schur complement D ∈ Sym CB−1CT is
t
∑
π∈S4 π · (CB−1CT ) for the least t so that t

∑
π∈S4 π · (CB−1CT ) � CB−1CT . We denote by ẼL the

linear functional ẼL : R[x]64 → R whose matrix representation is M with this choice of D, and note
that ẼL is a valid degree-4 pseudo-expectation.

Example 1 (Recovery of Degree-4 Uniform Moments from Symmetric Schur Complement)
Let L : R[x]63 → R be given by L p(x) := Eµ p(x). We show that ẼL = Eµ. In this case it is
straightforward to compute that CB−1CT = σ · Id /n2. Our task is to pick t > 0 minimal so that
t

n2 Π(Id + σ · Id + σ2 · Id)Π � 1
n2 Π(σ · Id)Π.

We know that Π(σ · Id)Π = σ · Id. Furthermore, Π Id Π = Π(σ2 · Id)Π, and both are the identity
on the canonically-embedded subspace R[x]2 in R#tuples(4). We have previously observed that σ · Id
is rank-one and positive-semidefinite, so let w ∈ R#tuples(4) be such that wwT = σ · Id.

We compute wT (Id + σ · Id + σ2 · Id)w = 2‖w‖22 + ‖w‖42 = 2n + n2 and wT (σ · Id)w = ‖w‖42 = n2.
Thus t = n2/(n2 + 2n) is the minimizer. By a previous observation, this yields Eµ.

To prove our lower bound, we will generalize the above example to the case that we start with an
operator L : R[x]63 → R which does not match Eµ on degree-3 polynomials.
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B.4.2. SYMMETRIES AT DEGREE THREE

We intend on using the symmetric Schur complement to construct a pseudo-distribution from some
L : R[x]63 → R for which LA(x) is large. A good such L will have L xix jxk correlated with∑
π∈S3 Aπ

i jk for all (or many) indices i, j, k. That is, it should be correlated with the coefficient of the
monomial xix jxk in A(x). However, if we do this directly by setting L xix jxk =

∑
π Aπ

i jk, it becomes
technically inconvenient to control the spectrum of the resulting symmetric Schur complement.
To this avoid, we discuss how to utilize a decomposition of ML |3 into nicer matrices if such a
decomposition exists.

Lemma 39 Let L : R[x]63 → R, and suppose that ML |3 = 1
k (M1

L |3
+ · · · + Mk

L |3
) for some

M1
L |3
, . . . ,Mk

L |3
∈ Rn2×n. Let D1, . . . ,Dk be the respective symmetric Schur complements of the

family of matrices 


1 MT
L |1

VT
L |2

ML |1 ML |2 (Mi
L |3

)T

VL |2 Mi
L |3

•




16i6k

.

Then the matrix

M def
=

1
k

k∑
i=1


1 MT

L |1
VT
L |2

ML |1 ML |2 (Mi
L |3

)T

VL |2 Mi
L |3

Di


is positive-semidefinite and maximally symmetric. Therefore it defines a valid pseudo-expectation
Ẽ
L. (This is a slight abuse of notation, since the pseudo-expectation defined here in general differs

from the one in Definition 38.)

Proof Each matrix in the sum defining M is positive-semidefinite, so M � 0. Each Di is maximally
symmetric and therefore so is

∑k
i=1 Di. We know that ML |3 =

∑k
i=1 Mi

L |3
is maximally-symmetric, so

it follows that M is the matrix representation of a valid pseudo-expectation.

B.5. Getting to the Unit Sphere

Our next tool takes a pseudo-distribution Ẽ that is slightly off the unit sphere, and corrects it to give a
linear functional L : R[x]64 → R that lies on the unit sphere.

We will also characterize how badly the resulting linear functional deviates from the nonnegativity
condition (L p(x)2 > 0 for p ∈ R[x]62) required to be a pseudo-distribution

Definition 40 Let L : R[x]6d → R. We define

λminL
def
= min

p∈R[x]6d/2

L p(x)2

Eµ p(x)2

where Eµ p(x)2 is the expectation of p(x)2 when x is distributed according to the uniform distribution
on the unit sphere.

Since Eµ p(x)2 > 0 for all p, we have L p(x)2 > 0 for all p if and only if λminL > 0. Thus L on the
unit sphere is a pseudo-distribution if and only if L 1 = 1 and λminL > 0.
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Lemma 41 Let Ẽ : R[x]64 → R be a valid pseudodistribution. Suppose that:

1. c := Ẽ ‖x‖42 > 1.

2. Ẽ is close to lying on the sphere, in the sense that there are δ1, δ2, δ
′
2 > 0 so that:

(a) |1c Ẽ ‖x‖
2
2xi − L

′ xi| 6 δ1 for all i.

(b) |1c Ẽ ‖x‖
2
2xix j − L

′ xix j| 6 δ2 for all i , j.

(c) |1c Ẽ ‖x‖
2
2x2

i − L
′ x2

i | 6 δ
′
2 for all i.

Let L : R[x]64 → R be as follows on homogeneous p:

L p(x) def
=


Ẽ 1 if deg p = 0
1
c Ẽ p(x) if deg p = 3, 4
1
c Ẽ p(x)‖x‖22 if deg p = 1, 2 .

Then L satisfies L p(x)(‖x‖22 − 1) = 0 for all p(x) ∈ R[x]62 and has λminL > −
c−1

c − O(n)δ1 −

O(n3/2)δ′2 − O(n2)δ2.

Proof It is easy to check that L p(x)(‖x‖22 − 1) = 0 for all p ∈ R[x]62 by expanding the definition of
L.

Let the linear functional L′ : R[x]64 → R be defined over homogeneous polynomials p as

L′ p(x) def
=


c if deg p = 0
Ẽ p(x) if deg p = 3, 4
Ẽ p(x)‖x‖22 if deg p = 1, 2 .

Note that L′ p(x) = cL p(x) for all p ∈ R[x]64. Thus λminL > λminL
′ /c, and the kernel of L′ is

identical to the kernel of L.
In particular, since (‖x‖22 − 1) is in the kernel of L′, either λminL

′ = 0 or

λminL
′ = min

p∈R[x]62,p⊥(‖x‖22−1)

L′ p(x)2

Eµ p(x)2 .

Here p ⊥ (‖x‖2 − 1) means that the polynomials p and ‖x‖2 − 1 are perpendictular in the coefficient
basis. That is, if p(x) = p0 +

∑
i pixi +

∑
i j pi jxix j, this means

∑
ii pii = p0. The equality holds because

any linear functional on polynomialsK with (‖x‖2−1) in its kernel satisfiesK(p(x) +α(‖x‖2−1))2 =

K p(x)2 for every α. The functionals L′ and Eµ in particular both satisfy this.
Let ∆ := L′ − Ẽ, and note that ∆ is nonzero only when evaluated on the degree-1 or -2 parts of

polynomials. It will be sufficient to bound ∆, since assuming λminL
′ , 0,

λminL
′ = min

p∈R[x]62,p⊥(‖x‖22−1)

∆p(x)2 + Ẽ p(x)2

Eµ p(x)2

> min
p∈R[x]62,p⊥(‖x‖22−1)

∆p(x)2

Eµ p(x)2 .
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Let p ∈ R[x]62. We expand p in the monomial basis: p(x) = p0 +
∑

i pixi +
∑

i, j pi jxix j. Then

p(x)2 = p2
0 + 2p0

∑
i

pixi + 2p0

∑
i j

pi jxix j +

∑
i

pixi

2

+ 2

∑
i

pixi


∑

i j

pi jxix j

+

∑
i j

pi jxix j


2

.

An easy calculation gives

Eµ p(x)2 = p2
0 +

2p0

n

∑
i

pii +
1
n

∑
i

p2
i +

1
n2 + 2n


∑

i

pii

2

+
∑

i j

p2
i j +

∑
i

p2
ii

 .
The condition p ⊥ (‖x‖22 − 1) yields p0 =

∑
i pii. Substituting into the above, we obtain the sum of

squares

Eµ p(x)2 = p2
0 +

2p2
0

n
+

1
n

∑
i

p2
i +

1
n2 + 2n

p2
0 +

∑
i j

p2
i j +

∑
i

p2
ii

 .
Without loss of generality we assume Eµ p(x)2 = 1, so now it is enough just to bound ∆p(x)2. We

have assumed that |∆xi| 6 cδ1 and |∆xix j| 6 cδ2 for i , j and |∆x2
i | 6 cδ′2. We also know ∆1 = c − 1

and ∆p(x) = 0 when p is a homogeneous degree-3 or -4 polynomial. So we expand

∆p(x)2 = p2
0(c − 1) + 2p0

∑
i

pi∆xi + 2p0

∑
i j

pi j∆xix j +
∑
i, j

pi p j∆xix j

and note that this is maximized in absolute value when all the signs line up:

|∆p(x)2| 6 p2
0(c−1)+2cδ1|p0|

∑
i

|pi|+2|p0|

cδ2

∑
i, j

|pi j| + cδ′2
∑

i

|pii|

+cδ2

∑
i

|pi|

2

+cδ′2
∑

i

p2
i .

We start with the second term. If p2
0 = α for α ∈ [0, 1], then

∑
i p2

i 6 n(1 − α) by our assumption
that Eµ p(x)2 = 1. This means that

2cδ1|p0|
∑

i

|pi| 6 2cδ1

√
αn

∑
i

p2
i 6 2cδ1n

√
α(1 − α) 6 O(n)cδ1 ,

where we have used Cauchy-Schwarz and the fact max06α61 α(1 − α) = (1/2)2. The other terms are
all similar:

p2
0(c − 1) 6 c − 1

2|p0|cδ2

∑
i, j

|pi j| 6 2cδ2

√
αn2

∑
i j

p2
i j 6 2cδ2O(n2)

√
α(1 − α) 6 O(n2)cδ2

2|p0|cδ′2
∑

i

|pii| 6 2cδ′2

√
αn

∑
i

p2
ii 6 O(n3/2)cδ′2

cδ2

∑
i

|pi|

2

6 cδ2n
∑

i

p2
i 6 O(n2)cδ2
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cδ′2
∑

i

p2
i 6 O(n)cδ′2 ,

where in each case we have used Cauchy-Schwarz and our assumption Eµ p(x)2 = 1.
Putting it all together, we get

λmin ∆ > −(c − 1) − O(n)cδ1 − O(n3/2)cδ′2 − O(n2)cδ2 .

B.6. Repairing Almost-Pseudo-Distributions

Our last tool takes a linear functional L : R[x]6d that is “almost” a pseudo-distribution over the unit
sphere, in the precise sense that all conditions for being a pseudo-distribution over the sphere are
satisfied except that λminL = −ε. The tool transforms it into a bona fide pseudo-distribution at a
slight cost to its evaluations at various polynomials.

Lemma 42 Let L : R[x]6d → R and suppose that

— L 1 = 1

— L p(x)(‖x‖2 − 1) = 0 for all p ∈ R[x]6d−2.

— λminL = −ε.

Then the operator Ẽ : R[x]6d → R given by

Ẽ p(x) def
=

1
1 + ε

(L p(x) + εEµ p(x))

is a valid pseudo-expectation satisfying {‖x‖2 = 1}.

Proof It will suffice to check that λmin Ẽ > 0 and that Ẽ has Ẽ(‖x‖22 − 1)2 = 0 and Ẽ 1 = 1. For the
first, let p ∈ R[x]>2. We have

Ẽ p(x)2

Eµ p(x)2 =

(
1

1 + ε

) (
E0 p(x)2 + εEµ p(x)2

Eµ p(x)2

)
>

(
1

1 + ε

)
(−ε + ε) > 0 .

Hence, λmin Ẽ > 0.
It is straightforward to check the conditions that Ẽ 1 = 1 and that Ẽ satisfies {‖x‖2 − 1 = 0}, since

Ẽ is a convex combination of linear functionals that already satisfy these linear constraints.

B.7. Putting Everything Together

We are ready to prove Theorem 31 and Theorem 32. The proof of Theorem 31 is somewhat simpler
and contains many of the ideas of the proof of Theorem 32, so we start there.
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B.7.1. THE DEGREE-4 LOWER BOUND

Proof [Proof of Theorem 31] We begin by constructing a degree-4 pseudo-expectation Ẽ0 : R[x]64 →

R whose degree-4 moments are biased towards A(x) but which does not yet satisfy {‖x‖22 − 1 = 0}.
Let L : R[x]64 → R be the functional whose matrix representation when restricted to L |4 :

R[x]4 → R is given by ML |4 = 1
|S4 |n2

∑
π∈S4 Aπ, and which is 0 on polynomials of degree at most 3.

Let Ẽ0 := Eµ +εL, where ε is a parameter to be chosen soon so that Ẽ0 p(x)2 > 0 for all
p ∈ R[x]62. Let p ∈ R[x]62. We expand p in the monomial basis as p(x) = p0 +

∑
i pixi +

∑
i j pi jxix j.

Then
Eµ p(x)2 >

1
n2

∑
i j

p2
i j .

By our assumption on negative eigenvalues of Aπ for all π ∈ S4, we know that L p(x)2 > −λ
2

n2

∑
i j p2

i j.

So if we choose ε 6 1/λ2, the operator Ẽ0
= Ẽ

µ
+L /λ2 will be a valid pseudo-expectation. Moreover

Ẽ
0 is well correlated with A, since it was obtained by maximizing the amount of L, which is simply

the (maximally-symmetric) dual of A. However the calculation of Ẽ0
‖x‖42 shows that this pseudo-

expectation is not on the unit sphere, though it is close. Let c refer to

c := Ẽ0
‖x‖42 = Eµ ‖x‖42 +

1
λ2 L‖x‖

4
2 = 1 +

1
|S4|n2λ2

∑
π∈S4

〈Idsym , Aπ〉 = 1 + O(n−1/2) .

We would like to use Lemma 41 together with Ẽ0 to obtain some L1 : R[x]64 → R with ‖x‖22 − 1
in its kernel and bounded λminL

1 while still maintaining a high correlation with A. For this we need
ξ1, ξ2, ξ

′
2 so that

—
∣∣∣∣1
c Ẽ

0
‖x‖22xi − Ẽ

0 xi

∣∣∣∣ 6 ξ1 for all i.

—
∣∣∣∣1
c Ẽ

0
‖x‖22xix j − Ẽ

0 xix j

∣∣∣∣ 6 ξ2 for all i , j.

—
∣∣∣∣1
c Ẽ

0
‖x‖22x2

i − Ẽ
0 x2

i

∣∣∣∣ 6 ξ′2 for all i.

Since Ẽ0 p(x) = 0 for all homogeneous odd-degree p, we may take ξ1 = 0. For ξ2, we have that
when i , j, ∣∣∣∣1

c Ẽ
0
‖x‖22xix j − Ẽ

0 xix j

∣∣∣∣ =

∣∣∣∣∣ 1
cλ2 L‖x‖

2
2xix j

∣∣∣∣∣ 6 δ2 ,

where we recall δ2 and δ′2 defined in the theorem statement. Finally, for ξ′2, we have∣∣∣∣1
c Ẽ

0
‖x‖22x2

i − Ẽ
0 x2

i

∣∣∣∣ 6 ∣∣∣∣∣ 1
cλ2 L‖x‖

2
2x2

i

∣∣∣∣∣ +
∣∣∣ 1
c E

µ ‖x‖22x2
i − E

µ x2
i

∣∣∣ 6 δ′2 + c−1
cn .

Thus, Lemma 41 yields L1 : R[x]64 → R with ‖x‖22 − 1 in its kernel in the sense that L1 p(x)(‖x‖22 −
1) = 0 for all p ∈ R[x]62. If we take ξ2 = δ2 and ξ′2 = δ′2 + c−1

cn , then λminL
1 > − c−1

c − n2δ2 −

n3/2(δ′2 + c−1
cn ) = −O(1). Furthermore, L1 A(x) = 1

cλ2 LA(x) = Θ( 1
λ2 LA(x)).

So by Lemma 42, there is a degree-4 pseudo-expectation Ẽ satisfying {‖x‖22 = 1} so that

ẼA(x) = Θ

(
1
λ2 LA(x)

)
+ Θ(Eµ A(x))
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= Θ

 1
|S4|n2λ2 〈A,

∑
π∈S4

Aπ〉

 + Θ(Eµ A(x))

> Ω

(
n2

λ2

)
+ Θ(Eµ A(x)) .

B.7.2. THE DEGREE-3 LOWER BOUND

Now we turn to the proof of Theorem 32.
Proof [Proof of Theorem 32] Let A be a 3-tensor. Let ε > 0 be a parameter to be chosen later. We
begin with the following linear functional L : R[x]63 → R. For any monomial xα (where α is a
multi-index of degree at most 3),

L xα def
=

Eµ xα if deg xα 6 2
ε

n3/2

∑
π∈S3 Aπ

α if deg xα = 3
.

The functional L contains our current best guess at the degree 1 and 2 moments of a pseudo-
distribution whose degree-3 moments are ε-correlated with A(x).

The next step is to use symmetric Schur complement to extendL to a degree-4 pseudo-expectation.
Note that ML |3 decomposes as

ML |3 =
∑
π∈S3

ΠAπ

where, as a reminder, Aπ is the n2×n flattening of Aπ and Π is the projector to the canonical embedding
of R[x]2 into Rn2

. So, using Lemma 39, we want to find the symmetric Schur complements of the
following family of matrices (with notation matching the statement of Lemma 39):


1 MT

L |1
VT
L |2

ML |1 ML |2
ε

n3/2 (ΠAπ)T

VL |2
ε

n3/2 ΠAπ •



π∈S3

.

Since we have the same assumptions on Aπ for all π ∈ S3, without loss of generality we analyze just
the case that π is the identity permutation, in which case Aπ = A.

Since L matches the degree-one and degree-two moments of the uniform distribution on the unit
sphere, we have ML |1 = 0, the n-dimensional zero vector, and ML |2 = 1

n Idn×n. Let w ∈ Rn2
be the

n2-dimensional vector flattening of Idn×n. We observe that wwT = σ · Id is one of the permutations
of Idn2×n2 . Taking B and C as follows,

B =

(
1 0
0 1

n Idn×n

)
C =

(
w ε

n3/2 A
)
,

we compute that

CB−1CT =
1
n2 (σ · Id) +

ε2

n2 ΠAAT Π .
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Symmetrizing the Id portion and the AAT portion of this matrix separately, we see that the symmetric
Schur complement that we are looking for is the spectrally-least M ∈ Sym

(
1
n2 (σ · Id) + ε2

n2 AAT
)

so
that

M =
t

n2

[
3 Idsym +

ε2

2

(
Π(AAT + σ · AAT + σ2 · AAT )Π + Π(AAT + σ · AAT + σ2 · AAT )T Π

)]
�

1
n2 (σ · Id) +

ε2

n2 ΠAAT Π .

Here we have used Corollary 35 and Corollary 34 to express a general element of Sym( ε
2

n2 ΠAAT Π)
in terms of Π, AAT , σ · AAT , and σ2 · AAT .

Any spectrally small M satisfying the above suffices for us. Taking t = 1, canceling some terms,
and making the substitution 3 Idsym − σ · Id = 2Π Id Π, we see that it is enough to have

−2 Π Id Π �
ε2

2
Π(σ · AAT + σ2 · AAT )Π +

ε2

2
Π(σ · AAT + σ2 · AAT )T Π ,

which by the premises of the theorem holds for ε = 1/λ. Pushing through our symmetrized Schur
complement rule with our decomposition of ML |3 (Lemma 39), this ε yields a valid degree-4 pseudo-
expectation Ẽ0 : R[x]64 → R. From our choice of parameters, we see that Ẽ0

|4, the degree-4 part of
Ẽ

0, is given by Ẽ0
|4 = n2+2n

n2 E
µ +L, where L : R[x]4 → R is as defined in the theorem statement.

Furthermore, Ẽ0 p(x) = Eµ p(x) for p with deg p 6 2.
We would like to know how big Ẽ0

‖x‖42 is. We have

c := Ẽ0
‖x‖42 =

(
1 +

1
n

)
Eµ ‖x‖42 +L‖x‖42 = 1 +

1
n

+L‖x‖42 .

We have assumed that 〈Idsym , AAT 〉 6 O(λ2n2). Since Idsym is maximally symmetric, we have
〈Idsym ,

∑
π∈S4 π · AAT 〉 = 〈Idsym , |S4|AAT 〉 and so

L‖x‖42 =
1

λ2n2 〈Id
sym ,ML |4〉 =

1
n2λ2 Θ(〈Idsym ,

∑
π∈S4

π · AAT 〉) 6 O(1) .

Finally, our assumptions on 〈A,
∑
π∈S3 Aπ〉 yield

Ẽ
0 A(x) =

ε

n3/2 〈A,
∑
π∈S3

Aπ〉 > Ω

(
n3/2

λ

)
.

We have established the following lemma.

Lemma 43 Under the assumptions of Theorem 32 there is a degree-4 pseudo-expectation operator
Ẽ

0 so that

— c := Ẽ0
‖x‖42 = 1 + O(1).

— Ẽ
0 A(x) > Ω(n3/2/λ).

— Ẽ
0 p(x) = Eµ p(x) for all p ∈ R[x]62.
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— Ẽ
0
|4 = (1 + 1

n )Eµ |4 +L.

Now we would like feed Ẽ0 into Lemma 41 to get a linear functional L1 : R[x]64 → R with ‖x‖22 − 1
in its kernel (equivalently, which satisfies {‖x‖42 − 1 = 0}), but in order to do that we need to find
ξ1, ξ2, ξ

′
2 so that

—
∣∣∣∣1
c Ẽ

0
‖x‖22xi − Ẽ

0 xi

∣∣∣∣ 6 ξ1 for all i.

—
∣∣∣∣1
c Ẽ

0
‖x‖22xix j − Ẽ

0 xix j

∣∣∣∣ 6 ξ2 for all i , j.

—
∣∣∣∣1
c Ẽ

0
‖x‖22x2

i − Ẽ
0 x2

i

∣∣∣∣ 6 ξ′2 for all i.

For ξ1, we note that for every i, Ẽ0 xi = 0 since Ẽ0 matches the uniform distribution on degree one
and two polynomials. Thus,

∣∣∣∣1
c Ẽ

0
‖x‖22xi − Ẽ

0 xi

∣∣∣∣ =
∣∣∣∣1
c Ẽ

0
‖x‖22xi

∣∣∣∣.
We know that M

Ẽ
0
|3

, the matrix representation of the degree-3 part of Ẽ0, is 1
|S3 |n3/2λ

A. Expanding

Ẽ
0
‖x‖22xi with matrix representations, we get∣∣∣∣ 1

c Ẽ
0
‖x‖22xi

∣∣∣∣ =
1

|S3|cn3/2λ

∣∣∣∣〈Idn×n ,
∑
π∈S3

Ai〉

∣∣∣∣ 6 δ1 ,

where δ1 is as defined in the theorem statement.
Now for ξ2 and ξ′2. Let L be the operator in the theorem statement. By the definition of Ẽ0, we

get

Ẽ
0
|4 6

[(
1 +

1
n

)
Eµ |4 +L

]
.

In particular, for i , j, ∣∣∣∣1
c Ẽ

0
‖x‖22xix j − Ẽ

0 xix j

∣∣∣∣ =
∣∣∣∣1
c L‖x‖

2
2xix j

∣∣∣∣ 6 δ2 .

For i = j,∣∣∣∣ 1
c Ẽ

0
‖x‖22x2

i − Ẽ
µ x2

i

∣∣∣∣ = 1
c

∣∣∣∣∣∣L‖x‖22x2
i +

(
1 +

1
n

)
Eµ ‖x‖22x2

i − c Eµ x2
i

∣∣∣∣∣∣
= 1

c

∣∣∣∣∣∣L‖x‖22x2
i −

1
n L‖x‖

4
2 + 1

n L‖x‖
4
2 +

1
n

(
1 +

1
n

)
Eµ ‖x‖42 − c Eµ x2

i

∣∣∣∣∣∣
= 1

c

∣∣∣∣L‖x‖22x2
i −

1
n L‖x‖

4
2 + 1

n Ẽ
0
‖x‖42 − c Eµ x2

i

∣∣∣∣
= 1

c

∣∣∣∣L‖x‖22x2
i −

1
n L‖x‖

4
2

∣∣∣∣
6 δ′2 .

Thus, we can take ξ1 = δ1, ξ2 = δ2, ξ′2 = δ′2, and c = Ẽ
0
‖x‖42 = 1 + O(1), and apply Lemma 41 to

conclude that
λminL

1 > − c−1
c − O(n)ξ1 − O(n3/2)ξ′2 − O(n2)ξ2 = −O(1) .
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The functional L1 loses a constant factor in the value assigned to A(x) as compared to Ẽ0:

L1 A(x) =
Ẽ

0 A(x)
c

> Ω

(
n3/2

λ

)
.

Now using Lemma 42, we can correct the negative eigenvalue of L1 to get a pseudo-expectation

Ẽ
def
= Θ(1)L1 +Θ(1)Eµ .

By Lemma 42, the pseudo-expectation Ẽ satisfies {‖x‖22 = 1}. Finally, to complete the proof, we have:

ẼA(x) = Ω

(
n3/2

λ

)
+ Θ(1)Eµ A(x) .

Appendix C. Higher-Order Tensors

We have heretofore restricted ourselves to the case k = 3 in our algorithms for the sake of readability.
In this section we state versions of our main results for general k and indicate how the proofs from
the 3-tensor case may be generalized to handle arbitrary k. Our policy is to continue to treat k as
constant with respect to n, hiding multiplicative losses in k in our asymptotic notation.

The case of general odd k may be reduced to k = 3 by a standard trick, which we describe here
for completeness. Given A an order-k tensor, consider the polynomial A(x) and make the variable
substitution yβ = xβ for each multi-index β with |β| = (k + 1)/2. This yields a degree-3 polynomial
A′(x, y) to which the analysis in Section 3 and Section 4 applies almost unchanged, now using
pseudo-distributions {x, y} satisfying {‖x‖2 = 1, ‖y‖2 = 1}. In the analysis of tensor PCA, this change
of variables should be conducted after the input is split into signal and noise parts, in order to preserve
the analysis of the second half of the rounding argument (to get from Ẽ〈v0, x〉k to Ẽ〈v0, x〉), which
then requires only syntactic modifications to Lemma 50. The only other non-syntactic difference is
the need to generalize the λ-boundedness results for random polynomials to handle tensors whose
dimensions are not all equal; this is already done in Theorem 56.

For even k, the degree-k SoS approach does not improve on the tensor unfolding algorithms of
Montanari and Richard (Montanari and Richard, 2014). Indeed, by performing a similar variable
substitution, yβ = xβ for all |β| = k/2, the SoS algorithm reduces exactly to the eigenvalue/eigenvector
computation from tensor unfolding. If we perform instead the substitution yβ = xβ for |β| = k/2 − 1,
it becomes possible to extract v0 directly from the degree-2 pseudo-moments of an (approximately)
optimal degree-4 pseudo-distribution, rather than performing an extra step to recover v0 from v
well-correlated with v⊗k/2

0 . Either approach recovers v0 only up to sign, since the input is unchanged
under the transformation v0 7→ −v0.

We now state analogues of all our results for general k. Except for the above noted differ-
ences from the k = 3 case, the proofs are all easy transformations of the proofs of their degree-3
counterparts.

Theorem 44 Let k be an odd integer, v0 ∈ R
n a unit vector, τ % nk/4 log(n)1/4/ε, and A an order-k

tensor with independent unit Gaussian entries.
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1. There is an algorithm, based on semidefinite programming, which on input T(x) = τ · 〈v0, x〉k +

A(x) returns a unit vector v with 〈v0, v〉 > 1 − ε with high probability over random choice of A.

2. There is an algorithm, based on semidefinite programming, which on input T(x) = τ · 〈v0, x〉k +

A(x) certifies that T(x) 6 τ · 〈v, x〉k + O(nk/4 log(n)1/4) for some unit v with high probability
over random choice of A. This guarantees in particular that v is close to a maximum likelihood
estimator for the problem of recovering the signal v0 from the input τ · v⊗k

0 + A.

3. By solving the semidefinite relaxation approximately, both algorithms can be implemented in
time Õ(m1+1/k), where m = nk is the input size.

For even k, the above all hold, except now we recover v with 〈v0, v〉2 > 1 − ε, and the algorithms can
be implemented in nearly-linear time.

The next theorem partially resolves a conjecture of Montanari and Richard regarding tensor
unfolding algorithms for odd k. We are able to prove their conjectured signal-to-noise ratio τ, but
under an asymmetric noise model. They conjecture that the following holds when A is symmetric
with unit Gaussian entries.

Theorem 45 Let k be an odd integer, v0 ∈ R
n a unit vector, τ % nk/4/ε, and A an order-k tensor with

independent unit Gaussian entries. There is a nearly-linear-time algorithm, based on tensor unfolding,
which, with high probability over random choice of A, recovers a vector v with 〈v, v0〉

2 > 1 − ε.
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Appendix D. Pseudo-Distribution Facts

Lemma 46 (Quadric Sampling) Let {x} be a pseudo-distribution over Rn of degree d > 2. Then
there is an actual distribution {y} over Rn so that for any polynomial p of degree at most 2, E[p(y)] =

Ẽ[p(x)]. Furthermore, {y} can be sampled from in time poly n.

Lemma 47 (Pseudo-Cauchy-Schwarz, Function Version, (Barak et al., 2012)) Let x, y be
vector-valued polynomials. Then

〈x, y〉 �
1
2

(‖x‖2 + ‖y‖2).

See (Barak et al., 2014a) for the cleanest proof.

Lemma 48 (Pseudo-Cauchy-Schwarz, Powered Function Version) Let x, y be vector-valued
polynomials and d > 0 an integer. Then

〈x, y〉d �
1
2

(‖x‖2d + ‖y‖2d).
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Proof Note that 〈x, y〉d = 〈x⊗d, y⊗d〉 and apply Lemma 47.

Yet another version of pseudo-Cauchy-Schwarz will be useful:

Lemma 49 (Pseudo-Cauchy-Schwarz, Multiplicative Function Version, (Barak et al., 2012))
Let {x, y} be a degree d pseudo-distribution over a pair of vectors, d > 2. Then

Ẽ[〈x, y〉] 6
√
Ẽ[‖x‖2]

√
Ẽ[‖y‖2].

Again, see (Barak et al., 2014a) for the cleanest proof.
We will need the following inequality relating Ẽ〈x, v0〉

3 and Ẽ〈x, v0〉 when Ẽ〈x, v0〉
3 is large.

Lemma 50 Let {x} be a degree-4 pseudo-distribution satisfying {‖x‖2 = 1}, and let v0 ∈ R
n be a

unit vector. Suppose that Ẽ〈x, v0〉
3 > 1 − ε for some ε > 0. Then Ẽ〈x, v0〉 > 1 − 2ε.

Proof Let p(u) be the univariate polynomial p(u) = 1 − 2u3 + u. It is easy to check that p(u) > 0
for u ∈ [−1, 1]. It follows from classical results about univariate polynomials that p(u) then can be
written as

p(u) = s0(u) + s1(u)(1 + u) + s2(u)(1 − u)

for some SoS polynomials s0, s1, s2 of degrees at most 2. (See (O’Donnell and Zhou, 2013), fact 3.2
for a precise statement and attributions.)

Now we consider

Ẽ p(〈x, v0〉) > Ẽ[s1(〈x, v0〉)(1 + 〈x, v0〉)] + Ẽ[s2(〈x, v0〉)(1 − 〈x, v0〉)] .

We have by Lemma 47 that 〈x, v0〉 �
1
2 (‖x‖2 + 1) and also that 〈x, v0〉 � −

1
2 (‖x‖2 + 1). Multiplying

the latter SoS relation by the SoS polynomial s1(〈x, v0〉) and the former by s2(〈x, v0〉), we get that

Ẽ[s1(〈x, v0〉)(1 + 〈x, v0〉)] = Ẽ[s1(〈x, v0〉)] + Ẽ[s1(〈x, v0〉)〈x, v0〉]

> Ẽ[s1(〈x, v0〉)] −
1
2
Ẽ[s1(〈x, v0〉)(‖x‖2 + 1)]

> Ẽ[s1(〈x, v0〉)] − Ẽ[s1(〈x, v0〉)]

> 0 ,

where in the second-to-last step we have used the assumption that {x} satisfies {‖x‖2 = 1}. A similar
analysis yields

Ẽ[s2(〈x, v0〉)(1 − 〈x, v0〉)] > 0 .

All together, this means that Ẽ p(〈x, v0〉) > 0. Expanding, we get Ẽ[1 − 2〈x, v0〉
3 + 〈x, v0〉] > 0.

Rearranging yields
Ẽ〈x, v0〉 > 2 Ẽ〈x, v0〉

3 − 1 > 2(1 − ε) − 1 > 1 − 2ε .

We will need a bound on the pseudo-expectation of a degree-3 polynomial in terms of the operator
norm of its coefficient matrix.
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Lemma 51 Let {x} be a degree-4 pseudo-distribution. Let M ∈ Rn2×n. Then Ẽ〈x⊗2,Mx〉 6
‖M‖(Ẽ ‖x‖4)3/4.

Proof We begin by expanding in the monomial basis and using pseudo-Cauchy-Schwarz:

Ẽ〈x⊗2,Mx〉 = Ẽ
∑
i jk

M( j,k),ixix jxk

= Ẽ
∑

i

xi

∑
jk

M( j,k),ix jxk

6 (Ẽ ‖x‖2)1/2

Ẽ∑
i

∑
jk

M( j,k),ixix j


2

1/2

6 (Ẽ ‖x‖4)1/4

Ẽ∑
i

∑
jk

M( j,k),ixix j


2

1/2

We observe that MMT is a matrix representation of
∑

i

(∑
jk M( j,k),ixix j

)2
. We know MMT � ‖M‖2 Id,

so

Ẽ
∑

i

∑
jk

M( j,k),ixix j


2

6 ‖M‖2 Ẽ ‖x‖4 .

Putting it together, we get Ẽ〈x⊗2,Mx〉 6 ‖M‖(Ẽ ‖x‖4)3/4 as desired.

Appendix E. Concentration bounds

E.1. Elementary Random Matrix Review

We will be extensively concerned with various real random matrices. A great deal is known about
natural classes of such matrices; see the excellent book of Tao (Tao, 2012) and the notes by Vershynin
and Tropp (Vershynin, 2011; Tropp, 2012).

Our presentation here follows Vershynin’s (Vershynin, 2011). Let X be a real random variable.
The subgaussian norm ‖X‖ψ2 of X is supp>1 p−1/2(E|X|p)1/p. Let {a} be a distribution on Rn. The
subgaussian norm ‖a‖ψ2 of {a} is the maximal subgaussian norm of the one-dimensional marginals:
‖a‖ψ2 = sup‖u‖=1 ‖〈a, u〉‖ψ2 . A family of random variables {Xn}n∈N is subgaussian if ‖Xn‖ψ2 = O(1).
The reader may easily check that an n-dimensional vector of independent standard Gaussians or
independent ±1 variables is subgaussian.

It will be convenient to use the following standard result on the concentration of empirical
covariance matrices. This statement is borrowed from (Vershynin, 2011), Corollary 5.50.

Lemma 52 Consider a sub-gaussian distribution {a} in Rm with covariance matrix Σ, and let
δ ∈ (0, 1), t > 1. If a1, . . . , aN ∼ {a} with N > C(t/δ)2m then ‖ 1

N
∑

aiaT
i − Σ‖ 6 δ with probability

at least 1 − 2 exp(−t2m). Here C = C(K) depends only on the sub-gaussian norm K = ‖a‖ψ2 of a
random vector taken from this distribution.
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We will also need the matrix Bernstein inequality. This statement is borrowed from Theorem
1.6.2 of Tropp (Tropp, 2012).

Theorem 53 (Matrix Bernstein) Let S 1, . . . , S m be independent square random matrices with di-
mension n. Assume that each matrix has bounded deviation from its mean: ‖S i − E S i‖ 6 R for all i.
Form the sum Z =

∑
i S i and introduce a variance parameter

σ2 = max{‖E(Z − EZ)(Z − EZ)T ‖, ‖E(Z − EZ)T (Z − EZ)‖} .

Then

P{‖Z − EZ‖ > t} 6 2n exp
(

t2/2
σ2 + Rt/3

)
for all t > 0 .

We will need bounds on the operator norm of random square rectangular matrices, both of which
are special cases of Theorem 5.39 in (Vershynin, 2011).

Lemma 54 Let A be an n × n matrix with independent entries from N(0, 1). Then with probability
1 − n−ω(1), the operator norm ‖A‖ satisfies ‖A‖ 6 O(

√
n).

Lemma 55 Let A be an n2 × n matrix with independent entries from N(0, 1). Then with probability
1 − n−ω(1), the operator norm ‖A‖ satisfies ‖A‖ 6 O(n).

E.2. Concentration for
∑

i Ai ⊗ Ai and Related Ensembles

Our first concentration theorem provides control over the nontrivial permutations of the matrix AAT

under the action of S4 for a tensor A with independent entries.

Theorem 56 Let c ∈ {1, 2} and d > 1 an integer. Let A1, . . . , Anc be iid random matrices in {±1}n
d×nd

or with independent entries from N(0, 1). Then, with probability 1 − O(n−100),∥∥∥∥∥∥∥∥
∑

i∈[nc]

Ai ⊗ Ai − E Ai ⊗ Ai

∥∥∥∥∥∥∥∥ -
√

dn(2d+c)/2 · (log n)1/2 .

and ∥∥∥∥∥∥∥∥
∑

i∈[nc]

Ai ⊗ AT
i − E Ai ⊗ AT

i

∥∥∥∥∥∥∥∥ -
√

dn(2d+c)/2 · (log n)1/2 .

We can prove Theorem 11 as a corollary of the above.
Proof [Proof of Theorem 11] Let A have iid Gaussian entries. We claim that E A ⊗ A is a matrix
representation of ‖x‖4. To see this, we compute

〈x⊗2,E(A ⊗ A)x⊗2〉 = E〈x, Ax〉2

=
∑
i, j,k,l

E Ai jAklxix jxkxl

=
∑

i j

x2
i x2

j

= ‖x‖4 .
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Now by Theorem 56, we know that for Ai the slices of the tensor A from the statement of Theorem 11,∑
i

Ai ⊗ Ai � nE A ⊗ A + λ2 · Id

for λ = O(n3/4 log(n)1/4). Since n = O(λ) and both Id and E A ⊗ A are matrix representations of ‖x‖4,
we are done.

Now we prove Theorem 56. We will prove only the statement about
∑

i Ai ⊗ Ai, as the case of∑
i Ai ⊗ AT

i is similar.
Let A1, . . . , Anc be as in Theorem 56. We first need to get a handle on their norms individually,

for which we need the following lemma.

Lemma 57 Let A be a random matrix in {±1}n
d×nd

or with independent entries from N(0, 1). For
all t > 1, the probability of the event {‖A‖ > tnd/2} is at most 2−t2nd/K for some absolute constant K.

Proof The subgaussian norm of the rows of A is constant and they are identically and isotropically
distributed. Hence Theorem 5.39 of (Vershynin, 2011) applies to give the result.

Since the norms of the matrices A1, . . . , Anc are concentrated around nd/2 (by Lemma 57), it
will be enough to prove Theorem 56 after truncating the matrices A1, . . . , Anc . For t > 1, define iid
random matrices A′1, . . . , A

′
nc such that

A′i
def
=

Ai if ‖Ai‖ 6 tnd/2,

0 otherwise

for some t to be chosen later. Lemma 57 allows us to show that the random matrices Ai ⊗ Ai and
A′i ⊗ A′i have almost the same expectation. For the remainder of this section, let K be the absolute
constant from Lemma 57.

Lemma 58 For every i ∈ [nc] and all t > 1, the expectations of Ai ⊗ Ai and A′i ⊗ A′i satisfy∥∥∥E[Ai ⊗ Ai] − E[A′i ⊗ A′i]
∥∥∥ 6 O(1) · 2−tnd/K .

Proof Using Jensen’s inequality and that Ai = A′i unless ‖Ai‖ > tnd/2, we have

‖E Ai ⊗ Ai − A′i ⊗ A′i‖ 6 E ‖Ai ⊗ Ai − A′i ⊗ A′i‖ Jensen’s inequality

=

∫ ∞

tnd/2
P(‖Ai‖ >

√
s) ds since Ai = A′i unless ‖Ai‖ > tnd/2

6

∫ ∞

tnd/2
2−s/K ds by Lemma 57

6
∞∑

i=0

2−tnd/2/K · 2−i/K discretizing the intergral

= O(2−tnd/2/K) as desired.
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Lemma 59 Let B′1, . . . , B
′
nc be i.i.d. matrices such that B′i = A′i ⊗ A′i − E[A′i ⊗ A′i]. Then for every

C > 1 with C 6 3t2nc/2,

P


∥∥∥∥∥∥∥∥
∑

i∈[nc]

B′i

∥∥∥∥∥∥∥∥ > C · n(2d+c)/2

 6 2n2d · exp
(
−C2

6t4

)
.

Proof For R = 2t2nd, the random matrices B′1, . . . , B
′
nc satisfy {‖B′i‖ 6 R} with probability 1.

Therefore, by the Bernstein bound for non-symmetric matrices (Tropp, 2012, Theorem 1.6),

P
{∥∥∥∥∥∑nc

i=1
B′i

∥∥∥∥∥ > s
}
6 2n2d · exp

(
−s2/2

σ2 + Rs/3

)
,

where σ2 = max{‖
∑

i E B′i(B
′
i)
>‖, ‖

∑
i E(B′i)

>B′i‖} 6 nc · R2. For s = C · n(2d+c)/2, the probability is
bounded by

P
{∥∥∥∥∑n

i=1
B′i

∥∥∥∥ > s
}
6 2n2d · exp

(
−C2 · n(2d+c)/2

4t4 · n2d+c + 2t2C · n(4d+c)/2/3

)
.

Since our parameters satisfy t2C · n(4d+c)/2/3 6 t4n(2d+c), this probability is bounded by

P
{∥∥∥∥∑n

i=1
B′i

∥∥∥∥ > s
}
6 2n2d · exp

(
−C2

6t4

)
.

At this point, we have all components of the proof of Theorem 56.
Proof [Proof of Theorem 56 for

∑
i Ai ⊗ Ai (other case is similar)] By Lemma 59,

P

{∥∥∥∥∑i
A′i ⊗ A′i −

∑
i
E[A′i ⊗ A′i]

∥∥∥∥ > C · n(2d+c)/2
}
6 2n2d · exp

(
−C2

Kt4

)
.

At the same time, by Lemma 57 and a union bound,

P
{
A1 = A′1, . . . , An = A′nc

}
> 1 − nc · 2−t2nd/K .

By Lemma 58 and triangle inequality,∥∥∥∥∑i
E[Ai ⊗ Ai] −

∑
i
E[A′i ⊗ A′i]

∥∥∥∥ 6 nc · 2−tnd/K .

Together, these bounds imply

P

{∥∥∥∥∑i
Ai ⊗ Ai −

∑
i
E[Ai ⊗ Ai]

∥∥∥∥ > C · n(2d+c)/2 + nc · 2−tnd/K
}

6 2n2d · exp
(
−C2

Kt4

)
+ nc · 2−t2nd/K .

We choose t = 1 and C = 100
√

2Kd log n and assume that n is large enough so that C · n(2d+c)/2 >

nc · 2−tnd/K and 2n2d · exp
(
−C2

Kt4

)
> nc · 2−t2nd/K . Then the probability satisfies

P

{∥∥∥∥∑i
Ai ⊗ Ai −

∑
i
E[Ai ⊗ Ai]

∥∥∥∥ > 20n(2d+c)/2 √
2Kd log n

}
6 4n−100 .
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E.3. Concentration for Spectral SoS Analyses

Lemma 60 (Restatement of Lemma 18) Let T = τ · v⊗3
0 + A. Suppose A has independent entries

fromN(0, 1). Then with probability 1−O(n−100) we have ‖
∑

i Ai⊗Ai−E
∑

i Ai⊗Ai‖ 6 O(n3/2 log(n)1/2)
and ‖

∑
i v0(i)Ai‖ 6 O(

√
n).

Proof The first claim is immediate from Theorem 56. For the second, we note that since v0 is
a unit vector, the matrix

∑
i v0(i)Ai has independent entries from N(0, 1). Thus, by Lemma 54,

‖
∑

i v0(i)Ai‖ 6 O(
√

n) with probability 1 − O(n−100), as desired.

Lemma 61 (Restatement of Lemma 22 for General Odd k) Let A be a k-tensor with k an odd
integer, with independent entries from N(0, 1). Let v0 ∈ R

n be a unit vector, and let V be the
n(k+1)/2×n(k−1)/2 unfolding of v⊗k

0 . Let A be the n(k+1)/2×n(k−1)/2 unfolding of A. Then with probability
1 − O(n−100), the matrix A satisfies AT A = n(k+1)/2I + E for some E with ‖E‖ 6 O(nk/2 log(n)) and
‖AT V‖ 6 O(n(k−1)/4 log(n)1/2).

Proof With δ = O(1/
√

n) and t = 1, our parameters will satisfy n(k+1)/2 > (t/δ)2n(k−1)/2. Hence, by
Lemma 52,

‖E‖ = ‖AT AT − n(k+1)/2I‖ =

∥∥∥∥∥∥∥∥
∑

|α|=(k+1)/2

aαaT
α − n(k+1)/2 · Id

∥∥∥∥∥∥∥∥ 6 n(k+1)/2 · O
(

1
√

n

)
= O(nk/2)

with probability at least 1 − 2 exp(−n(k+1)/2) > 1 − O(n−100).
It remains to bound ‖AT V‖. Note that V = uwT for fixed unit vectors u ∈ R(k−1)/2 and w ∈ R(k+1)/2.

So ‖AT V‖ 6 ‖AT u‖. But AT u is distributed according to N(0, 1)n and so ‖AT u‖ 6 O(
√

n log n) with
probability 1 − n−100 by standard arguments.

E.4. Concentration for Lower Bounds

The next theorems collects the concentration results necessary to apply our lower bounds Theorem 31
and Theorem 32 to random polynomials.

Lemma 62 Let A be a random 3-tensor with unit Gaussian entries. For a real parameter λ,
let L : R[x]4 → R be the linear operator whose matrix representation ML is given by ML :=

1
n2λ2

∑
π∈S4 π · AAT . There is λ = O(n3/2/ log(n)1/2) so that with probability 1−O(n−50) the following

events all occur for every π ∈ S3.

−2λ2 · Π Id Π

�
1
2

Π
[
σ · Aπ(Aπ)T + σ2 · Aπ(Aπ)T + (σ · Aπ(Aπ)T )T + (σ2 · Aπ(Aπ)T )T

]
Π (E.1)

〈A,
∑
π∈S3

Aπ〉 = Ω(n3) (E.2)

〈Idsym , Aπ(Aπ)T 〉 = O(n3) (E.3)
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n
(
max

i

∣∣∣∣∣ 1
λn3/2 〈Idn×n , Aπi 〉

∣∣∣∣∣) = O(1) (E.4)

n2
(
max

i, j

∣∣∣L‖x‖2xix j
∣∣∣) = O(1) (E.5)

n3/2
(
max

i

∣∣∣∣L‖x‖2x2
i −

1
n L‖x‖

4
∣∣∣∣) = O(1/n) (E.6)

Proof For (E.1), from Theorem 56, Lemma 36, the observation that multiplication by an orthogonal
operator cannot increase the operator norm, a union bound over all π, and the triangle inequality, it
follows that: ∥∥∥σ · Aπ(Aπ)T − E[σ · Aπ(Aπ)T ] + σ2 · Aπ(Aπ)T − E[σ2 · Aπ(Aπ)T ]

∥∥∥ 6 2λ2.

with probability 1 − n−100. By the definition of the operator norm and another application of triangle
inequality, this implies

−4λ2 Id � σ · Aπ(Aπ)T + σ2 · Aπ(Aπ)T + (σ · Aπ(Aπ)T )T + (σ2 · Aπ(Aπ)T )T

− E[σ · Aπ(Aπ)T ] − E[σ2 · Aπ(Aπ)T ] − E[(σ · Aπ(Aπ)T )T ] − E[(σ2 · Aπ(Aπ)T )T ] .

We note that E[σ · Aπ(Aπ)T ] = σ · Id and E[σ2 · Aπ(Aπ)T ] = σ2 · Id, and the same for their
transposes, and that Π(σ · Id + σ2 · Id)Π � 0. So, dividing by 2 and projecting onto the Π subspace:

−2λ2 · Π Id Π

�
1
2

Π
(
σ · Aπ(Aπ)T + σ2 · Aπ(Aπ)T + (σ · Aπ(Aπ)T )T + (σ2 · Aπ(Aπ)T )T

)
Π .

We turn to (E.2). By a Chernoff bound, 〈A,A〉 = Ω(n3) with probability 1− n−100. Let π ∈ S3 be
a nontrivial permutation. To each multi-index α with |α| = 3 we associate its orbit Oα under 〈π〉. If α
has three distinct indices, then |Oα| > 1 and

∑
β∈Oα AβAπβ is a random variable Xα with the following

properties:

• |Xα| < O(log n) with probability 1 − n−ω(1).

• Xα and −Xα are identically distributed.

Next, we observe that we can decompose

〈A,Aπ〉 =
∑
|α|=3

AαAπ
α = R +

∑
Oα

Xα ,

where R is the sum over multi-indices α with repeated indices, and therefore has |R| = Õ(n2) with
probability 1−n−100. By a standard Chernoff bound, |

∑
Oα

Xα| = O(n2) with probability 1−O(n−100).
By a union bound over all π, we get that with probability 1 − O(n−100),

〈A,
∑
π∈S3

Aπ〉 = n3 − O(n2) = Ω(n3) ,

establishing (E.2).
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Next up is (E.3). Because Aπ are identically distributed for all π ∈ S3 we assume without loss of
generality that Aπ = A. The matrix Idsym has O(n2) nonzero entries. Any individual entry of AAT is
with probability 1 − n−ω(1) at most O(n). So 〈Idsym , AAT 〉 = O(n3) with probability 1 − O(n−100).

Next, (E.4). As before, we assume without loss of generality that π is the trivial permutation. For
fixed 1 6 i 6 n, we have 〈Idn×n , Ai〉 =

∑
j Ai j j, which is a sum of n independent unit Gaussians, so

|〈Idn×n , Ai〉| 6 O(
√

n log n) with probability 1 − n−ω(1). By a union bound over i this also holds for
maxi |〈Idn×n , Ai〉|. Thus with probability 1 − O(n−100),

n
(
max

i

∣∣∣∣∣ 1
n3/2λ

〈Idn×n , Ai〉

∣∣∣∣∣) 6 Õ(1)
λ

.

Last up are (E.5) and (E.6). Since we will do a union bound later, we fix i, j 6 n. Let w ∈ Rn2
be

the matrix flattening of Idn×n. We expand L‖x‖2xix j as

L‖x‖2xix j =
1

n2O(λ2)
(wT Π(AAT + σ · AAT + σ2 · AAT )Π(ei ⊗ e j)

+ wT Π(AAT + σ · AAT + σ2 · AAT )T Π(ei ⊗ e j)) .

We have Πw = w and we let ei j := Π(ei ⊗ e j) = 1
2 (ei ⊗ e j + e j ⊗ ei). So using Lemma 36,

n2O(λ2)L‖x‖2xix j = wT (AAT + σ · AAT + σ2 · AAT )ei j

+ wT (AAT + σ · AAT + σ2 · AAT )T ei j

= wT
(
AAT ei j

+
1
2

∑
k

Ake j ⊗ Akei +
1
2

∑
k

Akei ⊗ Ake j

+
1
2

∑
k

AT
k e j ⊗ AT

k ei +
1
2

∑
k

AT
k ei ⊗ AT

k e j

+
1
2

∑
k

Akei ⊗ AT
k e j +

1
2

∑
k

Ake j ⊗ AT
k ei

+
1
2

∑
k

AT
k ei ⊗ Ake j +

1
2

∑
k

AT
k e j ⊗ Akei

)
.

For i , j, each term wT (Ake j ⊗ Akei) (or similar, with various transposes) is the sum of n independent
products of pairs of independent unit Gaussians, so by a Chernoff bound followed by a union bound,
with probability 1 − n−ω(1) all of them are O(

√
n log n). There are O(n) such terms, for an upper

bound of O(n3/2(log n)) on the contribution from the tensored parts.
At the same time, wT A is a sum

∑
k akk of n rows of A and Aei j is the average of two rows of

A; since i , j these rows are independent from wT A. Writing this out, wT AAT ei j = 1
2
∑

k〈akk, ai j +

a ji〉. Again by a standard Chernoff and union bound argument this is in absolute value at most
O(n3/2(log n)) with probability 1− n−ω(1). In sum, when i , j, with probability at least 1− n−ω(1), we
get | L ‖x‖2xix j| = O(1/n2 log n). After a union bound, the maximum over all i, j is O(1/n2). This
concludes (E.5).

In the i = j case, since
∑

k〈w, Akei ⊗ Akei〉 =
∑

j,k〈e j, Akei〉
2 is a sum of n2 independent square

Gaussians, by a Bernstein inequality, |
∑

k〈w, Akei ⊗ Akei〉 − n2| 6 O(n log1/2 n) with probability
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1 − n−ω(1). The same holds for the other tensored terms, and for wT AAT eii, so when i = j we get
that |O(λ2)L‖x‖2x2

i − 5| 6 O((log1/2 n)/n) with probability 1 − n−ω(1). Summing over all i, we find
that |O(λ2)L‖x‖4 − 5n| 6 O(log1/2 n), so that O(λ2)| L ‖x‖2x2

i −
1
n L‖x‖

4| 6 O((log1/2 n)/n) with
probability 1 − n−ω(1). A union bound over i completes the argument.

Lemma 63 Let A be a random 4-tensor with unit Gaussian entries. There is λ2 = O(n) so
that when L : R[x]4 → R is the linear operator whose matrix representation ML is given by
ML := 1

n2λ2

∑
π∈S4 Aπ, with probability 1 − O(n−50) the following events all occur for every π ∈ S4.

−λ2 �
1
2

(Aπ + (Aπ)T ) (E.7)

〈A,
∑
π∈S4

Aπ〉 = Ω(n4) (E.8)

〈Idsym , Aπ〉 = O(λ2 √n) (E.9)

n2 max
i, j
| L ‖x‖2xix j| = O(1) (E.10)

n3/2 max
i
| L ‖x‖2x2

i | = O(1) . (E.11)

Proof
For (E.7), we note that 1

2 Aπ + (Aπ)T is an n2 × n2 matrix with unit Gaussian entries. Thus, by
Lemma 54, we have 1

2‖A
π + (Aπ)T ‖ 6 O(n) = O(λ). For (E.8) only syntactic changes are needed

from the proof of (E.3). For (E.9), we observe that 〈Idsym , Aπ〉 is a sum of O(n2) independent
Gaussians, so is O(n log n) 6 O(λ2 √n) with probability 1 − O(n−100). We turn finally to (E.10) and
(E.11). Unlike in the degree 3 case, there is nothing special here about the diagonal so we will able
to bound these cases together. Fix i, j 6 n. We expand L‖x‖2xix j as 1

n2λ2

∑
π∈S4 wT Aπ(ei ⊗ e j). The

vector Aπ(ei ⊗ e j) is a vector of unit Gaussians, so wT Aπ(ei ⊗ e j) = O(
√

n log n) with probability
1 − n−ω(1). Thus, also with probability 1 − n−ω(1), we get n2 maxi, j | L ‖x‖2xix j| = O(1), which proves
both (E.10) and (E.11).
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