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Abstract
One of the most natural and important questions in statistical learning is: how well can a distribution
be approximated from its samples. Surprisingly, this question has so far been resolved for only one
loss, the KL-divergence and even in this case, the estimator used is ad hoc and not well understood.
We study distribution approximations for general loss measures. For `22 we determine the best
approximation possible, for `1 and χ2 we derive tight bounds on the best approximation, and when
the probabilities are bounded away from zero, we resolve the question for all sufficiently smooth
loss measures, thereby providing a coherent understanding of the rate at which distributions can be
approximated from their samples.
Keywords: Probability estimation, online learning, min-max loss, f -divergence

1. Introduction

1.1. Definitions and previous results

Many natural phenomena are believed to be of probabilistic nature. For example, written text,
spoken language, stock prices, genomic composition, disease symptoms, physical characteristics,
communication noise, traffic patterns, and many more, are commonly assumed to be generated
according to some unknown underlying distribution.

It is therefore of practical importance to approximate an underlying distribution from its ob-
served samples. Namely, given samples from an unknown distribution p, to find a distribution q that
approximates p in a suitable sense. Yet surprisingly, despite many years of statistical research, very
little is known about this problem.

The simplest rigorous formulation of this problem may be in terms of min-max performance.
Any distribution p = (p1, . . . ,pk) over [k]

def
= {1, . . . ,k} corresponds to an element of the simplex

∆k
def
=

{
pk ∈ Rk≥0 :

k∑
i=1

pi = 1

}
.

For two distributions p, q ∈ ∆k, let L(p, q) be the loss when the true distribution p is approximated
by the estimate q. The right loss function typically depends on the application. For example, for
compression and investment applications, the relevant loss is often the Kullback Leibeler (KL)
divergence, for classification, the pertinent measure is typically the `1 loss, and other applications
use `2, Hellinger, chi-squared and other losses.
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Let [k]∗ be the set of finite sequences over [k]. A distribution estimator is a mapping q : [k]∗ →
∆k associating with each observed sample xn ∈ [k]∗ a distribution q(xn) = (q1(xn), . . . ,qk(x

n))
over [k]. The expected loss of q after observing n samples Xn = X1, . . . ,Xn, generated i.i.d.
according to an unknown distribution p ∈ ∆k is

E
Xn∼p

L(p, q(Xn)).

The loss of q for the worst distribution is

rL
k,n(q)

def
= max

p∈∆k

E
Xn∼p

L(p, q(Xn)).

We are interested in the least worst-case loss achieved by any estimator, also called the min-max
loss,

rL
k,n

def
= min

q
rL
k,n(q) = min

q
max
p∈∆k

E
Xn∼p

L(p, q(Xn)).

Determining the min-max loss for a given loss functionL, and the optimal estimator achieving it,
is of significant practical importance. For example, an estimator with small KL-loss could improve
compression and stock-portfolio selection, while an estimator with a small `1 loss could result in
better classification.

Yet as above, very little is know about rL
k,n. The only loss function for which rL

k,n has been
determined even to the first order is KL-divergence1,

KL(p, q)
def
=

k∑
i=1

pi log
pi
qi
, (1)

where after a sequence of papers, Cover (1972); Krichevsky (1998); Braess et al. (2002); Paninski
(2004), just eleven years ago, Braess and Sauer (2004) showed that for fixed k, as n increases,

rKL
k,n =

k − 1

2n
+ o

(
1

n

)
. (2)

Even so, their estimator is somewhat impenetrable, and their proof for why their specific estima-
tor works but similar estimators with different parameters do not, relied on automated computer
calculations of the behavior of the loss at the boundaries of the simplex.

1.2. Relation to cumulative loss

The scarcity of results is even more surprising as more complex questions have been studied and
resolved in much more detail. For example, several researchers in statistics, information theory, and
online learning, have studied the more complex min-max cumulative loss that minimizes the sum of
losses over n successive estimates,

RL
k,n

def
= min

q
max
p∈∆k

E
Xn∼p

n∑
j=1

L(p, q(Xj)).

1. All logarithms in this paper are natural logarithms.
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Among the many results on the topic, Krichevsky and Trofimov (1981) showed that for KL loss,

RKL
k,n =

k − 1

2
log n+ o(log n), (3)

and a sequence of papers e.g. Xie and Barron (1997); Drmota and Szpankowski (2004) have subse-
quently determined RKL

k,n up to additive accuracy of O(1/n).
The major difference between the loss rL

k,n and its cumulative counterpart RL
k,n is that rL

k,n

minimizes the loss for any given number of observed samples, while RL
k,n minimizes only the sum

of the losses. Hence RL
k,n does not provide a direct insight about rL

k,n, while rL
k,n provides a clear

upper bound on RL
k,n. For any loss L, k, and n,

RL
k,n ≤

n∑
j=1

rL
k,j .

For example, for KL divergence, this relation and (2) implies that for fixed k, as n increases,

RKL
k,n ≤

n∑
j=1

rKL
k,j =

k − 1

2
log n+ o(log n),

recovering the behavior of the upper bound in (3)
Another difference between the loss rL

k,n and its cumulative counterpart RL
k,n is that the loss

has also the meaning of how well one can learn the distribution from n observations, while the
cumulative loss does not carry that meaning. Furthermore, while for KL divergence, RL

k,n can
be interpreted as the redundancy, the additional number of bits required to represent the whole
sequence Xn when the distribution is not known, for other loss functions, the cumulative loss RL

k,n

may not have a clear meaning.
A natural question to ask may therefore be why characterizing the simpler quantity rKL

k,n took
much longer than for the more complex RKL

k,n. As described in the next subsection, the reason may
be the simplicity of approaching the optimal cumulative loss.

1.3. Add-constant estimators

Many popular estimators assign to each symbol a probability proportional to its number of occur-
rences plus a positive constant. Let

Ti
def
= Ti(X

n)
def
=

n∑
j=1

1(Xj = i)

denote the number of times symbol i ∈ [k] appeared in a sample Xn. The add-β estimator q
+β

over
[k], assigns to symbol i a probability proportional to its number of occurrences plus β, namely,

qi
def
= qi(X

n)
def
= q

+β ,i(X
n)

def
=

Ti + β

n+ kβ
,

where as above, we will often abbreviate q
+β ,i(X

n) by qi(Xn) and even just qi. Well-known add-
constant estimators include the empirical frequency estimator q+0 , the Laplace estimator q+1 , and
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the Krichevsky-Trofimov (KT) estimator q
+1/2

Krichevsky and Trofimov (1981). The last one, the
add-half estimator, was the first estimator shown by Krichevsky and Trofimov (1981) to asymptot-
ically achieve the min-max cumulative loss for KL divergence in (3).

Unlike the cumulative loss that is asymptotically achieved by the add-half estimator, as shown
in Section 5, for rKL

k,n, the asymptotically optimal estimator derived by Braess and Sauer (2004) is
much more involved, perhaps explaining the lag in time it took to derive.

1.4. Results

We first consider three important loss functions and determine their loss either exactly or to the first
order with correct constant. In Section 2, we consider the `22 distance

`22(p, q)
def
=

k∑
i=1

(pi − qi)2.

Expected `22 distance of add-constant estimators is closely related to the variance of binomial distri-
butions. This property lets us determine the exact min-max loss for `22 distance for every k and n,
and in Theorem 3 we show that

r
`22
k,n = r

`22
k,n(q

+
√
n/k

) =
1− 1

k

(
√
n+ 1)2

,

and that furthermore, q
+
√
n/k

has the same expected `22 divergence for every distribution in ∆k. Note
that unlike min-max cumulative loss for KL-divergence where add-half is nearly optimal, for `22 the
optimal min-max loss is achieved by an estimator that adds a constant that depends on the alphabet
size k and the number of samples n, and can be arbitrarily large.

Observe also that the `22 loss decreases to 0 with n uniformly over all alphabet sizes k. For the
remaining divergences we consider, the rate at which the loss decreases with the sample size n will
depend on the alphabet size k.

In Section 3 we consider the chi-squared loss and analyze one of its several forms

χ2(p, q)
def
=

k∑
i=1

(pi − qi)2

qi
.

In Lemmas 4 and 5, we show that

k − 1

n+ k + 1
− k(k − 1)(log(n+ 1) + 1)

4(n+ k)(n+ k + 1)
≤ rχ

2

k,n ≤
k − 1

n+ 1
,

where the upper bound is obtained by the Laplace estimator. In particular, this implies that for any
fixed k, as n increases,

rχ
2

k,n =
k − 1

n
+O

(
log n

n2

)
.

One of the most important distances in machine learning is

`1(p, q)
def
=

k∑
i=1

|pi − qi|.
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It can be easily shown that if distributions can be estimated to `1 distance δ, then an element can
be classified to one of two unknown distributions with error probability that is at most 2δ above
that achievable with prior knowledge of the distributions. In Section 4 we consider the `1 distance.

It is part of folklore that r`1k,n = Θ(
√

k−1
n ). In Corollary 9 we determine the first-order behavior,

showing that for every fixed k, as n increases,

r`1k,n =

√
2(k − 1)

πn
+O

(
1

n
3
4

)
.

In Section 5 we consider the min-max loss with the commonly-used family of f -divergence loss
functions, defined in Csiszár (1967). Let f : R≥0 7→ R be convex and satisfy f(1) = 0, then

Df (p||q) def
=

k∑
i=1

qi · f
(
pi
qi

)
.

Many important notions of loss are f -divergences. The most important among them are: the relative
entropy from f(x) = x log x; the χ2 divergence from f(x) = (x − 1)2; the Hellinger divergence
H(p||q) =

∑k
i=1

(√
pi −

√
qi
)2 from f(x) = (1−

√
x)2; the `1 distance (or total variation distance)

from f(x) = |x− 1|.
These are of predominant interest in various applications and are frequently the subject of study.

For example, of the ten different notions of loss considered in Gibbs and Su (2002), there are only
five relevant to distributions on discrete alphabets, four of which are f -divergences, being precisely
the four listed above.

We first discuss the difficulty with providing a coherent general formula for all f -divergences
and show that the challenge arises from distributions that are close to the boundary of the simplex
∆k, specifically probability distributions that assign probability roughly 1

n to some elements. In
Theorem 10 we show that under the common assumption that excludes these extreme distributions
and considers only distributions bounded away from the boundary of the simplex, the min-max loss
as well as the optimal estimators have a simple form. Let rfk,n denote the min-max f -divergence

for all distributions in ∆k, and let r̂fk,n(δ) denote the same for distributions in the simplex interior,
i.e. satisfying pi ≥ δ > 0, for all i. We show that under a mild smoothness condition on the convex
function f, namely for all functions f that are sub-exponential and that are thrice differentiable in a
neighborhood of x = 1, the asymptotic loss is determined by the second derivative of f at 1,

r̂fk,n(δ) = f ′′(1) · k − 1

2n
+ o

(
1

n

)
.

This result provides a simple understanding of the min-max loss for a large family of f -divergences,
in a unified fashion.

2. `2
2 distance

`22 is the simplest loss to analyze as the calculations resemble those for variance. For the empirical-
frequency estimator, Ti ∼ B(pi, n), the binomial distribution with parameters pi and n, hence
E(Ti) = npi and V (Ti) = npi(1−pi). The expected loss under the empirical estimator is therefore

E||p−q(Xn)||22 =

k∑
i=1

E
(
Ti
n
− pi

)2

=

k∑
i=1

V (Ti)

n2
=

k∑
i=1

pi · (1− pi)
n

=
1−

∑k
i=1 p

2
i

n
≤

1− 1
k

n
,
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with equality when all pi are 1/k.
Similar calculations show that the min-max optimal estimator is add-

√
n/k, that it improves on

empirical frequency only slightly, increasing the denominator from n to n + 2
√
n + 1, and that it

has the same loss for each p ∈ ∆k. The proofs of Lemmas 1 and 2 below are in Appendix B.

Lemma 1 For all k ≥ 2 and n ≥ 1,

min
β≥0

r
`22
k,n(q

+β
) = r

`22
k,n(q

+
√
n/k

) =
1− 1

k

(
√
n+ 1)2

.

Furthermore, q
+
√
n/k

has the same expected loss for every distribution p ∈ ∆k.

We obtain a matching lower bound.

Lemma 2 For all k ≥ 2 and n ≥ 1,

r
`22
k,n ≥

1− 1
k

(
√
n+ 1)2

.

The two lemmas exactly determine the min-max `22 loss and show that it is achieved by the
add-
√
n/k estimator.

Theorem 3 For all k ≥ 2 and n ≥ 1,

r
`22
k,n = r

`22
k,n(q+

√
n/k) =

1− 1
k

(
√
n+ 1)2

.

3. χ2 divergence

We first upper bound the performance of the Laplace estimator, then show that for n� k it is near
optimal.

Lemma 4 For every k ≥ 2 and n ≥ 1,

rχ
2

k,n ≤ r
χ2

k,n(q+1) =
k − 1

n+ 1
.

Proof Rewrite

χ2(p||q) =
k∑
i=1

(pi − qi)2

qi
= −1 +

k∑
i=1

p2
i

qi
.

Then, for the Laplace estimator,

E
(
χ2(p||q+1(Xn))

)
= E

(
−1 +

k∑
i=1

p2
i

Ti+1
n+k

)
= −1 + (n+ k)

k∑
i=1

p2
iE
(

1

Ti + 1

)
.

Now,

p2
iE
(

1

Ti + 1

)
= p2

i

n∑
t=0

1

t+ 1

(
n

t

)
pti(1− pi)n−t =

pi(1− (1− pi)n+1)

n+ 1
≤ pi
n+ 1

.
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Hence,

E
(
χ2(p||q+1(Xn))

)
≤ −1 + (n+ k)

k∑
i=1

pi
n+ 1

=
k − 1

n+ 1
.

This bound holds for any distribution p and equality holds if p assigns a probability of 1 to any
element, and the lemma follows.

We obtain a lower bound on the min-max loss that characterizes the first order term in its behavior
for large n. To obtain this lower bound, we use a uniform prior over the distributions in the simplex
∆k. The calculations are somewhat involved, and presented in Appendix C.

Lemma 5 For every k ≥ 2 and n ≥ 1,

rχ
2

k,n ≥
k − 1

n+ k + 1
− k(k − 1) (log(n+ 1) + 1)

4(n+ k)(n+ k + 1)
.

The next corollary follows.

Corollary 6 As n increases and k = o(n/ log n),

rχ
2

k,n =
k − 1

n
+ o

(
k − 1

n

)
,

and for fixed k,

rχ
2

k,n =
k − 1

n
+O

(
log n

n2

)
.

The simple evaluation of the Laplace estimator in Lemma 4 may lead one to believe that other
add-constant estimators will also achieve the (k − 1)/n asymptotic min-max loss. This is not
the case. We now show that Laplace is the only add-constant estimator achieving this asymptotic
behavior.

For simplicity consider the binary alphabet k = 2. Let p = p1, q = q1, and T = T1, χ2(p||q) =
p2

q + (1−p)2
1−q − 1 . The expected divergence of the add-β estimator is therefore

E
(
χ2(p||q

+β
(Xn))

)
=

n∑
t=0

(
n

t

)
pt(1− p)n−t

(
p2

t+β
n+2β

+
(1− p)2

n−t+β
n+2β

− 1

)
.

It can be shown that this expected loss behaves as Θ
(

1
n

)
. To capture the behavior of n times the

expected loss for the tiny probability p = z
n , define

Φβ(z)
def
= lim

n→∞
n · E

(
χ2
( z
n
||q

+β
(Xn)

))
= lim

n→∞
n

n∑
t=0

(
n

t

)
zt

nt

(
1− z

n

)n−t( z2

n2

t+β
n+2β

+

(
1− z

n

)2
n−t+β
n+2β

− 1

)

=

∞∑
t=0

e−zzt

t!

(
β + t− 2z +

z2

t+ β

)
= β − z + z2 E

(
1

Yz + β

)
, (4)
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Figure 1: Plots of Φβ(z) from (4) for different choices of β

where Yz ∼ Poisson(z). It is easy to show that for any fixed a > 0, the function of z given by
n · E

(
χ2
(
z
n ||q+β (Xn)

))
converges uniformly to Φβ(z) over z ∈ [0, a] as n → ∞. We would

therefore, at the very least need to have Φβ(z) ≤ 1, ∀z ∈ [0, a] so that our proposed estimator
would be asymptotically optimal, achieving an expected loss of 1

n + o
(

1
n

)
. For β = 1, we can get a

closed form expression for Φβ=1(z) = 1 − ze−z which is indeed always bounded above by 1. But
we find numerically that for absolutely any other choice of β 6= 1, we have Φβ(z) > 1 for some
z ∈ [0, 10]. See Fig. 1 which plots the function Φβ(z) for various choices of β. Thus, the maximum
expected loss for the add-β estimator over p ∈ [0, 1] behaves asymptotically as c(β)

n for β > 0,
where

c(β)

{
= 1 β = 1,

> 1 β 6= 1.

Thus, for min-max loss under chi squared loss, the Laplace estimator is uniquely asymptotically
optimal among all add-β estimators.

4. `1 distance

We provide non-asymptotic upper and lower bounds on r`1k,n. The expected `1 distance under the
empirical estimator is

E||p− q+0(Xn)||1 =

k∑
i=1

E
∣∣∣∣pi − Ti

n

∣∣∣∣ ≤ k∑
i=1

√
E
∣∣∣∣pi − Ti

n

∣∣∣∣2 =
k∑
i=1

√
pi(1− pi)

n
≤
√
k − 1

n
,
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where the last inequality follows from Cauchy-Schwarz. This is a loose calculation though, and can
be improved. If Z ∼ N (0, 1), then by the central limit theorem and uniform integrability, we can
see that for large n,

√
nE
∣∣∣∣pi − Ti

n

∣∣∣∣ ≈√pi(1− pi)E|Z| =
√

2pi(1− pi)
π

. (5)

Hence the above analysis loses a constant factor of
√

2
π . Interestingly, the expected absolute devia-

tion of a binomial random variable from its mean has a rich history: De Moivre obtained an explicit
expression for this quantity, see Diaconis and Zabell (1991) for a historical note on this. We prove
our upper bound by providing uniform bounds on this rate of convergence for all p. These uniform
bounds we shall prove will also be non-asymptotic in nature, in that, they will hold for every value
of k and n.

Lemma 7 For every k ≥ 2 and n ≥ 1,

r`1k,n ≤
√

2(k − 1)

πn
+

4k1/2(k − 1)1/4

n3/4
.

Proof We use the empirical estimator to obtain this upper bound. We use the Berry-Esseen theo-
rem to give quantitative bounds on the approximation presented in (5). The details are provided in
Appendix D.

We also prove a lower bound on the min-max loss.

Lemma 8 For every k ≥ 2 and n ≥ 1,

r`1k,n ≥ sup
β≥1

√
2(k − 1)

πn

(
1− k

2(k − 1)β

)
− 4k

1
2 (k − 1)

1
4

n3/4
− k (1 + kβ)

n+ kβ
,

where the supremum is explicitly attained at

β∗ = max

{
1,

n

(2πn(k − 1))1/4(nk − n− k)1/2 − k

}
∼ max

{
1,
n1/4

k3/4

}
.

Proof The lower bound on min-max loss is proved using Bayes loss for the prior Dir(β, β, . . . , β).
Using the fact that the median and the mean of a beta distribution are close (Lemma 15 in Ap-
pendix D), we obtain the desired lower bound. The full details can be found in Appendix D.

We note that the expected loss for the empirical estimator is highest at the uniform distribution
and smaller at all other distributions. We also observe that we can get a lower bound that matches
the upper bound (up to the first-order term) in the case when the alphabet size k is held fixed
when β = n

1
4 , thus placing most of the probability mass around the uniform distribution, where

the expected loss is the highest. This obtains the correct first order term for all values of k ≥ 2.
Previous results proving lower bounds on `1 min-max loss such as Han et al. (2014) do not yield the
correct first order term.
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Corollary 9 For fixed k, as n increases,

r`1k,n =

√
2(k − 1)

πn
+O

(
1

n3/4

)
.

For additional work on density estimation of various non-parametric classes under `1 loss,
see Chan et al. (2013).

5. General family of f -divergences

Based on the results so far, one can ask a natural question: For a fixed alphabet size k, is there a
systematic way to understand the asymptotics of min-max loss and asymptotically optimal estima-
tors for all f -divergences as simple properties of the function f? To study this question, let us look
at the several popular f -divergences mentioned in the introduction, where the function f is smooth
and thrice continuously differentiable, i.e. all but the `1 loss. As we have done for χ2, for simplicity,
we consider the binary alphabet {1, 2}, so k = 2, and the space of probability distributions can be
represented by a single parameter p = P (X = 2), 0 ≤ p ≤ 1.

χ2 f(x) = x2 − 1, χ2(p||q) = p2

q + (1−p)2
(1−q)2 − 1. As we saw in Section 3, the Laplace estimator

achieves the asymptotic min-max loss, and no other add-constant estimator does.

KL f(x) = x log x, KL(p, q) = p log p
q + (1 − p) log 1−p

1−q . As shown by Krichevsky (1998), no
add-constant estimator can achieve a natural lower bound of rKL

2,n ≥ 1
2n + o

(
1
n

)
. But, Braess

and Sauer (2004) showed that rKL
2,n = 1

2n + o
(

1
n

)
. and the asymptotically-optimal estimator

is a varying-add-β estimator described as follows: If a symbol appears exactly r times in n
samples, it is assigned a probability that is proportional to r+βr where βr is a fixed sequence
given by

β0 =
1

2
, β1 = 1, β2 = β3 = . . . =

3

4
.

Hellinger f(x) = (1−
√
x)2, H(p||q) = 2

(
1−√pq −

√
(1− p)(1− q)

)
.

We may perform a Bayes lower bound calculation similar to the lower bound of Lemma 5
presented in Appendix C on Hellinger divergence instead of the χ2 divergence. This yields
the following:

rH2,n = min
q(xn)

max
p∈∆2

EH(p||q(Xn)) ≥ 1

4n
+ o

(
1

n

)
.

(This lower bound may also be seen as a consequence of our Thm. 10 to follow). Suppose we
try to obtain a matching upper bound using an add-β estimator. The expected loss when the
true distribution parameter is p will be

F̄ βn (p)
def
=

n∑
t=0

(
n

t

)
pt(1− p)n−t 2

(
1−

√
p · t+ β

n+ 2β
−

√
(1− p) · n− t+ β

n+ 2β

)
.
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Figure 2: Plots of Φ̄β(z) from (6) for different choices of β. No choice of β yields a curve that’s
always under the straight line at 0.25.

Similar to (4) in Sec. 3, we define Φ̄β(z)
def
= limn→∞ nF̄

β
n

(
z
n

)
. Thus, Φ̄β(z) captures the

behavior of n times the expected loss for the tiny probability parameter p = z
n . An easy

calculation gives

Φ̄β(z) = β + 2z − 2
√
z E
[√

Yz + β
]
, (6)

where Yz ∼ Poisson(z), and that for any fixed a > 0, the function nF̄ βn
(
z
n

)
converges

uniformly to Φ̄β(z) over z ∈ [0, a]. We would therefore, like Φ̄β(z) ≤ 1
4 , ∀z ∈ [0, a] so

that our proposed estimator would match the lower bound asymptotically. But numerical
calculation shows that no choice of β achieves this goal (see Fig. 2). Thus, for the min-
max Hellinger divergence loss, we may have to look for either a) better lower bounds or b)
complicated estimators such as the varying-add-β estimators which were proposed by Braess
and Sauer (2004) for the KL loss.

The above discussion helps us appreciate the difficulty of giving a coherent answer to the asymp-
totic min-max loss under an arbitrary f -divergence loss function: the erratic behavior of the ex-
pected loss at the boundaries of the simplex, a behavior that depends on the function f and the
estimator in a complex fashion. We note though that in all three examples above, it is easy to show
that the behavior of the expected loss for distributions bounded away from the boundary of the sim-
plex, say 0.1 ≤ p ≤ 0.9 can be shown to match the corresponding lower bounds for any ‘reasonable’
estimator, in particular any add-β estimator for any β > 0. Indeed, note from Fig. 1 and Fig. 2 that

11
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for any β > 0, Φβ(z) → 1, Φ̄β(z) → 1
4 as z → ∞ which too is suggestive of being a counterpart

upper bound to the lower bounds rχ
2

2,n ≥ 1
n + o

(
1
n

)
and rH2,n ≥ 1

4n + o
(

1
n

)
. We generalize this

observation to our main result in Theorem 10.
Define for any 0 < δ < 1

k , the δ-bounded simplex ∆̂δ
k as the set of probability distributions

that satisfy pi ≥ δ ∀i = 1, 2, . . . , k. Define the min-max loss for the δ-bounded simplex under an
f -divergence loss function:

r̂fk,n(δ)
def
= min

q(xn)
max
p∈∆̂δ

k

EDf (p||q(Xn)). (7)

Theorem 10 Let f be convex and thrice differentiable with f(1) = 0 and f ′′(1) > 0. Further,
suppose f is sub-exponential, namely lim supx→∞

|f(x)|
ecx = 0, ∀c > 0. Fix any alphabet size k and

any 0 < δ < 1
k . Then,

r̂fk,n(δ) = min
q(xn)

max
p∈∆̂δ

k

EDf (p||q(Xn)) =
(k − 1)f ′′(1)

2n
+ o

(
1

n

)
. (8)

The first-order term in the asymptotic behavior is not affected by δ. Furthermore, any add-β
estimator with fixed β > 0 achieves this asymptotic behavior.

Theorem 10 unifies the three examples of f -divergences we looked at in this section by giving
us for any 0 < δ < 1

2 :

• f(x) = x log x, f ′′(1) = 1, r̂KL
2,n(δ) = 1

2n + o
(

1
n

)
.

• f(x) = x2 − 1, f ′′(1) = 2, r̂χ
2

2,n(δ) = 1
n + o

(
1
n

)
.

• f(x) = (1−
√
x)2, f ′′(1) = 1

2 , r̂H2,n(δ) = 1
4n + o

(
1
n

)
.

Remark 11 The proof will show that Theorem 10 also holds when f is assumed to be thrice differ-
entiable in an open interval (1−θ, 1+θ) for some θ > 0, instead of thrice differentiable everywhere.

Remark 12 The sub-exponential assumption in Theorem 10 is necessary only to ensure that add-β
estimators are asymptotically optimal. If the sub-exponential assumption is dropped, the asymptotic
behavior in (8) still holds, but the asymptotically optimal estimators need to be modified. One such
modified estimator may be as follows: We set qi = Ti+β

n+kβ for i = 1, 2, . . . , k only if Tin ≥
δ
2 for all i,

and we set qi = 1
k for i = 1, 2, . . . , k, if the stated condition is not true.

Proof The intuition behind the theorem is as follows. If the true distribution is p, then the empirical
distribution of the samples is distributed approximately normally around p within a distance of
O
(

1√
n

)
. Furthermore, if p is bounded away from the boundaries of the simplex, then this empirical

distribution has a finite amount of variance. Any add-β estimator with a fixed β > 0 moves the
empirical distribution around by at most O

(
1
n

)
. The empirical distribution itself is moved by the

randomness to a distance that is about Θ
(

1√
n

)
. This means that there is not much change in the

f -divergence due to the choice of β and a Taylor approximation of f(x) around x = 1 captures the
behavior of the min-max loss.

The full proof is placed in Appendix E.

12
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Appendix A. Properties of Dirichlet prior

Most of the lower bound arguments in the paper use properties of the Dirichlet prior. A standard
argument to lower bound min-max loss is

min
q

max
p∈∆k

EL(p, q) ≥ min
q

EπEpL(p, q), (9)

where π is any prior distribution over probabilities in ∆k. A useful prior to use that makes the right
hand side amenable to analysis is the Dirichlet prior. The Dirichlet prior is a density with positive
parameters βk def

= (β1, , . . . ,, βk) is

Dirβk(p) =
1

B(βk)

k∏
i=1

pβi−1
i ,

whereB(βk) is a normalization factor ensuring that the probabilities integrate to 1. One of the most
useful properties of Dirichlet prior is that the posterior distribution upon observing a sequence with
types tk is

Dirβk(p|T k = tk) = Dirβk+tk(p). (10)

Furthermore, for any i,
Dirβk(pi) = Betaβi,

∑k
j=1,j 6=i βj

(pi). (11)

For X distributed as Beta(α, β),

EX =
α

α+ β
, (12)

EX2 =
α(α+ 1)

(α+ β)(α+ β + 1)
. (13)

For lower bounding min-max chi-squared loss, the following moment calculations would be useful.

Lemma 13 If p is generated from Dir1k and the type T k is generated from p, then the following
hold.

E(T1 + 1) =
n+ k

k

E(T1 + 1)(T2 + 1) =
(n+ k)(n+ k + 1)

k(k + 1)

E(T1 + 1)(T1 + 2) =
2(n+ k)(n+ k + 1)

k(k + 1)

E
T2 + 1

T1 + 1
≤ log(n+ 1) +

3

2

E
1

T1 + 1
≤ 1.

14
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Proof If p is generated from Dir1k and the type T k is generated from p, then it can be shown that

Pr(tk) =

∫
Dir1k(p)p(tk)dp = Dir1k((t/n)k). (14)

Since Dir1k is same as uniformly sampling from the simplex, we have

T k = (T1, T2, . . . , Tk) ∼ Uniform on {(t1, t2, . . . , tk) :
k∑
i=1

ti = n, ti ≥ 0, ∀i} .

Thus,

P (T1 = a, T2 = b) =

(
n−a−b+k−3

k−3

)(
n+k−1
k−1

) , for 0 ≤ a, b, a+ b ≤ n,

P (T1 = a) =

(
n−a+k−2

k−2

)(
n+k−1
k−1

) , for 0 ≤ a ≤ n.

By symmetry, we have ET1 = n
k , so

E(T1 + 1) =
n+ k

k
.

Some simple calculations of the combinatorial sums using Mathematica gives:

E(T1 + 1)(T1 + 2) =
2(n+ k)(n+ k + 1)

k(k + 1)
,

E(T1 + 1)(T2 + 1) =
(n+ k)(n+ k + 1)

k(k + 1)
.

Defining Hn =
∑n

k=1
1
k and γ = 0.5772... as the Euler-Mascheroni constant, and noting that

Hn ≤ log n+ γ + 1
2 for n ≥ 1,

E
T2 + 1

T1 + 1
=

n∑
a=0

n−i∑
b=0

(
n−a−b+k−3

k−3

)(
n+k−1
k−1

) b+ 1

a+ 1

=

n∑
a=0

(
n−a+k−1

k−1

)(
n+k−1
k−1

) 1

a+ 1

≤
n∑
a=0

1

a+ 1
= Hn+1 ≤ log(n+ 1) + γ +

1

2
≤ log(n+ 1) +

3

2
,

and since T1 ≥ 0,

E
1

T1 + 1
≤ 1.

15
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Appendix B. Proofs of Lemma 1 and Lemma 2.

First, we present the proof of Lemma 1.
Proof By definition of variance, E(X2) = V (X) + (E(X))2. Hence,

E
(
pi −

Ti + β

n+ βk

)2

=
1

(n+ kβ)2
· E
(
Ti − npi − β(kpi − 1)

)2

=
1

(n+ kβ)2
·
(
V (Ti) + β2(kpi − 1)2

)
=

1

(n+ βk)2
·
(
npi(1− pi) + β2(kpi − 1)2

)
.

The loss of the add-β estimator for a distribution p is therefore,

E||p− q
+β

(Xn)||22 =

k∑
i=1

E
(
pi −

Ti + β

n+ kβ

)2

=
1

(n+ kβ)2
·

(
n− β2k − (n− β2k2)

k∑
i=1

p2
i

)
.

The expected `22 loss of an add-β estimator is therefore determined by just the sum of squares∑k
i=1 p

2
i that ranges from 1/k to 1. For β ≤

√
n/k, the expected loss is maximized when the

square sum is 1/k, and for β ≥
√
n/k, when the square sum is 1, yielding

r
`22
k,n(q

+β
) = max

p∈∆k

E||p− q
+β

(Xn)||22 =
1

(n+ kβ)2
·

{
n(1− 1

k ) for β ≤
√
n
k ,

β2k(k − 1) for β ≥
√
n
k .

For β ≤
√
n/k, the expected loss decreases as β increases, and for β ≥

√
n/k, it increases as β

increases, hence the minimum worst-case loss is achieved for β =
√
n/k. Furthermore, q

+
√
n/k

has
the same expected loss for every underlying distribution p, yielding the lemma.

Now, we present the proof of Lemma 2.
Proof For any prior π over distributions in ∆k,

rL
k,n = min

q∈∆k

max
p∈∆k

E
Xn∼p

L(p, q(Xn)) ≥ min
q∈∆k

E
P∼π,Xn∼P

L(P, q(Xn)).

For every random variable X , E(X − x)2 is minimized by x = E(X). Similarly, for every random
pair (X,Y ), given Y , E(X −x(Y ))2 is minimized by x(y) = E(X|y). Hence for `22 loss, for every
prior π the right-hand-side above,

min
q∈∆k

E
P∼π,Xn∼P

||P − q(Xn)||22 = min
q∈∆k

E
P∼π,Xn∼P

k∑
i=1

(Pi − qi(Xn))2,

is minimized by the estimator q∗ that assigns to each symbol i its expected probability

q∗i (x
n) = E

P∼π,Xn∼P
(Pi|xn).

As described in equations (10), (11) and (12) in Appendix A, for the Dirichlet prior with param-
eter βk = (β, . . . ,β), upon observing xn of type tk = t1, . . . ,tk, the posterior distribution of P is

16
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Dirβk+tk , hence

q∗i (x
n) = E

P∼Dir
βk
,Xn∼P

(Pi|xn) = E
P∼Dir

βk
,Xn∼P

(Pi|T k = tk)

= E
P∼Dir

βk+tk

(Pi) =
β + ti

kβ +
∑k

j=1 ti
=

β + ti
kβ + n

.

Namely, with Dirβk prior, the expected loss is minimized by q
+β

. If we take β =
√
n/k, then the

expected loss is minimized by q
+
√
n/k

, and Lemma 1 showed that the resulting loss is the same,
1− 1

k

(
√
n+1)2

, for all distributions in ∆k, and the lemma follows.

Appendix C. Proof of Lemma 5

The non-asymptotic upper bound rχ
2

k,n ≤
k−1
n+1 was shown using the Laplace estimator in Section 3.

As stated in Appendix A, to get lower bounds on rχ
2

k,n, we use the fact that the Bayes loss for the
uniform prior is a lower bound on the min-max loss. Let π = Dir1k . For every estimator q,

max
p∈∆k

Ep

(
−1 +

k∑
i=1

p2
i

qi

)
(a)

≥ EπEp

(
−1 +

k∑
i=1

P 2
i

qi

)
(15)

(b)
= EπEpE

(
−1 +

k∑
i=1

P 2
i

qi

∣∣∣∣∣Xn

)
(16)

(c)
= EπEp

−1 +

k∑
i=1

(Ti+1)(Ti+2)
(n+k)(n+k+1)

qi

 (17)

(d)

≥ EπEp

−1 +
k∑
i=1

(Ti+1)(Ti+2)
(n+k)(n+k+1)√

(Ti+1)(Ti+2)∑k
r=1

√
(Tr+1)(Tr+2)

 (18)

=− 1 +
EπEp

∑k
i=1

∑k
r=1

√
(Ti + 1)(Ti + 2)

√
(Tr + 1)(Tr + 2)

(n+ k)(n+ k + 1)
(19)

(e)
= −1 +

(
kE(T1 + 1)(T1 + 2) + k(k − 1)E

√
(T1 + 1)(T1 + 2)(T2 + 1)(T2 + 2)

)
(n+ k)(n+ k + 1)

, (20)

where (a) follows from Equation (9), (b) follows from Tower law of expectation, (c) follows from
Equations (10), (11), and (13), (d) follows from a simple Lagrange multiplier calculation which
shows that under the constraint {qi ≥ 0, i = 1, 2, . . . , k,

∑k
i=1 qi = 1}, the quantity

∑k
i=1

ai
qi

is
minimized by qi ∝

√
ai, (e) follows from symmetry which implies that Ti for i = 1, 2, . . . , k, have

the same distribution, and (Ti, Tr) for i, r = 1, 2, . . . , k, i 6= r also have the same distribution.

17
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Now, using the Taylor approximation
√

1 + x ≥ 1 + x
2 −

x2

8 for x ≥ 0,

E
√

(T1 + 1)(T1 + 2)(T2 + 1)(T2 + 2)

=E(T1 + 1)(T2 + 1)

√
1 +

1

T1 + 1

√
1 +

1

T2 + 1

≥E(T1 + 1)(T2 + 1)

(
1 +

1

2(T1 + 1)
− 1

8(T1 + 1)2

)(
1 +

1

2(T2 + 1)
− 1

8(T2 + 1)2

)
=E(T1 + 1)(T2 + 1) + E(T1 + 1) +

1

4
− 1

4
E
T2 + 1

T1 + 1
− 1

8
E

1

T1 + 1
+

1

64
E

1

(T1 + 1)(T2 + 1)

≥E(T1 + 1)(T2 + 1) + E(T1 + 1) +
1

4
− 1

4
E
T2 + 1

T1 + 1
− 1

8
E

1

T1 + 1
, (21)

where the last equality used symmetry again: the distribution of T1 and T2 are the same, as are
the distributions of (T1, T2) and (T2, T1).

Substituting results from Lemma 13 and Equation (21) to bound chi-squared loss,

rχ
2

k,n ≥− 1 +
1

(n+ k)(n+ k + 1)

[
k · 2(n+ k)(n+ k + 1)

k(k + 1)

+k(k − 1) ·
(

(n+ k)(n+ k + 1)

k(k + 1)
+
n+ k

k
+

1

4
− 1

4
(log(n+ 1) +

3

2
)− 1

8

)]
=

k − 1

n+ k + 1
− k(k − 1) (log(n+ 1) + 1)

4(n+ k)(n+ k + 1)
.

Appendix D. Proof of Lemmas 7 and 8

In this section, we provide the proofs of lemmas 7 and 8 together.
First, we present the following lemma that establishes a non-asymptotic bound on the rate of

convergence of expected absolute deviations of a binomial random variable from its mean to the
corresponding expected absolute value of a Gaussian random variable.

Lemma 14 Let T ∼ Binomial(n, p). For α, β ≥ 0, we have∣∣∣∣∣E
∣∣∣∣p− T + α

n+ α+ β

∣∣∣∣−
√

2p(1− p)
πn

∣∣∣∣∣ ≤ 4p1/4(1− p)1/4

n3/4
+

α+ β

n+ α+ β
.

Proof Let X ∼ Bernoulli(p). Then, EX = p, σ2 def
= E (X1 − p)2 = p(1 − p) and ρ

def
=

E |X1 − p|3 = p(1− p)(1− 2p+ 2p2). Let Y = T−np
σ
√
n

and let Z ∼ N (0, 1).

By the Berry-Esseen theorem, we have

|Pr(|Y | ≤ t)− Pr(|Z| ≤ t)| ≤ 2ρ

σ3
√
n
.

18
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Since EY 2 = EZ2 = 1, we have for any R > 0,

E|Y |1|Y |≥R ≤ E
|Y |2

R
1|Y |≥R ≤

EY 2

R
=

1

R
,

and similarly E|Z|1|Z|≥R ≤ 1
R . Thus,

|E|Y | − E|Z||

=

∣∣∣∣∫ ∞
0

Pr(|Y | ≥ t)− Pr(|Z| ≥ t)dt
∣∣∣∣

≤
∫ R

0
|Pr(|Y | ≥ t)− Pr(|Z| ≥ t)|dt+

∫ ∞
R

Pr(|Y | ≥ t) + Pr(|Z| ≥ t)dt

≤ 2ρ

σ3
√
n
R+ E|Y |1|Y |≥R + E|Z|1|Z|≥R

≤2

(
ρ

σ3
√
n
R+

1

R

)
.

We optimize the upper bound by choosing R =
√

σ3
√
n

ρ . Thus, we get

|E|Y | − E|Z|| ≤ 4

√
ρ

σ3
√
n
.

Multiplying both sides by σ√
n
, we get∣∣∣∣E ∣∣∣∣p− T

n

∣∣∣∣− σ√
n
E|Z|

∣∣∣∣ ≤ 4

√
ρ

σ3
√
n

σ√
n

=
4p1/4(1− p)1/4(1− 2p+ 2p2)1/2

n3/4

≤ 4p1/4(1− p)1/4

n3/4
.

Using E|Z| =
√

2
π completes the proof for the case α = β = 0. To complete the proof for general

α, β ≥ 0, note that ∣∣∣∣p− T + α

n+ α+ β

∣∣∣∣ ≤ ∣∣∣∣p− T

n

∣∣∣∣+

∣∣∣∣Tn − T + α

n+ α+ β

∣∣∣∣
=

∣∣∣∣p− T

n

∣∣∣∣+

∣∣∣∣Tβ + (T − n)α

n(n+ α+ β)

∣∣∣∣
≤
∣∣∣∣p− T

n

∣∣∣∣+
α+ β

n+ α+ β
.
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Using Lemma 14 with α, β = 0, we have

k∑
i=1

E
∣∣∣∣pi − Ti

n

∣∣∣∣ ≤ k∑
i=1

√
2pi(1− pi)

πn
+

4p
1/4
i (1− pi)1/4

n3/4

≤
√

2(k − 1)

πn
+

4k1/2(k − 1)1/4

n3/4
,

where the last inequality follows by observing that the uniform distribution maximizes both terms.
This shows that the empirical estimator achieves the performance leading to the desired upper bound
on r`1k,n. This completes the proof of Lemma 7.

To get the lower bound, we bound the min-max loss by the Bayes loss. Choose a Bayesian prior
on P as Dir(β, β, . . . , β) where β ≥ 1 may be chosen later depending on n, k, so β = β(n, k) ≥ 1.
Then, the conditional law P |(T1, T2, . . . , Tk) works out to:

P |(T1 = t1, . . . , Tk = tk) ∼ Dir(t1 + β, t2 + β, . . . , tk + β).

Note that this means Pi|(T1 = t1, . . . , Tk = tk) ∼ Beta(ti + β, n − ti + (k − 1)β). We will use
the following two lemmas:

Lemma 15 Groeneveld and Meeden (1977) For α, β > 1, the median of the Beta(α, β) distribu-
tion is sandwiched between the mean α

α+β and the mode α−1
α+β−2 so that the distance between the

mean and median is at most |β−α|
(α+β)(α+β−2) .

Lemma 16 Kershaw (1983) For y ≥ 2, 0 < r ≤ 1,(
y − 1

2

)r
≤ Γ(y + r)

Γ(y)
≤ yr.

The Bayes loss can then be lower bounded in the following way:
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min
q

E
k∑
i=1

|Pi − qi(T1, T2, . . . , Tk)|

≥
k∑
i=1

min
q

E|Pi − qi(T1, T2, . . . , Tk)| (where qi now need not add up to 1)

=
k∑
i=1

min
q

E [E[ |Pi − qi(T1, T2, . . . , Tk)||T1, T2, . . . , Tk]]

(a)
=

k∑
i=1

min
q

E [E[ |Pi −Median(Beta(β + Ti, (k − 1)β + n− Ti))||T1, T2, . . . , Tk]]

=
k∑
i=1

E [|Pi −Median(Beta(β + Ti, (k − 1)β + n− Ti))|]

(b)

≥
k∑
i=1

[
E
∣∣∣∣Pi − Ti + β

n+ kβ

∣∣∣∣− ∣∣∣∣ (k − 2)β + n

(n+ kβ)(n+ kβ − 2)

∣∣∣∣]
(c)

≥
k∑
i=1

[√
2

πn
EP 1/2

i (1− Pi)1/2 − 4

n3/4
EP 1/4

i (1− Pi)1/4 − kβ

n+ kβ
− (k − 2)β + n

(n+ kβ)(n+ kβ − 2)

]

≥
k∑
i=1

[√
2

πn
EP 1/2

i (1− Pi)1/2 − 4

n3/4
EP 1/4

i (1− Pi)1/4 − kβ

n+ kβ
− 1

n+ kβ

]
,

where (a) follows because the optimal qi is the median of the posterior distribution Pi ∼ Beta(β +
Ti, (k − 1)β + n− Ti), (b) follows from Lemma 15, and (c) follows from Lemma 14.

Now, using the fact that Pi ∼ Beta(β, (k − 1)β), we have for r = 1
2 ,

1
4 ,

EP ri (1− Pi)r =
Γ(kβ)

Γ(β)Γ((k − 1)β)
· Γ(β + r)Γ((k − 1)β + r)

Γ(kβ + 2r)
,

and using Lemma 16, we obtain

EP
1
2
i (1− Pi)

1
2 ≥ (k − 1)

1
2

k

(
1− 1

2β

) 1
2
(

1− 1

2(k − 1)β

) 1
2

,

EP
1
4
i (1− Pi)

1
4 ≤ (k − 1)

1
4

k
1
2

· 1(
1− 1

2kβ

) 1
2

.
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min
q

E
k∑
i=1

|Pi − qi(T1, T2, . . . , Tk)|

≥
√

2(k − 1)

πn

(
1− 1

2β

) 1
2
(

1− 1

2(k − 1)β

) 1
2

− 4k
1
2 (k − 1)

1
4

n3/4
· 1(

1− 1
2kβ

) 1
2

− k(1 + kβ)

n+ kβ

≥
√

2(k − 1)

πn

(
1− 1

2β

) 1
2
(

1− 1

2(k − 1)β

) 1
2

− 4k
1
2 (k − 1)

1
4

n3/4
· 1(

1− 1
2kβ

) 1
2

− k(1 + kβ)

n+ kβ

≥
√

2(k − 1)

πn

(
1− 1

2β

)(
1− 1

2(k − 1)β

)
− 4k

1
2 (k − 1)

1
4

n3/4

− k(1 + kβ)

n+ kβ
(using

√
1− x ≥ 1− x, 0 ≤ x ≤ 1)

≥
√

2(k − 1)

πn

(
1− k

2(k − 1)β

)
− 4k

1
2 (k − 1)

1
4

n3/4
− k (1 + kβ)

n+ kβ
.

This proves the desired lower bound for any chosen β ≥ 1. Since β ≥ 1 is arbitrary, this
completes the proof of the lower bound in Lemma 8.

Appendix E. Proof of Theorem 10

In the two subsections that follow, we prove an asymptotic upper bound and the matching asymptotic
lower bound respectively on r̂fk,n(δ).

E.1. Asymptotic upper bound on f -divergence loss

Fix any β > 0 and consider any add-β estimator: qi = Ti+β
n+kβ , i = 1, 2, . . . , k. The expected

f -divergence loss multiplied by n is then:

nE
k∑
i=1

Ti + β

n+ kβ
f

(
pi(n+ kβ)

Ti + β

)
=

1

1 + kβ
n

k∑
i=1

E(Ti + β)f

(
pi(n+ kβ)

Ti + β

)
.

Let us fix any ε > 0 satisfying ε ≤ δ
2 . By Hoeffding’s inequality, we have

P (|Ti − npi| > εn) ≤ 2e−2ε2n.

We evaluate the quantity E(Ti + β)f
(
pi(n+kβ)
Ti+β

)
by breaking the space into two regions {|Ti−

npi| ≤ εn} and {|Ti − npi| > εn}. Over the latter, the absolute value of the contribution of the
expectation is upper bounded as
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∣∣∣∣E(Ti + β)f

(
pi(n+ kβ)

Ti + β

)
1|Ti−npi|>εn

∣∣∣∣
≤(n+ β) max

{∣∣∣∣f (pi(n+ kβ)

β

)∣∣∣∣ , ∣∣∣∣f (pi(n+ kβ)

n+ β

)∣∣∣∣} · 2e−2ε2n

(as f is convex, the maximum is attained at Ti = 0 or Ti = n)

≤(n+ β) max

{∣∣∣∣f (n+ kβ

β

)∣∣∣∣ , ∣∣∣∣f (δ(n+ kβ)

n+ β

)∣∣∣∣} · 2e−2ε2n,

≤(n+ β) max

{∣∣∣∣f (n+ kβ

β

)∣∣∣∣ , |f (δ)|
}
· 2e−2ε2n,

which vanishes, using the sub-exponential property of f. Note that the upper bound has no
dependence on p and converges uniformly to zero over all p satisfying pi ≥ δ, ∀i.

Now, to estimate the contribution of the expectation over {|Ti − npi| ≤ εn}, define g(x)
def
=

f
(

1
1+x

)
so that

g(x) = g(0) + g′(0)x+
g′′(0)

2
x2 +

g′′′(y)

6
x3, for some y, |y| ≤ |x|,

= g(0) + g′(0)x+
g′′(0)

2
x2 ± M(x)

6
x3, where M(x) := sup

y:|y|≤|x|
|g′′′(y)|,

where the notation a = b ± c will mean that a is sandwiched between b − c and b + c, i.e.
b− c ≤ a ≤ b+ c.

We observe

g(x) = f

(
1

1 + x

)
, g(0) = f(1) = 0,

g′(x) =
−1

(1 + x)2
f ′
(

1

1 + x

)
, g′(0) = −f ′(1),

g′′(x) =
2

(1 + x)3
f ′
(

1

1 + x

)
+

1

(1 + x)4
f ′′
(

1

1 + x

)
, g′′(0) = 2f ′(1) + f ′′(1),

g′′′(x) = − 6

(1 + x)4
f ′
(

1

1 + x

)
− 6

(1 + x)5
f ′′
(

1

1 + x

)
− 1

(1 + x)6
f ′′′
(

1

1 + x

)
.
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E(Ti + β)f

(
pi(n+ kβ)

Ti + β

)
1|Ti−npi|≤εn

=E(Ti + β)g

(
(Ti − npi) + β(1− kpi)

pi(n+ kβ)

)
1|Ti−npi|≤εn

=E(Ti + β)

[
g′(0)

(Ti − npi) + β(1− kpi)
pi(n+ kβ)

+
g′′(0)

2

(
(Ti − npi) + β(1− kpi)

pi(n+ kβ)

)2

±
M
(

1.1ε
δ

)
6

∣∣∣∣(Ti − npi) + β(1− kpi)
pi(n+ kβ)

∣∣∣∣3
]

1|Ti−npi|≤εn(
since for all n ≥ 10β

ε , we have
∣∣∣ (Ti−npi)+β(1−kpi)

pi(n+kβ)

∣∣∣ ≤ 1.1ε
δ over {|Ti − npi| ≤ εn}.

)
Now, we bound individual terms by using the following standard moments of the binomial

distribution:

ETi − npi = 0, E(Ti − npi)2 = npi(1− pi), E(Ti − npi)3 = npi(1− pi)(1− 2pi).

The first term evaluates to:

E(Ti + β)
(Ti − npi) + β(1− kpi)

pi(n+ kβ)
1|Ti−npi|≤εn

= E ((Ti − npi) + (npi + β))
(Ti − npi) + β(1− kpi)

pi(n+ kβ)
(1− 1|Ti−npi|>εn)

= E
(Ti − npi)2 + (npi + β(2− kpi)) (Ti − npi) + (npi + β)β(1− kpi)

pi(n+ kβ)
(1− 1|Ti−npi|>εn)

=
npi(1− pi) + 0 + (npi + β)β(1− kpi)

pi(n+ kβ)

± n2 + (n+ β(2 + k))n+ (n+ β)β(1 + k)

δ(n+ kβ)
· 2e−2ε2n

The second term evaluates to:

E(Ti + β)

(
(Ti − npi) + β(1− kpi)

pi(n+ kβ)

)2

1|Ti−npi|≤εn

= E ((Ti − npi) + (npi + β))
(Ti − npi)2 + 2β(1− kpi)(Ti − npi) + β2(1− kpi)2

p2
i (n+ kβ)2

1|Ti−npi|≤εn

= E
1− 1|Ti−npi|>εn

p2
i (n+ kβ)2

[
(Ti − npi)3 + (npi + β(3− 2kpi)) (Ti − npi)2

+
(
2β(1− kpi)(npi + β) + β2(1− kpi)2

)
(Ti − npi) + (npi + β)β2(1− kpi)2

]
=

npi(1− pi)(1− 2pi) + (npi + β(3− 2kpi))npi(1− pi) + 0 + (npi + β)β2(1− kpi)2

p2
i (n+ kβ)2

± n3 + (n+ β(3 + 2k))n2 + (2β(1 + k)(n+ β) + β2(1 + k)2)n+ (n+ β)β2(1 + k)2

δ2(n+ kβ)2
· 2e−2ε2n
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The third term may be bounded as:∣∣∣∣∣E(Ti + β)

∣∣∣∣(Ti − npi) + β(1− kpi)
pi(n+ kβ)

∣∣∣∣3 1|Ti−npi|≤εn

∣∣∣∣∣
≤ (n+ β)E

|Ti − np|3 + 3|Ti − np|2β(1− kpi) + 3β2(1− kpi)2|Ti − npi|+ β3|1− kpi|3

p3
i (n+ kβ)3

.

By the central limit theorem and uniform integrability, we have E
∣∣∣∣ Ti−npi√

npi(1−pi)

∣∣∣∣i → E|Z|i for

i = 1, 2, 3, where Z ∼ N (0, 1). Thus, the third term vanishes in n at a rate that can be bounded
(using Berry-Eseen theorem) in terms of only k, ε, δ, β without dependence on pi, only using that
pi ≥ δ i = 1, 2, . . . , k.

Thus, the limit as n→∞, of n times the expected f -divergence loss for the add-β estimator is:

lim
n→∞

nE
k∑
i=1

Ti + β

n+ kβ
f

(
pi(n+ kβ)

Ti + β

)

=

k∑
i=1

g′(0)(1− pi + β(1− kpi)) +
g′′(0)

2
(1− pi)

=g′(0)(k − 1) +
g′′(0)

2
(k − 1)

=− f ′(1)(k − 1) +
2f ′(1) + f ′′(1)

2
(k − 1)

=
(k − 1)f ′′(1)

2
,

independent of p and β > 0. This proves r̂fk,n(δ) ≤ (k−1)f ′′(1)
2n + o

(
1
n

)
.

E.2. Asymptotic lower bound on f -divergence loss

In the previous subsection, we provided an upper bound on the expected loss for a large class of
f -divergences. We now prove a matching lower bound for this class. Note that we don’t need the
sub-exponential assumption for the lower bound.

The proof consists of two parts. We first strengthen the known lower-bound proof for min-max
loss under `22 loss by showing that essentially the same asymptotic lower bound holds even if we
restrict the distributions to a very small subset of the k-simplex ∆k. We then use this result to prove
a tight lower bound for more general f -divergences.

The common technique for lower-bounding expected loss assumes a prior on the collection of
distributions, and lower-bounds the expected loss over this prior. `22 loss has the convenient property
that for any prior Π over the possible distributions, the estimator minimizing the expected `22 loss is
exactly the mean of the posterior distribution given the observations.

The Dirichlet prior is particularly convenient as the posterior distribution is also of Dirichlet
form, and the optimal estimator is an add-constant estimator. For our purpose, the simplest form of
the Dirichlet prior, the uniform distribution, will suffice. Since our distributions are restricted to a
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subset of the simplex, we truncate the uniform distribution to a ball, and approximate the posterior
by the add-constant estimator by showing that posterior distribution for full Dirichlet prior does not
assign much probability outside the truncation with high probability. Following this, we use the
add-constant estimator to lower bound the expected `22 loss between the optimal estimator and a set

of distributions in the ball by 1− 1
k

n − o
(

1
n

)
. Then we show that this set of distributions has near full

probability under the truncated prior. And therefore the lower bound of 1− 1
k

n − o
(

1
n

)
also holds for

the entire ball.
Finally, we relate the loss under general f-divergence with `22 loss by taking a Taylor series

expansion. And then we use the lower bound for `22 loss to obtain a lower bound for the general
f-divergence.

We explain these steps in much broader detail below.
We restrict P to just distributions close to ( 1

k
1
k , . . . ,

1
k ). For ε > 0, consider the L∞ ball of

radius ε around (1/k, . . . ,1/k),

Bk(ε)
def
= {p ∈ ∆k : ||p− (1/k, . . . ,1/k)||∞ < ε} =

{
p ∈ ∆k :

∣∣∣∣pi − 1

k

∣∣∣∣ < ε for all i
}
.

We will use the following nested balls,

B1
k

def
= Bk

(
1

n1/5

)
,

B2
k

def
= Bk

(
1

n1/5
− 3 log n√

n

)
,

B3
k

def
= Bk

(
1

n1/5
− 5 log n√

n

)
,

B4
k

def
= Bk

(
k

n1/5

)
.

Denote the min-max f-divergence loss for distributions in B1
k by

r̂f
B1
k,n

def
= min

q(xn)
max
p∈B1

k

E
Xn∼p

Df (p||q(Xn)).

E.2.1. LOWER BOUND FOR THE `22-LOSS

First, we state the general result of how to calculate optimal estimator that minimizes expected `22
loss under a prior. Let P be a collection of distributions over a set X and let Π be a prior over P .

Given an observation xn the posterior distribution over P is

Π(p|xn)
def
=

Π(p) · p(xn)∫
p′∈P Π(p′) · p′(xn)dp′

.

Π(p|xn) in turn determines a posterior distribution over X ,

p̂i(x
n)

def
=

∫
p∈P

Π(p|xn) · pidp .

The following is well-known.
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Lemma 17 Let P be a collection of distributions over [k] and let Π be a prior over P , then for
every observed xn, EΠEXn`22(p, q(Xn)) is minimized by p̂(xn).

To lower bound r̂`
2
2

B1
k,n

, we use a uniform prior Π1 over distributions in B1
k . Let ti(xn) be the

number of times symbol i appears in xn. After observing xn, the posterior distribution of p is

Π1(p|xn) ∝

{∏k
i=1 p

ti(x
n)

i , p ∈ B1
k,

0, otherwise,

and the posterior distribution over X is

p̂1
i (x

n)
def
=

∫
p∈B1

k

Π1(p|xn) · pi dp.

An explicit expression for p̂1 is hard to find, so instead, we show that p̂1 is very close to optimal
estimator p̂ for uniform prior over full simplex ∆k. Then we use p̂ to bound the expected `22 loss.

Consider the uniform prior Π over ∆k. Then the posterior is the Dirichlet distribution,

Π(p|xn) = Γ(n+ k) ·
k∏
i=1

p
ti(x

n)
i

Γ(ti(xn) + 1)
. (22)

Therefore the estimator minimizing the expected `22 loss under the prior Π is

p̂i(x
n) =

∫
p∈∆k

Γ(n+ k) ·
k∏
i=1

p
ti(x

n)
i

Γ(ti(xn) + 1)
pidp

=
Γ(n+ k)Γ(ti(x

n) + 2)

Γ(n+ k + 1)Γ(ti(xn) + 1)

=
ti(x

n) + 1

n+ k

=
ti(x

n)

n
+O

(
1

n

)
.

Let
nB2

k
def
=
{
n · p : p ∈ B2

k

}
,

then xn ∈ nB2
k iff its type

(
t1(xn)
n , . . . , tk(xn)

n

)
∈ B2

k . We show that for xn ∈ nB2
k , the posterior

for prior Π1 is not much higher than the posterior for Π.

Lemma 18 For all sufficiently large n, for every xn ∈ nB2
k ,

Π(B1
k|xn) = 1− o

(
1

n

)
.

Proof
To bound the probability outsideB1

k , observe that since xn ∈ nB2
k and

∣∣∣ ti(xn)
n − ti(x

n)
n+k−2

∣∣∣ ≤ logn√
n

∀i,

27



KAMATH ORLITSKY PICHAPATI SURESH

Π

(∣∣∣∣pi − k

n

∣∣∣∣ > 1

n1/5

∣∣∣∣xn) ≤ Π

(∣∣∣∣pi − ti(x
n)

n

∣∣∣∣ > log n√
n

∣∣∣∣xn)
≤ Π

(∣∣∣∣pi − ti(x
n)

n+ k − 2

∣∣∣∣ > 2 log n√
n

∣∣∣∣xn)

=

∫ ti(x
n)

n+k−2
− 2 logn√

n

0
Π(pi|xn)dpi +

∫ 1

ti(x
n)

n+k−2
+ 2 logn√

n

Π(pi|xn)dpi.

From integrating (22),

Π(pi|xn) =
(n+ k − 1)!

ti(xn)!(n− ti(xn) + k − 2)!
p
ti(x

n)
i (1− pi)n−ti(x

n)+k−2.

Now, observe that

pti(1− pi)n−t+k−2 =

(
t

n+ k − 2

)t(
1− t

n+ k − 2

)n−t+k−2

e−(n+k−2)DKL( t
n+k−2

||pi)

≤
(

t

n+ k − 2

)t(
1− t

n+ k − 2

)n−t+k−2

e−2(n+k−2)( t
n+k−2

−pi)
2

≤
(

t

n+ k − 2

)t(
1− t

n+ k − 2

)n−t+k−2

e−2n( t
n+k−2

−pi)
2

where the first inequality follows from Pinsker’s inequality. Therefore, using Stirling’s approxima-
tion and bounding Gaussian tail probability,∫ t

n+k−2
− 2 logn√

n

0
pti(1− pi)n−tdpi ≤

(
t

n+ k − 2

)t(
1− t

n+ k − 2

)n−t+k−2 ∫ ∞
2 logn√

n

e−2nx2dx

≤ t!(n− t+ k − 2)!

(n+ k − 2)!

n3

4 log n
√
n
e−8 log2 n

≤ t!(n− t+ k − 2)!

(n+ k − 1)!

1

n4
.

Hence, ∫ ti(x
n)

n+k−2
− 2 logn√

n

0
Π(pi|xn)dpi ≤

1

n4
.

Similarly, ∫ 1

ti(x
n)

n+k−2
+ 2 logn√

n

Π(pi|xn)dpi ≤
1

n4
.

Therefore ∀i,
Π

(∣∣∣∣pi − k

n

∣∣∣∣ > 1

n1/5

∣∣∣∣xn) ≤ 2

n4
.

Using the union bound,

Π
(
∆k/B

1
k|xn

)
≤ 2k

n4
≤ 1

n3
.
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Lemma 19 For all sufficiently large n, for every xn ∈ nB2
k , for all p ∈ B1

k ,

Π(p|xn) = Π1(p|xn) ·
(

1 + o

(
1

n

))
.

Proof Since for p ∈ B1
k , Π(p|xn) and Π1(p|xn) have same expressions except for the normalizing

constant, from Lemma 18 it follows that for p ∈ B1
k ,

Π(p|xn) = Π1(p|xn) ·
(

1 + o

(
1

n

))
.

Next we show that p̂(x|xn) and p̂1(x|xn) are close for xn ∈ nB2
k .

Lemma 20 For all sufficiently large n, for xn ∈ nB2
k ,

p̂1
i (x

n) = p̂i(x
n) + o

(
1

n

)
.

Proof From Lemmas 18 and 19,

p̂1
i (x

n)− p̂i(xn) =

∫
p∈∆k

(Π1(p|xn)−Π(p|xn))pidp−
∫
p/∈∆k

Π(p|xn)pidp

=

∫
p∈∆k

Π1(p|xn)o

(
1

n

)
pidp+ o

(
1

n

)
= p̂1

i (x
n)o

(
1

n

)
+ o

(
1

n

)
= o

(
1

n

)
.

We now lower bound the expected `22 loss between p̂1(Xn) and p for any p ∈ B3
k .

Lemma 21 For p ∈ B3
k ,

EXn`22(p, p̂1) ≥
1− 1

k

n
− o
(

1

n

)
.

Proof First we show that xn generated according to any p ∈ B3
k will belong to nB2

k with high
probability. Using Union and Chernoff bounds, for p ∈ B3

k ,

p(nB2
k) ≥ 1− k · p(|ti(xn)− npi| ≥ 2 log n

√
n)

≥ 1− 2ke−4 log2 n

≥ 1− 1

n3
.
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Next using the above result and Lemma 20, we lower bound the expected `22 loss between p̂1 and
p ∈ B3

k .

E

(
k∑
i=1

(pi − p̂1
i )

2

)
≥ E

k∑
i=1

(
(pi − p̂1

i )
2
∣∣Xn ∈ nB2

k

)
p(nB2

k)

= E
k∑
i=1

((
pi − p̂i − o

(
1

n

))2
∣∣∣∣∣Xn ∈ nB2

k

)
p(nB2

k)

= E
k∑
i=1

((
pi − p̂i − o

(
1

n

))2
)
− o
(

1

n

)

= E
k∑
i=1

((
pi −

Ti
n
−O

(
1

n

))2
)
− o
(

1

n

)

≥ E
k∑
i=1

((
pi −

Ti
n

)2

−O
(

1

n

) ∣∣∣∣pi − Ti
n

∣∣∣∣
)
− o
(

1

n

)

=
k∑
i=1

pi(1− pi)− o
(

1

n

)

=

(
1

k
+ o

(
1

n

)) k∑
i=1

(1− pi)− o
(

1

n

)

=
1− 1

k

n
− o
(

1

n

)
.

Now, we show that Π1 assigns most of the probability to B3
k .

Lemma 22
Π1(B3

k) ≥ 1− o(1).

Proof We relate Π1(pi) to the volume of a set. Then using a property of these kind of sets, we
show that Π1(pi) decreases with increasing

∣∣pi − 1
k

∣∣. Thereby, we show that Π1(pi) is concentrated
around 1

k . Then using the union bound, we lower bound Π1(B3
k). First, we define the set and prove

a property of volume of these sets. Let

Sak(δ)
def
= {(l1, . . . ,lk) : ∀i |li − a| ≤ ε and

k∑
i=1

li = δ},

V a
k (δ)

def
= Volume of Sak .

Because of symmetry, V a
k (ka − γ) = V a

k (ka + γ) for any γ. We then show that V a
k (δ) increases

in the range [0, ka] and decreases in the range [ka,∞). It is easy to see that the claim is true for
k = 1. We now prove that the claim is true for k assuming that the claim is true for k − 1. For
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δ1 < δ2 < ak,

V a
k (δ1)− V a

k (δ2) =

∫ a+ε

a−ε

(
V a
k−1(δ1 − l1)− V a

k−1(δ2 − l1)
)
dl1

=

∫ δ1+δ2−a+ε−2(k−1)a

a−ε

(
V a
k−1(2(k − 1)a− (δ1 − l1))− V a

k−1(δ2 − l1)
)
dl1

+

∫ a+ε

δ1+δ2−a+ε−2(k−1)a

(
V a
k−1(δ1 − l1)− V a

k−1(δ2 − l1)
)
dl1

(b)

≤
∫ δ1+δ2−a+ε−2(k−1)a

a−ε

(
V a
k−1(2(k − 1)a− (δ1 − l1))− V a

k−1(δ2 − l1)
)
dl1

=

∫ δ2−a+ε

2(k−1)a+a−ε−δ1
V a
k−1(x)dx−

∫ δ2−a+ε

2(k−1)a+a−ε−δ1
V a
k−1(x)dx

= 0.

where (b) step follows since for l1 ∈ [δ1 +δ2−a+ε−2(k−1)a, a+ε], δ1−l1 ≤ δ2−l1 ≤ (k−1)a.
Therefore for any k, a and |ka− δ1| ≥ |ka− δ2|,

V a
k (δ1) ≤ V a

k (δ2).

Now we relate Π1(pi) to volume of a set.

Π1(pi) ∝ V 1/k
k−1(1− pi) if

∣∣∣∣pi − 1

k

∣∣∣∣ ≤ 1

n1/5
.

Therefore Π1(pi) decreases with increasing |pi − 1
k |. Therefore Π1 assigns a higher probability to

B3
k .

Π1(B3
k) ≥ 1− kΠ1

(∣∣∣∣pi − 1

k

∣∣∣∣ ≥ 1

n1/5
− 5 log n√

n

)
≥ 1− 5k log n

n3/10

= 1− o(1).

The following theorem follows.

Theorem 23

r̂
`22
B1
k,n
≥

1− 1
k

n
− o
(

1

n

)
.
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Proof Using Lemmas 21,22,

r̂
`22
B1
k,n
≥ EΠ1EXn`22(p, p̂1)

≥ EΠ1(EXn`22(p, p̂1)|p ∈ B3
k)Π1(p ∈ B3

k)

≥ EΠ1

(
1− 1

k

n
− o
(

1

n

)∣∣∣∣∣ p ∈ B3
k

)
(1− o(1))

=
1− 1

k

n
− o
(

1

n

)
.

E.2.2. LOWER BOUND FOR GENERAL f -DIVERGENCE

As previously, we consider that p is from family of distributions B1
k . We first show that any optimal

estimator q(Xn) will assign a distribution from B4
k because of convexity of f . Then we relate the

loss under general f-divergence to `22 loss and lower bound loss under general f-divergence using
the result we proved in previous subsection.

We first prove that the distance between p and q decreases as we move q closer to p.

Lemma 24 For p1 > q1, p2 < q2 and d ≤ min(p1 − q1, q2 − p2),

q1f

(
p1

q1

)
+ q2f

(
p2

q2

)
≥ (q1 + d)f

(
p1

q1 + d

)
+ (q2 − d)f

(
p2

q2 − d

)
.

Proof Let

g(y) = (q1 + y)f

(
p1

q1 + y

)
+ (q2 − y)f

(
p2

q2 − y

)
.

Then we show that g′(y) ≤ 0 ∀ 0 ≤ y ≤ d from which the result follows.

g′(y) = f

(
p1

q1 + y

)
− p1

q1 + y
f ′
(

p1

q1 + y

)
−
(
f

(
p2

q2 − y

)
− p2

q2 − y
f ′
(

p2

q2 − y

))
.

Now let h(x) = f(x) − xf ′(x). We can see that h(x) is a decreasing function since h′(x) =
−f ′′(x) ≤ 0.

Since p1
q1+y ≥ 1 ≥ p2

q2−y , g′(y) ≤ 0 ∀ 0 ≤ y ≤ d. Hence for some z ∈ [0, d],

g(d)− g(0) = g′(z)d ≤ 0.

Now, using above lemma we show that optimal q is always from B4
k .

Lemma 25 The optimal q(Xn) that minimizes maxp∈B1
k
EXnDf (p||q(Xn)) will always be from

B4
k .

argminq(Xn) max
p∈B1

k

EXnDf (p||q(Xn)) ∈ B4
k.
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Proof We first prove that an optimal estimator q exists such that for any xn, either qi(xn) ≥
1
k −

1
n1/5 ∀i or qi(xn) ≤ 1

k + 1
n1/5 ∀i.

Suppose for some xn, qi(xn) > 1
k + 1

n1/5 and qj(xn) < 1
k −

1
n1/5 . Then we will show that

for any p ∈ B1
k , we decrease Df (p||q(xn)) by pushing qi(xn) and qj(xn) closer to the boundaries

of interval
[

1
k −

1
n1/5 ,

1
k + 1

n1/5

]
. Let d = min

(
qi(x

n)−
(

1
k + 1

n1/5

)
, 1
k −

1
n1/5 − qj(xn)

)
. Then

consider q′(Xn) which is same as q(Xn) for all Xn 6= xn. And for xn, q′k(x
n) = qk(x

n) ∀k 6= i, j
and q′i(x

n) = qi(x
n)− d, q′j(x

n) = qj(x
n) + d.

Using Lemma 24, we can show that for any p ∈ B1
k ,

q′i(x
n)f

(
pi

q′i(x
n)

)
+ q′j(x

n)f

(
pj

q′j(x
n)

)
≤ qi(xn)f

(
pi

qi(xn)

)
+ qj(x

n)f

(
pj

qj(xn)

)
.

And therefore,

Df (p||q′(xn)) ≤ Df (p||q(xn)).

And similarly, we can do same process until there exists any l,m such that ql(xn) > 1
k + 1

n1/5

and qm(xn) < 1
k −

1
n1/5 . And hence in the end, for any xn, either qi(xn) ≥ 1

k −
1

n1/5 ∀i or
qi(x

n) ≤ 1
k + 1

n1/5 ∀i.
If for xn, qi(xn) ≥ 1

k −
1

n1/5 ∀i, then qi(xn) ≤ 1
k + k

n1/5 ∀i. Similarly the other way. Therefore,
for all xn, q(xn) ∈ B4

k .

We now express Df (p||q) in terms of `22(p, q) for any p, q ∈ B4
k .

Lemma 26 For any p, q ∈ B4
k ,

Df (p||q) = (f ′′(1) + o(1))
k

2
`22(p, q).

Proof
We take a taylor series expansion of Df (p||q). For some αi ∈

[
n1/5−1
n1/5+1

, n
1/5+1
n1/5−1

]
,

Df (p||q) =

k∑
i=1

qif(
pi
qi

)

=

k∑
i=1

(
qi

(
pi
qi
− 1

)
f ′(1) +

qi
2

(
pi − qi
qi

)2

f ′′(1) +
qi
3!

(
pi − qi
qi

)3

f ′′′(αi)

)

=
k∑
i=1

(
(pi − qi)2

2qi
f ′′(1) +

(pi − qi)3

6q2
i

f ′′′(αi)

)
.
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Let M = max
x∈
[
n1/5−1

n1/5+1
,n

1/5+1

n1/5−1

] f ′′′(x). Then,

∣∣∣∣∣Df (p||q)− f ′′(1)
k∑
i=1

(pi − qi)2

2qi

∣∣∣∣∣ ≤
k∑
i=1

|pi − qi|
(pi − qi)2

6q2
i

f ′′′(αi)

≤
k∑
i=1

2

n1/5
Mk2 (pi − qi)2

2qi

=
2Mk2

n1/5

k∑
i=1

(pi − qi)2

2qi

= o(1)
k∑
i=1

(pi − qi)2

2qi
.

Therefore, for any f-divergence,

Df (p||q) = (f ′′(1) + o(1))

k∑
i=1

(pi − qi)2

2qi

= (f ′′(1) + o(1))
k∑
i=1

k(pi − qi)2

2kqi

= (f ′′(1) + o(1))
k

2

k∑
i=1

(pi − qi)2(1 + o(1))

= (f ′′(1) + o(1))
k

2
`22(p, q).

Now, we lower-bound r̂f
B1
k,n

using the relationship between Df (p||q) and `22(p, q) and the fact

that for optimal q, q(Xn) ∈ B4
k .

Theorem 27
r̂f
B1
k,n
≥ f ′′(1)(k − 1)

2n
− o
(

1

n

)
.

Proof From Lemma 26 and Theorem 23,

r̂f
B1
k,n

= min
q(xn)

max
p∈B1

k

EDf (p||q(Xn))

= min
q(xn)

max
p∈B1

k

E(f ′′(1) + o(1))
k

2
`22(p, q(Xn))

= (f ′′(1) + o(1))
k

2
r̂
`22
B1
k,n

≥ f ′′(1)(k − 1)

2n
− o
(

1

n

)
.
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Since, for any 0 ≤ δ < 1
k , δ < 1

k −
1

n1/5 for sufficiently high n,

r̂fk,n(δ) ≥ r̂f
B1
k,n
≥ f ′′(1)(k − 1)

2n
− o
(

1

n

)
.
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