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Abstract
We study the K-armed dueling bandit problem, a variation of the standard stochastic bandit prob-
lem where the feedback is limited to relative comparisons of a pair of arms. We introduce a tight
asymptotic regret lower bound that is based on the information divergence. An algorithm that is
inspired by the Deterministic Minimum Empirical Divergence algorithm (Honda and Takemura,
2010) is proposed, and its regret is analyzed. The proposed algorithm is found to be the first one
with a regret upper bound that matches the lower bound. Experimental comparisons of dueling
bandit algorithms show that the proposed algorithm significantly outperforms existing ones.
Keywords: multi-armed bandit problem, dueling bandit problem, online learning

1. Introduction

A multi-armed bandit problem is a crystallized instance of a sequential decision-making problem
in an uncertain environment, and it can model many real-world scenarios. This problem involves
conceptual entities called arms, and a forecaster who tries to identify good arms from bad ones. At
each round, the forecaster draws one of the K arms and receives a corresponding reward. The aim
of the forecaster is to maximize the cumulative reward over rounds, which is achieved by running an
algorithm that balances the exploration (acquisition of information) and the exploitation (utilization
of information).

While it is desirable to obtain direct feedback from an arm, in some cases such direct feedback is
not available. In this paper, we consider a version of the standard stochastic bandit problem called
the K-armed dueling bandit problem (Yue et al., 2009), in which the forecaster receives relative
feedback, which specifies which of two arms is preferred. Although the original motivation of the
dueling bandit problem arose in the field of information retrieval, learning under relative feedback
is universal to many fields, such as recommender systems (Gemmis et al., 2009), graphical design
(Brochu et al., 2010), and natural language processing (Zaidan and Callison-Burch, 2011), which
involve explicit or implicit feedback provided by humans.
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Related work: Here, we briefly discuss the literature of the K-armed dueling bandit problem. The
problem involves a preference matrix M = {µi,j} ∈ RK×K , whose ij entry µi,j corresponds to the
probability that arm i is preferred to arm j.

Most algorithms assume that the preference matrix has certain properties. Interleaved Filter (IF)
(Yue et al., 2012) and Beat the Mean Bandit (BTM) (Yue and Joachims, 2011), early algorithms
proposed for solving the dueling bandit problem, require the arms to be totally ordered, that is,
i � j ⇔ µi,j > 1/2. Moreover, IF assumes stochastic transitivity: for any triple (i, j, k) with
i � j � k, µi,k ≥ max {µi,j , µj,k}. Unfortunately, stochastic transitivity does not hold in many
real-world settings (Yue and Joachims, 2011). BTM relaxes this assumption by introducing relaxed
stochastic transitivity: there exists γ ≥ 1 such that for all pairs (j, k) with 1 � j � k, γµ1,k ≥
max {µ1,j , µj,k} holds. The drawback of BTM is that it requires the explicit value of γ on which
the performance of the algorithm depends. Urvoy et al. (2013) considered a wide class of sequential
learning problems with bandit feedback that includes the dueling bandit problem. They proposed the
Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE) algorithm, which empirically
outperforms IF and BTM for moderate K. Among the several versions of SAVAGE, the one called
Condorcet SAVAGE makes the Condorcet assumption and performed the best in their experiment.
The Condorcet assumption is that there is a unique arm that is superior to the others. Unlike the two
transitivity assumptions, the Condorcet assumption does not require the arms to be totally ordered
and is less restrictive. IF, BTM, and SAVAGE either explicitly require the number of rounds T , or
implicitly require T to determine the confidence level δ.

Recently, an algorithm called Relative Upper Confidence Bound (RUCB) (Zoghi et al., 2014b)
was proven to have an O(K2 log T ) regret bound under the Condorcet assumption. RUCB is based
on the upper confidence bound index (Lai and Robbins, 1985; Agrawal, 1995; Auer et al., 2002)
that is widely used in the field of bandit problems. RUCB is horizonless: it does not require T
beforehand and runs for any duration. Zoghi et al. (2015) extended RUCB into the mergeRUCB
algorithm with an O(K log T ) regret bound under the Condorcet assumption as well as the assump-
tion that a portion of the preference matrix is informative (i.e., different from 1/2). Ailon et al.
(2014) proposed three algorithms named Doubler, MultiSBM, and Sparring. MultiSBM is endowed
with anO(K log T ) regret bound and Sparring was reported to outperform IF and BTM in their sim-
ulation. These algorithms assume that the pairwise feedback is generated from the non-observable
utilities of the selected arms. The existence of the utility distributions associated with individual
arms restricts the structure of the preference matrix.

In summary, only O(K2 log T ) regret is known to be achievable under the Condorcet assump-
tion (SAVAGE and RUCB) and all known algorithms require additional assumptions to achieve
O(K log T ) regret (IF, BTM, MultiSBM, and mergeRUCB). These two regrets can be related to the
difficulty of the dueling bandit problem in that there are K − 1 candidates of actions to test “how
good” each arm i is. A naive use of the confidence bound requires every pair of arms to be compared
O(log T ) times and yields an O(K2 log T ) regret bound.
Contribution: In this paper, we propose an algorithm called Relative Minimum Empirical Diver-
gence (RMED). This paper contributes to our understanding of the dueling bandit problem in the
following three respects.
• The regret lower bound: Some studies (e.g., Yue et al., 2012) have shown that the K-

armed dueling bandit problem has a Ω(K log T ) regret lower bound. In this paper, we further
analyze this lower bound to obtain the optimal constant factor for models satisfying the Con-
dorcet assumption. Furthermore, we show that the lower bound is the same under the total
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order assumption. This means that optimal algorithms under the Condorcet assumption also
achieve a lower bound of regret under the total order assumption even though such algorithms
do not know that the arms are totally ordered.
• An optimal algorithm: The regret of RMED is not only O(K log T ), but also optimal in

the sense that its constant factor matches the asymptotic lower bound under the Condorcet
assumption. RMED is the first optimal algorithm in the study of the dueling bandit problem.
• Empirical performance assessment: The performance of RMED is extensively evaluated by

using five datasets: two synthetic datasets, one including preference data, and two including
ranker evaluations in the information retrieval domain.

2. Problem Setup

The K-armed dueling bandit problem involves K arms that are indexed as [K] = {1, 2, . . . ,K}.
Let M ∈ RK×K be a preference matrix whose ij entry µi,j corresponds to the probability that
arm i is preferred to arm j. At each round t = 1, 2, . . . , T , the forecaster selects a pair of arms
(l(t),m(t)) ∈ [K]2, then receives a relative feedback X̂l(t),m(t)(t) ∼ Bernoulli(µl(t),m(t)) that
indicates which of (l(t),m(t)) is preferred. By definition, µi,j = 1 − µj,i holds for any i, j ∈ [K]
and µi,i = 1/2.

Let Ni,j(t) be the number of comparisons of pair (i, j) and µ̂i,j(t) be the empirical estimate of
µi,j at round t. In building statistics by using the feedback, we treat pairs without taking their order
into consideration. Therefore, for i 6= j, Ni,j(t) =

∑t−1
t′=1(1{l(t′) = i,m(t′) = j} + 1{l(t′) =

j,m(t′) = i}) and µi,j = (
∑t−1

t′=1(1{l(t′) = i,m(t′) = j, X̂l(t′),m(t′)(t
′) = 1} + 1{l(t′) =

j,m(t′) = i, X̂l(t′),m(t′)(t
′) = 0}))/Ni,j(t), where 1[·] is the indicator function. For j 6= i, let

Ni>j(t) be the number of times i is preferred over j. Then, µ̂i,j(t) = Ni>j(t)/Ni,j(t), where we
set 0/0 = 1/2 here. Let µ̂i,i(t) = 1/2.

Throughout this paper, we will assume that the preference matrix has a Condorcet winner (Ur-
voy et al., 2013). Here we call an arm i the Condorcet winner if µi,j > 1/2 for any j ∈ [K] \ {i}.
Without loss of generality, we will assume that arm 1 is the Condorcet winner. The set of preference
matrices which have a Condorcet winner is denoted byMC. We also define the set of preference
matrices satisfying the total order byMo ⊂ MC; that is, the relation i ≺ j ⇔ µi,j < 1/2 induces
a total order iff {µi,j} ∈ Mo.

Let ∆i,j = µi,j − 1/2. We define the regret per round as r(t) = (∆1,i + ∆1,j)/2 when the

pair (i, j) is compared. The expectation of the cumulative regret, E[R(T )] = E
[∑T

t=1 r(t)
]
is used

to measure the performance of an algorithm. The regret increases at each round unless the selected
pair is (l(t),m(t)) = (1, 1).

2.1. Regret lower bound in the K-armed dueling bandits

In this section we provide an asymptotic regret lower bound when T → ∞. Let the superiors of
arm i be a setOi = {j|j ∈ [K], µi,j < 1/2}, that is, the set of arms that is preferred to i on average.
The essence of the K-armed dueling bandit problem is how to eliminate each arm i ∈ [K] \ {1} by
making sure that arm i is not the Condorcet winner. To do so, the algorithm uses some of the arms
in Oi and compares i with them.
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A dueling bandit algorithm is strongly consistent for model M ⊂ MC iff it has E[R(T )] =
o(T a) regret for any a > 0 and anyM ∈M. The following lemma is on the number of comparisons
of suboptimal arm pairs.

Lemma 1 (The lower bound on the number of suboptimal arm draws) (i) Let an arm i ∈ [K] \ {1}
and preference matrix M ∈ MC be arbitrary. Given any strongly consistent algorithm for model
MC, we have

E

∑
j∈Oi

d(µi,j , 1/2)Ni,j(T )

 ≥ (1− o(1)) log T, (1)

where d(p, q) = p log p
q + (1− p) log 1−p

1−q is the KL divergence between two Bernoulli distributions
with parameters p and q. (ii) Furthermore, inequality (1) holds for anyM ∈Mo given any strongly
consistent algorithm forMo.

Lemma 1 states that, for arbitrary arm j ∈ Oi, an algorithm needs to make log T/d(µi,j , 1/2)
comparisons between arms i and j to be convinced that arm i is inferior to arm j and thus i is not the
Condorcet winner. Since the regret increase per round of comparing arm iwith j is (∆1,i+∆1,j)/2,
eliminating arm i by comparing it with j incurs a regret of

(∆1,i + ∆1,j) log T

2d(µi,j , 1/2)
. (2)

Therefore, the total regret is bounded from below by comparing each arm i with an arm j that
minimizes (2) and the regret lower bound is formalized in the following theorem.

Theorem 2 (The regret lower bound) (i) Let the preference matrix M ∈MC be arbitrary. For any
strongly consistent algorithm for modelMC,

lim inf
T→∞

E[R(T )]

log T
≥

∑
i∈[K]\{1}

min
j∈Oi

∆1,i + ∆1,j

2d(µi,j , 1/2)
(3)

holds. (ii) Furthermore, inequality (3) holds for any M ∈ Mo given any strongly consistent algo-
rithm forMo.

The proof of Lemma 1 and Theorem 2 can be found in Appendix B. The proof of Lemma 1 is
similar to that of Lai and Robbins (1985, Theorem 1) for the standard multi-armed bandit problem
but differs in the following point that is characteristic to the dueling bandit. To achieve a small regret
in the dueling bandit, it is necessary to compare the arm i with itself if i is the Condorcet winner.
However, we trivially know that µi,i = 1/2 without sampling and such a comparison yields no
information to distinguish possible preference matrices. We can avoid this difficulty by evaluating
Ni,j and Ni,i in different ways.

3. RMED1 Algorithm

In this section, we first introduce the notion of empirical divergence. Then, on the basis of the
empirical divergence, we formulate the RMED1 algorithm.
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Algorithm 1 Relative Minimum Empirical Divergence (RMED) Algorithm
1: Input: K arms, f(K) ≥ 0. α > 0 (RMED2FH, RMED2). T (RMED2FH).

2: L←

{
1 (RMED1, RMED2)
dα log log T e (RMED2FH)

.

3: Initial phase: draw each pair of arms L times. At the end of this phase, t = L(K − 1)K/2.
4: if RMED2FH then
5: For each arm i ∈ [K], fix b̂?(i) by (6).
6: end if
7: LC , LR ← [K], LN ← ∅.
8: while t ≤ T do
9: if RMED2 then

10: Draw all pairs (i, j) until it reaches Ni,j(t) ≥ α log log t. t← t+ 1 for each draw.
11: end if
12: for l(t) ∈ LC in an arbitrarily fixed order do

13: Select m(t) by using

{
Algorithm 2 (RMED1)
Algorithm 3 (RMED2, RMED2FH)

.

14: Draw arm pair (l(t), m(t)).
15: LR ← LR \ {l(t)}.
16: LN ← LN ∪ {j} (without a duplicate) for any j /∈ LR such that Jj(t) holds.
17: t← t+ 1.
18: end for
19: LC , LR ← LN , LN ← ∅.
20: end while

Algorithm 2 RMED1 subroutine for selecting m(t)

1: Ôl(t)(t)← {j ∈ [K] \ {l(t)}|µ̂l(t),j(t) ≤ 1/2}
2: if i∗(t) ∈ Ôl(t)(t) or Ôl(t)(t) = ∅ then
3: m(t)← i∗(t).
4: else
5: m(t)← arg minj 6=l(t) µ̂l(t),j(t).
6: end if

3.1. Empirical divergence and likelihood function

In inequality (1) of Section 2.1, we have seen that
∑

j∈Oi d(µi,j , 1/2)Ni,j(T ), the sum of the di-
vergence between µi,j and 1/2 multiplied by the number of comparisons between i and j, is the
characteristic value that defines the minimum number of comparisons. The empirical estimate of
this value is fundamentally useful for evaluating how unlikely arm i is to be the Condorcet winner.
Let the opponents of arm i at round t be the set Ôi(t) = {j|j ∈ [K]\{i}, µ̂i,j(t) ≤ 1/2}. Note that,
unlike the superiors Oi, the opponents Ôi(t) for each arm i are defined in terms of the empirical
averages, and thus the algorithms know who the opponents are. Let the empirical divergence be

Ii(t) =
∑

j∈Ôi(t)

Ni,j(t)d(µ̂i,j(t), 1/2).
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The value exp (−Ii(t)) can be considered as the “likelihood” that arm i is the Condorcet winner. Let
i∗(t) = arg mini∈[K] Ii(t) (ties are broken arbitrarily) and I∗(t) = Ii∗(t)(t). By definition, I∗(t) ≥
0. RMED is inspired by the Deterministic Minimum Empirical Divergence (DMED) algorithm
(Honda and Takemura, 2010). DMED, which is designed for solving the standard K-armed bandit
problem, draws arms that may be the best one with probability Ω(1/t), whereas RMED in the
dueling bandit problem draws arms that are likely to be the Condorcet winner with probability
Ω(1/t). Namely, any arm i that satisfies

Ji(t) = {Ii(t)− I∗(t) ≤ log t+ f(K)} (4)

is the candidate of the Condorcet winner and will be drawn soon. Here, f(K) can be any non-
negative function of K that is independent of t. Algorithm 1 lists the main routine of RMED.
There are several versions of RMED. First, we introduce RMED1. RMED1 initially compares all
pairs once (initial phase). Let Tinit = (K − 1)K/2 be the last round of the initial phase. From
t = Tinit + 1, it selects the arm by using a loop. LC = LC(t) is the set of arms in the current loop,
and LR = LR(t) ⊂ LC(t) is the remaining arms of LC that have not been drawn yet in the current
loop. LN = LN (t) is the set of arms that are going to be drawn in the next loop. An arm i is put
into LN when it satisfies {Ji(t)∩{i /∈ LR(t)}}. By definition, at least one arm (i.e. i∗(t) at the end
of the current loop) is put into LN in each loop. For arm l(t) in the current loop, RMED1 selects
m(t) (i.e. the comparison target of l(t)) determined by Algorithm 2.

The following theorem, which is proven in Section 5, describes a regret bound of RMED1.

Theorem 3 For any sufficiently small δ > 0, the regret of RMED1 is bounded as:

E[R(T )] ≤
∑

i∈[K]\{1}

((1 + δ) log T + f(K))∆1,i

2d(µi,1, 1/2)
+O(K2) +O

(
K

δ2

)
+O(KeAK−f(K)),

where A = A({µi,j}i,j∈[K]) is a constant as a function of T . Therefore, by letting δ = log−1/3 T
and choosing an f(K) = cK1+ε for arbitrary c, ε > 0, we obtain

E[R(T )] ≤
∑

i∈[K]\{1}

∆1,i log T

2d(µi,1, 1/2)
+O(K2+ε) +O(K log2/3 T ).

3.2. Gap between the constant factor of RMED1 and the lower bound
From the lower bound of Theorem 2, the O(K log T ) regret bound of RMED1 is optimal up to
a constant factor. Moreover, the constant factor matches the regret lower bound of Theorem 2 if
b?(i) = 1 for all i ∈ [K] \ {1} where

b?(i) = arg min
j∈Oi

∆1,i + ∆1,j

d(µi,j , 1/2)
. (5)

Here we define d+(p, q) = d(p, q) if p < q and 0 otherwise, and x/0 = +∞. Note that, there
can be ties that minimize the RHS of (5). In that case, we may choose any of the ties as b?(i) to
eliminate arm i. For ease of explanation, we henceforth will assume that b?(i) is unique, but our
results can be easily extended to the case of ties.

We claim that b?(i) = 1 holds in many cases for the following mathematical and practical
reasons. (i) The regret of drawing a pair (i, j), j 6= 1, is (∆1,i + ∆1,j)/2, whereas it is simply
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Algorithm 3 Subroutine for selecting m(t) in RMED2 and RMED2FH
1: if RMED2 then
2: Update b̂?(l(t)) by (6).
3: end if
4: Ôl(t)(t)← {j ∈ [K] \ {l(t)}|µ̂l(t),j(t) ≤ 1/2}.

5: if b̂?(l(t)) ∈ Ôl(t)(t) and

{
Nl(t),i∗(t)(t) ≥ Nl(t),b̂?(l(t))(t)/ log log t (RMED2)

Nl(t),i∗(t)(t) ≥ Nl(t),b̂?(l(t))(t)/ log log T (RMED2FH)
then

6: m(t)← b̂?(l(t)).
7: else
8: Select m(t) by using Algorithm 2.
9: end if

∆1,i/2 for the pair (i, 1). Thus, d+(µi,j , 1/2) has to be much larger than d+(µi,1, 1/2) in order to
satisfy b?(i) = j. (ii) The Condorcet winner usually wins over the other arms by a large margin,
and therefore, d+(µi,1, 1/2) ≥ d+(µi,j , 1/2). For example, in the preference matrix of Example
1 (Table 1(a)), b?(3) = 1 as long as q < 0.79. Example 2 (Table 1(b)) is a preference matrix
based on six retrieval functions in the full-text search engine of ArXiv.org (Yue and Joachims,
2011)1. In Example 2, b?(i) = 1 holds for all i, even though µ1,4 < µ2,4. In the case of a 16-
ranker evaluation based on the Microsoft Learning to Rank dataset (details are given in Section 4),
occasionally b?(i) 6= 1 occurs, but the difference between the regrets of drawing arm 1 and b?(i) is
fairly small (smaller than 1.2% on average). Nevertheless, there are some cases in which comparing
arm i with 1 is not such a clever idea. Example 3 (Table 1(c)) is a toy example in which comparing
arm i with b?(i) 6= 1 makes a large difference. In Example 3, it is clearly better to draw pairs (2,
4), (3, 2) and (4, 3) to eliminate arms 2, 3, and 4, respectively. Accordingly, it is still interesting to
consider an algorithm that reduces regret by comparing arm i with b?(i).

Table 1: Three preference matrices. In each example, the value at row i, column j is µi,j .

(a) Example 1
1 2 3

1 0.5 0.7 0.7
2 0.3 0.5 q
3 0.3 1-q 0.5

(b) Example 2
1 2 3 4 5 6

1 0.50 0.55 0.55 0.54 0.61 0.61
2 0.45 0.50 0.55 0.55 0.58 0.60
3 0.45 0.45 0.50 0.54 0.51 0.56
4 0.46 0.45 0.46 0.50 0.54 0.50
5 0.39 0.42 0.49 0.46 0.50 0.51
6 0.39 0.40 0.44 0.50 0.49 0.50

(c) Example 3
1 2 3 4

1 0.5 0.6 0.6 0.6
2 0.4 0.5 0.9 0.1
3 0.4 0.1 0.5 0.9
4 0.4 0.9 0.1 0.5

3.3. RMED2 Algorithm

We here propose RMED2, which gracefully estimates b?(i) during a bandit game and compares
arm i with b?(i). RMED2 and RMED1 share the main routine (Algorithm 1). The subroutine of
RMED2 for selecting m(t) is shown in Algorithm 3. Unlike RMED1, RMED2 keeps drawing pairs
of arms (i, j) at least α log log t times (Line 10 in Algorithm 1). The regret of this exploration is
insignificant sinceO(log log T ) = o(log T ). Once all pairs have been explored more than α log log t

1. In the original preference matrix of Yue and Joachims (2011), µ2,4 6= 1 − µ4,2. To satisfy µ2,4 = 1 − µ4,2, we
replaced µ2,4 and µ4,2 of the original with (µ2,4 − µ4,2 + 1)/2 and (µ4,2 − µ2,4 + 1)/2, respectively.
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times, RMED2 goes to the main loop. RMED2 determines m(t) by using Algorithm 2 based on the
estimate of b?(i) given by

b̂?(i) = arg min
j∈[K]\{i}

∆̂i∗(t),i + ∆̂i∗(t),j

d+(µ̂i,j(t), 1/2)
, (6)

where ties are broken arbitrarily, ∆̂i,j = 1/2 − µ̂i,j and we set x/0 = +∞. Intuitively, RMED2
tries to select m(t) = b̂?(i) for most rounds, and occasionally explores i∗(t) in order to reduce the
regret increase when RMED2 fails to estimate the true b?(i) correctly.

3.4. RMED2FH algorithm
Although we believe that the regret of RMED2 is optimal, the analysis of RMED2 is a little bit
complicated since it sometimes breaks the main loop and explores from time to time. For ease of
analysis, we here propose RMED2 Fixed Horizon (RMED2FH, Algorithm 1 and 3), which is a
“static” version of RMED2. Essentially, RMED2 and RMED2FH have the same mechanism. The
differences are that (i) RMED2FH conducts an α log log T exploration in the initial phase. After
the initial phase (ii) b̂?(i) for each i is fixed throughout the game. Note that, unlike RMED1 and
RMED2, RMED2FH requires the number of rounds T beforehand to conduct the initial α log log T
draws of each pair. The following Theorem shows the regret of RMED2FH that matches the lower
bound of Theorem 2.

Theorem 4 For any sufficiently small δ > 0, the regret of RMED2FH is bounded as:

E[R(T )] ≤
∑

i∈[K]\{1}

(∆1,i + ∆1,b?(i))((1 + δ) log T )

2d(µi,b?(i), 1/2)
+O(αK2 log log T ) +O(KeAK−f(K))

+O

(
K log T

log log T

)
+O

(
K

δ2

)
+O (Kf(K)) , (7)

where A = A({µi,j}) > 0 is a constant as a function of T . By setting δ = O((log T )−1/3) and
choosing an f(K) = cK1+ε (c, ε > 0) we obtain

E[R(T )] ≤
∑

i∈[K]\{1}

(∆1,i + ∆1,b?(i)) log T

2d(µi,b?(i), 1/2)
+O(αK2 log log T ) +O

(
K log T

log log T

)
+O

(
K2+ε

)
.

(8)

Note that all terms except the first one in (8) are o(log T ). From Theorems 2 and 4 we see that (i)
RMED2FH is asymptotically optimal under the Condorcet assumption and (ii) the logarithmic term
on the regret bound of RMED2FH cannot be improved even if the arms are totally ordered and the
forecaster knows of the existence of the total order. The proof sketch of Theorem 4 is in Section 5.

4. Experimental Evaluation

To evaluate the empirical performance of RMED, we conducted simulations2 with five bandit
datasets (preference matrices). The datasets are as follows:

2. The source code of the simulations is available at https://github.com/jkomiyama/duelingbanditlib.
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(e) MSLR K = 16
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(f ) MSLR K = 64

Figure 1: Regret-round log-log plots of algorithms.

Six rankers is the preference matrix based on the six retrieval functions in the full-text search engine
of ArXiv.org (Table 1(b)).
Cyclic is the artificial preference matrix shown in Table 1(c). This matrix is designed so that the
comparison of i with 1 is not optimal.
Arithmetic dataset involves eight arms with µi,j = 0.5 + 0.05(j − i) and has a total order.
Sushi dataset is based on the Sushi preference dataset (Kamishima, 2003) that contains the pref-
erences of 5, 000 Japanese users as regards 100 types of sushi. We extracted the 16 most popular
types of sushi and converted them into arms with µi,j corresponding to the ratio of users who prefer
sushi i over j. The Condorcet winner is the mildly-fatty tuna (chu-toro).
MSLR: We tested submatrices of a 136× 136 preference matrix from Zoghi et al. (2015), which is
derived from the Microsoft Learning to Rank (MSLR) dataset (Microsoft Research, 2010; Qin et al.,
2010) that consists of relevance information between queries and documents with more than 30K
queries. Zoghi et al. (2015) created a finite set of rankers, each of which corresponds to a ranking
feature in the base dataset. The value µi,j is the probability that the ranker i beats ranker j based on
the navigational click model (Hofmann et al., 2013). We randomly extracted K = 16, 64 rankers
in our experiments and made sub preference matrices. The probability that the Condorcet winner
exists in the subset of the rankers is high (more than 90%, c.f. Figure 1 in Zoghi et al. (2014a)), and
we excluded the relatively small case where the Condorcet winner does not exist.

A Condorcet winner exists in all datasets. In the experiments, the regrets of the algorithms were
averaged over 1, 000 runs (Six rankers, Cyclic, Arithmetic, and Sushi), or 100 runs (MSLR).
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(a) Six rankers
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(b) Cyclic
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(c) MSLR K = 16

Figure 2: Regret-round semilog plots of RMED compared with theoretical bounds. We set f(K) =
0.3K1.01 for all algorithms, and α = 3 for RMED2.

4.1. Comparison among algorithms
We compared the IF, BTM with γ = 1.2, RUCB with α = 0.51, Condorcet SAVAGE with δ = 1/T ,
MultiSBM and Sparring with α = 3, and RMED algorithms. We set f(K) = 0.3K1.01 for all
RMED algorithms and set α = 3 for RMED2 and RMED2FH. The effect of f(K) is studied in
Appendix A. Note that IF and BTM assume a total order among arms, which is not the case with
the Cyclic, Sushi, and MSLR datasets. MultiSBM and Sparring assume the existence of the utility
of each arm, which does not allow a cyclic preference that appears in the Cyclic dataset.

Figure 1 plots the regrets of the algorithms. In all datasets RMED significantly outperforms
RUCB, the next best excluding the different versions of RMED. Notice that the plots are on a base
10 log-log scale. In particular, regret of RMED1 is more than twice smaller than RUCB on all
datasets other than Cyclic, in which RMED2 performs much better. Among the RMED algorithms,
RMED1 outperforms RMED2 and RMED2FH on all datasets except for Cyclic, in which comparing
arm i 6= 1 with arm 1 is inefficient. RMED2 outperforms RMED2FH in the five of six datasets: this
could be due to the fact that RMED2FH does not update b̂?(i) for ease of analysis.

4.2. RMED and asymptotic bound
Figure 2 compares the regret of RMED with two asymptotic bounds. LB1 denotes the regret bound
of RMED1. TrueLB is the asymptotic regret lower bound given by Theorem 2.
RMED1 and RMED2: When T →∞, the slope of RMED1 should converge to LB1, and the ones
of RMED2 and RMED2FH should converge to TrueLB. On Six rankers, LB1 is exactly the same
as TrueLB, and the slope of RMED1 converges to this TrueLB. In Cyclic, the slope of RMED2
converges to TrueLB, whereas that of RMED1 converges to LB1, from which we see that RMED2
is actually able to estimate b?(i) 6= 1 correctly. In MSLR K = 16, LB1 and TrueLB are very close
(the difference is less than 1.2%), and RMED1 and RMED2 converge to these lower bounds.
RMED2FH with different values of α: We also tested RMED2FH with several values of α. On
the one hand, with α = 1, the initial phase of RMED2FH is too short to identify b?(i); as a result
it performs poorly on the Cyclic dataset. On the other hand, with α = 10, the initial phase was
too long, which incurs a practically non-negligible regret on the MSLR K = 16 dataset. We also
tested several values of parameter α in RMED2FH. We omit plots of RMED2 with α = 1, 10 for
the sake of readability, but we note that in our datasets the performance of RMED2 is always better
than or comparable with the one of RMED2FH under the same choice of α, although the optimality
of RMED2 is not proved unlike RMED2FH.
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5. Regret Analysis
This section provides two lemmas essential for the regret analysis of RMED algorithms and proves
the asymptotic optimality of RMED1 based on these lemmas. A proof sketch on the optimal regret
of RMED2FH is also given.

The crucial property of RMED is that, by constantly comparing arms with the opponents, the
true Condorcet winner (arm 1) actually beats all the other arms with high probability. Let

U(t) =
⋂

i∈[K]\{1}

{µ̂1,i(t) > 1/2}.

Under U(t), µ̂i,1(t) = 1− µ̂1,i(t) < 1/2 for all i ∈ [K] \ {1}, and thus, Ii(t) > 0. Therefore, U(t)
implies that i∗(t) = arg mini∈[K] Ii(t) is unique with i∗(t) = 1 and I∗(t) = I1(t) = 0. Lemma
5 below shows that the average number of rounds that Uc(t) occurs is constant in T , where the
superscript c denotes the complement.

Lemma 5 When RMED1 or RMED2FH is run, the following inequality holds:

E

 T∑
t=Tinit+1

1{Uc(t)}

 = O(eAK−f(K)), (9)

where A = A({µi,j}) > 0 is a constant as a function of T .

Note that, since RMED2FH draws each pair dα log log T e times in the initial phase, we define
Tinit = dα log log T e(K − 1)K/2 for RMED2FH. We give a proof of this lemma in Appendix C.
Intuitively, this lemma can be proved from the facts that arm 1 is drawn within roughly eI1(t)−f(K)

rounds and I1(t) is not very large with high probability.
Next, for i ∈ [K] \ {1} and j ∈ Oi, let

NSuf
i,j (δ) =

(1 + δ) log T + f(K)

d(µi,j , 1/2)
+ 1,

which is a sufficient number of comparisons of i with j to be convinced that the arm i is not the
Condorcet winner. The following lemma states that if pair (i, j) is drawn NSuf

i,j (δ) times then i is
rarely selected as l(t) again.

Lemma 6 When RMED1 or RMED2FH is run, for i ∈ [K] \ {1}, j ∈ Oi,

E

 T∑
t=Tinit+1

1{l(t) = i,Ni,j(t) ≥ NSuf
i,j (δ)}

 = O

(
1

δ2

)
+O(eAK−f(K)) +K.

We prove this lemma in Appendix D based on the Chernoff bound.
Now we can derive the regret bound of RMED1 based on these lemmas.

Proof of Theorem 3: Since U(t) implies m(t) = 1 in RMED1, the regret increase per round can
be decomposed as:

r(t) = 1{Uc(t)}+
∑

i∈[K]\{1}

∆1,i

2
1{l(t) = i,m(t) = 1,U(t)}. (10)

11



KOMIYAMA HONDA KASHIMA NAKAGAWA

Using Lemmas 5 and 6, we obtain

E[R(T )] ≤ Tinit +

T∑
t=Tinit+1

[r(t)]

≤K(K−1)

2
+E

 T∑
t=Tinit+1

1{Uc(t)}

+
∑

i∈[K]\{1}

∆1,i

2

(
NSuf
i,1 (δ)+

T∑
t=1

1[l(t) = i,m(t) = 1, Ni,1(t)≥NSuf
i,1 (δ)]

)

≤ K(K − 1)

2
+O(eAK−f(K)) +

∑
i∈[K]\{1}

∆1,i

2

(
NSuf
i,1 (δ) +O

(
1

δ2

)
+O(eAK−f(K)) +K

)
,

which immediately completes the proof of Theorem 3.

We also prove Theorem 4 on the optimality of RMED2FH based on Lemmas 5 and 6. Because
the full proof in Appendix E is a little bit lengthy, here we give its brief sketch.
Proof sketch of Theorem 4 (RMED2FH): Similar to Theorem 3, we use the fact that the Uc(t) does
not occur very often (i.e., Lemma 5). Under U(t), we decompose the regret into the contributions
of each arm i ∈ [K] \ {1}. There exists C2 > 0 such that, for each l(t) = i, (i) with probability 1−
O((log T )−C2) RMED2FH successfully estimates b̂?(i) = b?(i) and selects m(t) = b?(i) for most
rounds. The optimal O(log T ) term comes from the comparison of i and b?(i). Arm 1 is also drawn
for O(log T/ log log T ) = o(log T ) times. On the other hand, (ii) with probability O((log T )−C2),
RMED2FH fails to estimate b?(i) correctly. By occasionally comparing arm i with arm 1, we
can bound the regret increase by O(log T log log T ). Since O((log T )−C2 × log T log log T ) =
o(log T ), this regret does not affect the O(log T ) factor.

6. Discussion
We proved the regret lower bound in the dueling bandit problem. The RMED algorithm is based
on the likelihood that the arm is the Condorcet winner. RMED is proven to have the matching
regret upper bound. The empirical evaluation revealed that RMED significantly outperforms the
state-of-the-art algorithms. To conclude this paper, we mention three directions of future work.

First, when a Condorcet winner does not necessarily exist, the Copeland bandits (Urvoy et al.,
2013) are a natural extension of our problem. Thus, seeking an effective algorithm for solving this
problem will be interesting. As is well known in the field of voting theory, there are several other
criteria of winners that are incompatible with the Condorcet / Copeland bandits, such as the Borda
winner (Urvoy et al., 2013). Comparing several criteria or developing an algorithm that outputs
more than one of these winners should be interesting directions of future work.

Second, another direction is sequential preference elicitation problems under relative feedback
that goes beyond the binary preference over pairs, such as multiscale feedback and/or preferences
among three or more items.

Third, in the standard bandit problem, it is reported that KL-UCB+ (Lai, 1987; Garivier and
Cappé, 2011) performs better than DMED. A study of a UCB-based optimal algorithm for the
dueling bandits can yield an algorithm that outperforms RMED.
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