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Abstract
The matrix completion problem consists in reconstructing a matrix from a sample of entries, possi-
bly observed with noise. A popular class of estimator, known as nuclear norm penalized estimators,
are based on minimizing the sum of a data fitting term and a nuclear norm penalization. Here, we
investigate the case where the noise distribution belongs to the exponential family and is sub-
exponential. Our framework allows for a general sampling scheme. We first consider an estimator
defined as the minimizer of the sum of a log-likelihood term and a nuclear norm penalization and
prove an upper bound on the Frobenius prediction risk. The rate obtained improves on previous
works on matrix completion for exponential family. When the sampling distribution is known,
we propose another estimator and prove an oracle inequality w.r.t. the Kullback-Leibler prediction
risk, which translates immediately into an upper bound on the Frobenius prediction risk. Finally,
we show that all the rates obtained are minimax optimal up to a logarithmic factor.
Keywords: Low rank matrix estimation; matrix completion; exponential family model; nuclear
norm

1. Introduction

In the matrix completion problem one aims at recovering a matrix, based on partial and noisy ob-
servations of its entries. This problem arises in a wide range of practical situations such as col-
laborative filtering or quantum tomography (see Srebro and Salakhutdinov (2010) or Gross (2011)
for instance). In typical applications, the number of observations is usually much smaller than the
total number of entries, so that some structural constraints are needed to recover the whole matrix
efficiently.

More precisely, we consider an m1×m2 real matrix X̄ and observe n samples of the form
(Yi, ωi)

n
i=1, with (ωi)

n
i=1 ∈ ([m1]× [m2])n an i.i.d. sequence of indexes and (Yi)

n
i=1 ∈ Rn a se-

quence of observations which is assumed to be i.i.d. conditionally to the entries (X̄ωi)
n
i=1. To

recover the unknown parameter matrix X̄ , a popular class of methods, known as penalized nuclear
norm estimators, are based on minimizing the sum of a data fitting term and a nuclear norm pe-
nalization term. These estimators have been extensively studied over the past decade and strong
statistical guarantees can be proved in some particular settings. When the conditional distribution
Yi|X̄ωi is additive and sub-exponential it can be shown that the unknown matrix can be recovered
efficiently, provided that it is low rank or approximately low rank, see Candès and Plan (2010);
Keshavan et al. (2010); Koltchinskii et al. (2011); Negahban and Wainwright (2012); Cai and Zhou
(2013a); Klopp (2014). In that case, the prediction error satisfies with high probability

‖X̂ − X̄‖2σ,2
m1m2

= O
(

(m1 +m2) rk(X̄) log(m1 +m2)

n

)
, (1)
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with X̂ denoting the estimator, ‖·‖σ,2 the Frobenius norm and rk(·) the rank of a matrix. It has been
proved by Koltchinskii et al. (2011) that this rate is actually minimax optimal up to a logarithmic
factor.

Although very common in practice, discrete distributions have received less attention. The anal-
ysis of a logistic noise was first addressed by Davenport et al. (2012). It was later considered by Cai
and Zhou (2013b), Lafond et al. (2014) and Klopp et al. (2014) who have shown that the prediction
error is also of the order of (1), for log-likelihood estimators, regularized with nuclear norm. Gu-
nasekar et al. (2014) have investigated the case of distributions belonging to the exponential family,
which is rich enough to encompass both continuous and discrete distributions (Gaussian, exponen-
tial, Poisson, logistic, etc.). They provide (see their Corollary 1) an upper bound for the prediction
error when the noise is sub-Gaussian and the sampling uniform. However, this bound is of the form

‖X̂ − X̄‖2σ,2
m1m2

= O
(
α∗2

(m1 +m2) rk(X̄) log(m1 +m2)

n

)
,

where α∗2 is of the order m1m2 (see Remark 7 below for more details). Therefore, the obtained
rate does not match (1), which suggests that there may have some room for improvement.

In the present work, we further investigate the case of exponential family distributions and show
that under some mild assumptions, the rate (1) holds and is minimax optimal up to a logarithmic
factor. A matrix completion estimator, defined as the minimizer of the sum of a log-likelihood term
and a nuclear norm penalization term, is first considered. Provided that the noise is sub-exponential
and the sampling distribution satisfies some assumptions controlling its deviation from the uniform
distribution, it is proved that with high probability, the prediction error is upper bounded by the
same rate as in the Gaussian setting (1). It should be noticed that the sub-exponential assumption is
satisfied by all the above mentioned distributions.

When the additional knowledge of the sampling distribution is available, we consider another
estimator, which is inspired by the one proposed by Koltchinskii et al. (2011) in the additive sub-
exponential noise setting. We adapt their proofs to the exponential family distributions and show
that this estimator satisfies an oracle inequality with respect to the Kullback-Leibler prediction risk.
The proof techniques involved are also closely related to the dual certificate analysis derived by
Zhang and Zhang (2012). With high probability, an upper bound on the prediction error, still of the
same order as in (1), is derived from the oracle inequality . Finally, it is proved that the previous
upper bound order is in fact minimax-optimal up to a logarithmic factor.

The rest of the paper is organized as follows. In Section 2.1, the model is specified and some
background on exponential family distributions is provided. Then we give an upper bound for
log - likelihood matrix completion estimator in Section 2.2 and an oracle inequality (also yielding
an upper bound) for the estimator with known sampling scheme in Section 2.3. Finally, the lower
bound is provided in Section 2.4. The proofs of the main results are gathered in Section 3 and the
most technical Lemmas and proofs are deferred to the Appendix.

Notation

Throughout the paper, the following notation will be used. For any integers n,m1,m2 > 0, [n] :=
{1, . . . , n}, m1 ∨ m2 := max(m1,m2) and m1 ∧ m2 := min(m1,m2). We equip the set of
m1×m2 matrices with real entries (denoted by Rm1×m2) with the Hilbert-Schmidt inner product
〈X|X ′〉 := tr(X>X ′). For a given matrix X ∈ Rm1×m2 , we write ‖X‖∞ := maxi,j |Xi,j | and for

2



EXPONENTIAL FAMILY MATRIX COMPLETION

any s ≥ 1, we denote its Schatten s-norm (see Bhatia (1997)) by

‖X‖σ,s :=

(
m1∧m2∑
i=1

σsi (X)

)1/s

,

with σi(X) the singular values ofX , ordered in decreasing order. We use the convention ‖X‖σ,∞ =
σ1(X). For any vector z := (zi)

n
i=1, diag(z) denotes the Rn×n diagonal matrix whose diagonal

entries are z1, · · · , zn. For any convex differentiable function G : R → R and x, x′ ∈ R, the
Bregman divergence of G is denoted by

dG(x, x′) := G(x)−G(x′)−G′(x′)(x− x′) . (2)

2. Main results

2.1. Model Specification

We consider an unknown parameter matrix X̄ ∈ Rm1×m2 that we aim at recovering. Assume that
an i.i.d. sequence of indexes (ωi)

n
i=1 ∈ ([m1]× [m2])n is sampled and denote by Π its distribution.

The observations associated to this sequence are denoted by (Yi)
n
i=1 and assumed to follow a natural

exponential family distribution, conditionally on the X̄ entries, that is:

Yi|X̄ωi ∼ Exph,G(X̄ωi) := h(Yi) exp
(
X̄ωiYi −G(X̄ωi)

)
, (3)

where h and G are the base measure and log partition functions associated to the canonical repre-
sentation. For ease of notation we often write X̄i instead of X̄ωi .

Given two matrices X1, X2 ∈ Rm1×m2 , we define the empirical and integrated Bregman diver-
gences as follows

Dn
G(X1, X2) =

1

n

n∑
i=1

dG(X1
i , X

2
i ) and DΠ

G(X1, X2) = E[Dn
G(X1, X2)] . (4)

Note that for exponential family distributions, the Bregman divergence dG(·, ·) corresponds to the
Kullback-Leibler divergence. Let PX1 (resp. PX2) denote the distribution of (Y1, ω1) associated
to the parameters X1 (resp. X2); then Dn

G(X1, X2) is the Kullback-Leibler divergence between
PX1 and PX2 conditionally to the sampling, whereas DΠ

G(X1, X2) is the usual Kullback-Leibler
divergence.

As mentioned in introduction, the exponential family encompasses a wide range of distributions,
either discrete or continuous. Some information on the most commonly used is recalled below.

Remark 1 On its domain G admits derivatives of all orders, which can be used to compute its
moments (see (Wainwright and Jordan, 2008, Proposition 3.1)). In particular, E[Yi|X̄i] = G′(X̄i)
and Var[Yi|X̄i] = G′′(X̄i) hold.
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Distribution Parameter x G(x)

Gaussian: N (µ, σ2) (σ known) µ/σ σ2x2/2

Binomial: BN (p) (N known) log(p/(1− p)) N log(1 + ex)

Poisson: P(λ) log(λ) ex

Exponential: E(λ) −λ − log(−x)

Table 1: Parametrization of some exponential family distributions

2.2. General Matrix Completion

In this section, we provide statistical guarantees on the prediction error of a matrix completion
estimator, which is defined as the minimizer of the sum of a log-likelihood term and a nuclear norm
penalization term. For any X ∈ Rm1×m2 , denote by ΦY(X) the (normalized) conditional negative
log-likelihood of the observations:

ΦY(X) = − 1

n

n∑
i=1

(log(h(Yi)) +XiYi −G(Xi)) . (5)

For γ > 0 and λ > 0, the nuclear norm penalized estimator X̂ is defined as follows:

X̂ = arg min
X∈Rm1×m2 ,‖X‖∞≤γ

Φλ
Y (X) , where Φλ

Y (X) = ΦY(X) + λ‖X‖σ,1 . (6)

The parameter λ controls the trade off between fitting the data and privileging a low rank solution:
for large value of λ, the rank of X̂ is expected to be small. The parameter γ is an upper bound on
the absolute value of X̄ entries. For example, in recommender system applications analyzed with a
Gaussian distribution, γ is simply the maximum rating.

Before giving an upper bound on the prediction risk ‖X̂ − X̄‖2σ,2, the following assumptions on
the noise and sampling distributions need to be introduced.

H1 The function x 7→ G(x), is twice differentiable and strongly convex on [−γ, γ], so that there
exists constants σγ , σ̄γ > 0 satisfying:

σ2
γ ≤ G′′(x) ≤ σ̄2

γ , (7)

for any x ∈ [−γ, γ].

Remark 2 Under H 1, for any x, x′ ∈ [−γ, γ], the Bregman divergence satisfies σ2
γ(x − x′)2 ≤

2dG(x, x′) ≤ σ̄2
γ(x− x′)2.

Remark 3 If the observations follow a Gaussian distribution, the two convexity constants are equal
to the standard deviation i.e., σ̄γ = σγ = σ (see Table 1).

For the sampling distribution, one needs to ensure that each entry has a sampling probability,
which is lower bounded by a strictly positive constant, that is:

H2 There exists a constant µ ≥ 1 such that, for all m1,m2,

min
k∈[m1], l∈[m2]

πk,l ≥ 1/(µm1m2) , where πk,l := P(ω1 = (k, l)) . (8)
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Denote by Rk =
∑m2

l=1 πk,l (resp. Cl =
∑m1

k=1 πk,l) the probability of sampling a coefficient from
row k (resp. column l). The following assumption requires that no row nor column should be
sampled far more frequently than the others.

H3 There exists a constant ν ≥ 1 such that, for all m1,m2,

max
k,l

(Rk, Cl) ≤
ν

m1 ∧m2
.

Remark 4 In the classical case of a uniform sampling, µ = ν = 1 holds.

We define the sequence of matrices (Ei)
n
i=1, whose entries are all zeros except for the coefficient

(ωi) which is equal to one i.e., Ei := eki(e
′
li

)> with (ki, li) = ωi and (ek)
m1
k=1 (resp. (e′l)

m2
l=1)

being the canonical basis of Rm1 (resp. Rm2). Furthermore, for (εi)
n
i=1 a Rademacher sequence

independent from (ωi, Yi)
n
i=1, we also define

ΣR :=
1

n

n∑
i=1

εiEi , (9)

and use the following notation

d = m1 +m2 , M = m1 ∨m2, m = m1 ∧m2 . (10)

With these assumptions and notation, we are now ready for stating our main results.

Theorem 5 Assume H 1, H 2, ‖X̄‖∞ ≤ γ and λ ≥ 2‖∇ΦY(X̄)‖σ,∞. Then with probability at
least 1− 2d−1 the following holds:

‖X̂ − X̄‖2σ,2
m1m2

≤ Cµ2 max

(
m1m2 rk(X̄)

(
λ2

σ4
γ

+ (E‖ΣR‖σ,∞)2

)
,
γ2

µ

√
log(d)

n

)
,

with ΣR and d defined in (9) and (10) and C a numerical constant.

Proof See Section 3.1.

In Theorem 5, the term E‖ΣR‖σ,∞ only depends on the sampling distribution and can be upper
bounded using assumption H 3. On the other hand, the gradient term ‖∇ΦY(X̄)‖σ,∞ depends
both on the sampling and on the observation distributions. In order to control this term with high
probability, the noise is assumed to be sub-exponential.

H4 There exist a constant δγ > 0 such that for all x ∈ [−γ, γ] and Y ∼ Exph,G(x):

E
[
exp

(
|Y −G′(x)|

δγ

)]
≤ e . (11)

Then Theorem 5, H3 and H4 yield together the following result.
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Theorem 6 Assume H1, H2, H3, H4, ‖X̄‖∞ ≤ γ,

n ≥ 2 log(d)mν−1 max

(
δ2
γ

σ̄2
γ

log2(δγ

√
m

σ2
γ

), 1/9

)
,

and take λ = 2cγ σ̄γ
√

2ν log(d)/(mn), where cγ is a constant which depends only on δγ . Then
with probability at least 1− 3d−1 the following holds:

‖X̂ − X̄‖2σ,2
m1m2

≤ C̄µ2 max

[(
cγ σ̄

2
γ

σ4
γ

+ 1

)
ν rk(X̄)M log(d)

n
,
γ2

µ

√
log(d)

n

]
,

with C̄ a numerical constant.

Proof See Section 3.2.

Remark 7 When γ is treated as a constant and n is large, the order of the bound is

‖X̂ − X̄‖2σ,2
m1m2

= O
(

rk(X̄)M log(d)

n

)
,

which matches the rate obtained for Gaussian distributions (1). Matrix completion for exponen-
tial family distributions was considered in the case of uniform sampling (i.e., µ = ν = 1) and
sub-Gaussian noise by Gunasekar et al. (2014). They provide the following upper bound on the
estimation error

‖X̄ − X̂‖2σ,2
m1m2

= O
(
α∗2

rk(X̄)M log(d)

n

)
.

with α∗ satisfying α∗ ≥ √m1m2‖X̄‖∞. Therefore, Theorem 6 improves this rate by a factor
m1m2.

Remark 8 In the proof, the noncommutative Bernstein inequality for sub-exponential noise is used
to control ‖∇ΦY(X̄)‖σ,∞. However, when the observations are uniformly bounded (e.g., logistic
distribution), a uniform Bernstein inequality can be applied instead, leading in some cases to a
sharper bound (see Koltchinskii et al. (2011) and Lafond et al. (2014) for instance).

2.3. Matrix Completion with known sampling scheme

When the sampling distribution Π is known, the following estimator can be defined:

X̌ := arg min
X∈Rm1×m2 ,‖X‖∞≤γ

ΦΠ
Y(X) + λ‖X‖σ,1 with , (12)

ΦΠ
Y(X) := GΠ(X)−

∑n
i=1XiYi
n

and GΠ(X) := E
[∑n

i=1G(Xi)

n

]
.

In the case of sub-exponential additive noise, Koltchinskii et al. (2011) proposed a similar estimator
and have shown that it satisfies an oracle inequality w.r.t. the Frobenius prediction risk. Note that
their estimator coincides with (12) for the particular setting of Gaussian noise. The main interest of
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computing X̌ instead of X̂ , when the sampling distribution is known, lies in the fact that a sharp
oracle inequality can be derived for X̌ . This powerful tool allows to provide statistical guarantees
on the prediction risk, even if the true parameter X̄ does not belong to the class of estimators
i.e., when ‖X̄‖ ≤ γ is not satisfied. In this section, it is proved that X̌ satisfies an oracle inequality
w.r.t. the integrated Bregman divergence (see Definition (4)), which corresponds to the Kullback-
Leibler divergence for exponential family distributions. An upper bound on the Frobenius prediction
risk is then easily derived from this inequality.

Theorem 9 Assume H1, H2 and λ ≥ ‖∇ΦΠ
Y(X̄)‖σ,∞. Then the following inequalities hold:

DΠ
G(X̌, X̄) ≤ inf

X∈Rm1×m2 ,‖X‖∞≤γ

(
DΠ
G(X, X̄) + 2λ‖X‖σ,1

)
(13)

and

DΠ
G(X̌, X̄) ≤ inf

X∈Rm1×m2 ,‖X‖∞≤γ

DΠ
G(X, X̄) +

(
1 +
√

2

2

)2
µ

σ2
γ

m1m2λ
2 rk(X)

 (14)

Proof The proof of Theorem 9 is an adaptation (to exponential family distributions) of the proof by
Koltchinskii et al. (2011), which uses the first order optimality conditions satisfied by X̌ . Similar
arguments are used by Zhang and Zhang (2012) to provide dual certificates for non smooth convex
optimization problems. The detailed proof is given in Appendix C.1.

When ‖X̄‖∞ ≤ γ, the previous oracle inequalities imply the following upper bound on the predic-
tion risk.

Theorem 10 Assume H1, H2 and λ ≥ ‖∇ΦΠ
Y(X̄)‖σ,∞ and ‖X̄‖∞ ≤ γ. Then the following holds:

‖X̌ − X̄‖2σ,2
m1m2

≤ µ2 min

((
1 +
√

2
)2

2

m1m2

σ4
γ

λ2 rk(X̄),
4

µσ2
γ

λ‖X̄‖σ,1

)
. (15)

Proof Applying Theorem 9 to X = X̄ and using H2 and H1 yields the result.

As for the previous estimator, the term ‖∇ΦΠ
Y(X̄)‖σ,∞ is stochastic and depends both on the

sampling and observations. Assuming that the sampling distribution is uniform and that the noise is
sub-exponential allows to control it with high probability. Before stating the result, let us define

Lγ := sup
x∈[−γ,γ]

|G′(x)| . (16)

Theorem 11 Assume that the sampling is i.i.d. uniform and ‖X̄‖∞ ≤ γ. Suppose H1, H4, and

n ≥ 2 log(d)mmax

(
δ2
γ

σ̄2
γ

log2(δγ

√
m

σ2
γ

), 8/9

)
.
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Take λ = (cγ σ̄γ + c∗Lγ)
√

2 log(d)/(mn), where cγ is a constant which depends only on δγ , Lγ is
defined in (16) and c∗ is a numerical constant. Then, with probability at least 1−2d−1 the following
holds:

‖X̌ − X̄‖2σ,2
m1m2

≤ C̃
(
cγ σ̄γ + Lγ

σ2
γ

)2 rk(X̄)M log(d)

n
λ2 ,

with C̃ a numerical constant.

Remark 12 For simplicity we have considered here only the case of uniform sampling distributions.
However if we assume that the sampling satisfies H2, H3 and that there exists an absolute constant
ρ such that πk,l ≤ ρ/

√
m1m2 for any m1,m2 ∈ R, then it is clear from the proof that the same

bound still holds for a general i.i.d. sampling, up to factors depending on µ, ν and ρ.

Remark 13 If γ is treated as a constant, the rate obtained for the Frobenius error is the same as
in Theorem 6. If not, the two rates might differ because the rate of Theorem 11 depends on the
constant Lγ , which does not appear in Theorem 6. Note in addition that Remark 8 also applies to
Theorem 11.

Proof The proof is similar to the one of Theorem 6, see Appendix C.2.

2.4. Lower Bound

It can be shown that the upper bounds obtained in Theorems 6 and 11 are in fact lower bounds (up to
a logarithmic factor) when γ is treated as a constant. Before stating the result, let us first introduce
the set F(r, γ) of matrices of rank at most r whose entries are bounded by γ:

F(r, γ) =
{
X̄ ∈ Rm1×m2 : rank(X̄) ≤ r, ‖X̄‖∞ ≤ γ

}
.

The infimum over all estimators X̂ that are measurable functions of the data (ωi, Yi)
n
i=1 is denoted

by infX̂ .

Theorem 14 There exists two constants c > 0 and θ > 0 such that, for all m1,m2 ≥ 2, 1 ≤ r ≤
m1 ∧m2, and γ > 0,

inf
X̂

sup
X̄∈F(r,γ)

PX̄

(
‖X̂ − X̄‖22
m1m2

> cmin

{
γ2,

Mr

n σ̄2
γ

})
≥ θ ,

Remark 15 Theorem 14 provides a lower bound of order O(Mr/(n σ̄2
γ). The order of the ratio

between this lower bound and the upper bounds of Theorem 6 is (cγ(σ̄γ/σγ)4 log(d) ∨ σ̄2
γ). If γ is

treated as a constant, lower and upper bounds are therefore the same up to a logarithmic factor.

Proof See Section 3.3.
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3. Proofs of main results

ForX ∈ Rm1×m2 , denote by S1(X) ⊂ Rm1 (resp. S2(X) ⊂ Rm2) the linear spans generated by left
(resp. right) singular vectors of X . Let PS⊥1 (X) (resp. PS⊥2 (X)) denotes the orthogonal projections
on S⊥1 (X) (resp. S⊥2 (X)). We then define the following orthogonal projections on Rm1×m2

P⊥X : X̃ 7→ PS⊥1 (X)X̃PS⊥2 (X) and PX : X̃ 7→ X̃ − P⊥X(X̃) . (17)

3.1. Proof of Theorem 5

From Definition (6), Φλ
Y (X̂) ≤ Φλ

Y (X̄) holds, or equivalently

Dn
G(X̂, X̄) ≤ λ(‖X̄‖σ,1 − ‖X̂‖σ,1)− 〈∇ΦY(X̄) | X̂ − X̄〉 ,

with Dn
G(·, ·) defined in (4). The first term of the right hand side can be upper bounded using

Lemma 16-(iii) and the second by duality (between ‖ · ‖σ,1 and ‖ · ‖σ,∞) and the assumption on λ,
which yields

Dn
G(X̂, X̄) ≤ λ

(
‖PX̄(X̂ − X̄)‖σ,1 +

1

2
‖X̂ − X̄‖σ,1

)
.

Using Lemma 16-(ii) to bound the first term and Lemma 17-(ii) for the second, leads to

Dn
G(X̂, X̄) ≤ 3λ

√
2 rk(X̄)‖X̂ − X̄‖σ,2 . (18)

On the other hand, by strong convexity of G (H1), we get

∆2
Y (X̂, X̄) :=

1

n

n∑
i=1

(X̂i − X̄i)
2 ≤ 2

σ2
γ

Dn
G(X̂, X̄) . (19)

We then define the threshold β := 8eγ2
√

log(d)/n and distinguish the two following cases.
Case 1 If

∑
kl∈[m1]×[m2] πkl(X̂kl − X̄kl)

2 ≤ β, then Lemma 18 yields

‖X̂ − X̄‖2σ,2
m1m2

≤ µβ . (20)

Case 2 If
∑

kl∈[m1]×[m2] πkl(X̂kl − X̄kl)
2 > β, then Lemma 17-(ii) and Lemma 18 combined

together give
X̂ ∈ C(β, 32µm1m2 rk(X̄)), where C(·, ·) is the set defined as

C(β, r) :=

{
X ∈ Rm1×m2

∣∣ ‖X − X̄‖σ,1 ≤√rE [∆2
Y (X, X̄)

]
;E
[
∆2
Y (X, X̄)

]
> β

}
. (21)

Hence, from Lemma 19 it holds, with probability at least 1− (d− 1)−1 ≥ 1− 2d−1, that

∆2
Y (X, X̄) ≥ 1

2
E
[
∆2
Y (X, X̄)

]
− 512e(E‖ΣR‖σ,∞)2µm1m2 rk(X̄) . (22)

Combining (22) with (19), (18) and Lemma 18 leads to

‖X̂ − X̄‖2σ,2
2µm1m2

− 512e(E‖ΣR‖σ,∞)2µm1m2 rk(X̄) ≤ 6λ

σ2
γ

√
2m1m2 rk(X̄)

‖X̂ − X̄‖σ,2√
m1m2

. (23)

Using the identity ab ≤ a2 +b2/4 in (23) and combining with (20) achieves the proof of Theorem 5.
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Lemma 16 For any pair of matrices X, X̃ ∈ Rm1×m2 we have

(i) ‖X + P⊥X(X̃)‖σ,1 = ‖X‖σ,1 + ‖P⊥X(X̃)‖σ,1 ,

(ii) ‖PX(X̃)‖σ,1 ≤
√

2 rk(X)‖X̃‖σ,2 ,

(iii) ‖X‖σ,1 − ‖X̃‖σ,1 ≤ ‖PX(X̃ −X)‖σ,1 .

Lemma 17 Let X, X̃ ∈ Rm1×m2 satisfying ‖X‖∞ ≤ γ and ‖X̃‖∞ ≤ γ. Assume that λ >
2‖∇ΦY(X̄)‖σ,∞ and Φλ

Y (X) ≤ Φλ
Y (X̃). Then

(i) ‖P⊥
X̃

(X − X̃)‖σ,1 ≤ 3‖PX̃(X − X̃)‖σ,1 ,

(ii) ‖X − X̃‖σ,1 ≤ 4
√

2 rk(X̃)‖(X − X̃)‖σ,2 .

Lemma 18 Under H2, for any X ∈ Rm1×m2 it holds∑
kl∈[m1]×[m2]

πkl(Xkl − X̄kl)
2 ≥ 1

µm1m2
‖X − X̄‖2σ,2 .

Lemma 19 For β = 8eγ2
√

log(d)/n, with probability at least 1 − (d − 1)−1, we have for all
X ∈ C(β, r):

∣∣∆2
Y (X, X̄)− E

[
∆2
Y (X, X̄)

]∣∣ ≤ E
[
∆2
Y (X, X̄)

]
2

+ 16e(E‖ΣR‖σ,∞)2 r ,

with C(β, r) defined in (21).

Proof Lemmas 16 and 17 are proved in Appendix A. Lemma 18 follows directly from H 2. See
Appendix B for the proof of Lemma 19.

3.2. Proof of Theorem 6

Starting from Theorem 5 one only needs to control E(‖ΣR‖σ,∞) and ‖∇ΦY(X̄)‖σ,∞ to obtain the
result.
Control of E(‖ΣR‖σ,∞): One can write ΣR := n−1

∑n
i=1 Zi, with Zi := εiEi which satisfies

E[Zi] = 0. Recalling the definitions Rk =
∑m2

l=1 πk,l and Cl =
∑m1

k=1 πk,l for any k ∈ [m1],
l ∈ [m2], one obtains∥∥∥∥∥E

[
1

n

n∑
i=1

ZiZ
>
i

]∥∥∥∥∥
σ,∞

≤
∥∥diag((Rk)

m1
k=1)

∥∥
σ,∞ ≤

ν

m
, (24)

where H3 was used for the last inequality. Using a similar argument one also gets ‖E[
∑n

i=1 Z
>
i Zi]‖σ,∞/n ≤

ν/m. Hence applying Lemma 20 with U = 1 and σ2
Z = ν/m, for n ≥ m log(d)/(9ν) yields

E [‖ΣR‖σ,∞] ≤ c∗
√

2eν log(d)

mn
, (25)

10
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with c∗ a numerical constant.
Control of ‖∇ΦY(X̄)‖σ,∞: Let us define Z ′i := (Yi −G′(X̄i))Ei, which satisfies ∇ΦY(X̄) :=
n−1

∑n
i=1 Z

′
i and E[Z ′i] = 0 (as any score function) and

σ2
Z′ := max

(
1

n
‖E[

n∑
i=1

(Z ′i)
>Z ′i]‖σ,∞ ,

1

n
‖E[

n∑
i=1

Z ′i(Z
′
i)
>]‖σ,∞

)
.

Using H4, a similar analysis yields σ2
Z′ ≤ σ̄2

γν/m. On the other hand, maxk,l(Rk, Cl) ≥ 1/m and
E[(Yi − G′(X̄i))

2] = G′′(X̄i) ≥ σ2
γ gives σ2

Z′ ≥ σ2
γ/m. Applying Proposition 21 for t = log(d)

gives with probability at least 1− d−1

‖∇ΦY(X̄)‖σ,∞ ≤ cγ max

{
σ̄γ
√
ν/m

√
2 log(d)

n
, δγ log(

δγ
√
m

σγ
)
2 log(d)

n

}
, (26)

with cγ which depends only on δγ . By assumption on n, the left term dominates. Therefore taking λ
as in Theorem 6 statement yields λ ≥ 2‖∇ΦY(X̄)‖σ,∞ with probability at least 1− d−1. A union
bound argument combined to Theorem 5 achieves Theorem 6 proof.

Lemma 20 Consider a finite sequence of independent random matrices (Zi)1≤i≤n ∈ Rm1×m2

satisfying E[Zi] = 0 and for some U > 0, ‖Zi‖σ,∞ ≤ U for all i = 1, . . . , n and define

σ2
Z := max


∥∥∥∥∥ 1

n

n∑
i=1

E[ZiZ
>
i ]

∥∥∥∥∥
σ,∞

,

∥∥∥∥∥ 1

n

n∑
i=1

E[Z>i Zi]

∥∥∥∥∥
σ,∞

 .

Then, for any n ≥ (U2 log(d))/(9σ2
Z) the following holds:

E

∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
σ,∞

 ≤ c∗σZ√2e log(d)

n
,

with c∗ = 1 +
√

3.

Proof See Klopp et al. (2014)[Lemma 15].

Proposition 21 Consider a finite sequence of independent random matrices (Zi)1≤i≤n ∈ Rm1×m2

satisfying E[Zi] = 0. For some U > 0, assume

inf{δ > 0 : E[exp(‖Zi‖σ,∞/δ)] ≤ e} ≤ U for i = 1, . . . , n

and define σZ as in Lemma 20. Then for any t > 0, with probability at least 1− e−t∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
σ,∞

≤ cU max

{
σZ

√
t+ log(d)

n
,U log(

U

σZ
)
t+ log(d)

n

}
,

with cU a constant which depends only on U .

Proof This result is an extension of the sub-exponential noncommutative Bernstein inequality
(Koltchinskii, 2013, Theorem 4), to rectangular matrices by dilation, see (Klopp, 2014, Proposi-
tion 11) for details.

11
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3.3. Proof of Theorem 14

We start with a packing set construction, inspired by Koltchinskii et al. (2011). Assume w.l.o.g., that
m1 ≥ m2. Let α ∈ (0, 1/8) and define κ := min(1/2,

√
αm1r/(2γσ̄

2
γ

√
n) and the set of matrices

L =
{
L = (lij) ∈ Rm1×r : lij ∈ {0, κγ} , ∀i ∈ [m1], ∀j ∈ [r]

}
.

Consider the associated set of block matrices

L′ =
{
L′ = ( L · · · L O ) ∈ Rm1×m2 : L ∈ L

}
,

where O denotes the m1 × (m2 − rbm2/rc) zero matrix, and bxc is the integer part of x. The
Varshamov-Gilbert bound ((Tsybakov, 2009, Lemma 2.9)) guarantees the existence of a subset
A ⊂ L′ with cardinality Card(A) ≥ 2(rm1)/8 + 1 containing the null matrix X0 and such that, for
any two distinct elements X1 and X2 of A,

‖X1 −X2‖22 ≥
m1r κ

2γ2

8

⌊m2

r

⌋
≥ m1m2 κ

2γ2

16
. (27)

By construction, any element of A as well as the difference of any two elements of A has rank at
most r, the entries of any matrix inA take values in [0, γ] and thusA ⊂ F(r, γ). For some X ∈ A,
we now estimate the Kullback-Leibler divergence D (PX‖PX0) between probability measures PX0

and PX . By independence of the observations (Yi, ωi)
n
i=1 and since the distribution of Yi|ωi belongs

to the exponential family one obtains

D (PX‖PX0) = nEω1

[
G′(Xω1)(Xω1 −X0

ω1
)−G(Xω1) +G(X0

ω1
)
]
.

Since X0
ω1

= 0 and either Xω1 = 0 or Xω1 = κγ, by strong convexity and by definition of κ one
gets

D (PX‖PX0) ≤ n
σ̄2
γ

2
κ2γ2 ≤ αrm1

8
≤ α log2(Card(A)− 1) ,

which implies
1

Card(A)− 1

∑
X∈A

D (PX0‖PX) ≤ α log
(
Card(A)− 1

)
. (28)

Using (27), (28) and (Tsybakov, 2009, Theorem 2.5) together gives

inf
X̂

sup
X̄∈F(r,γ)

PX̄

(
‖X̂ − X̄‖22
m1m2

> c̃min

{
γ2,

αMr

n σ̄2
γ

})
≥ δ(α,M) ,

where

δ(α,M) =
1

1 + 2−rM/16

(
1− 2α− 1

2

√
α

rM log(2)

)
, (29)

and c̃ is a numerical constant. Since we are free to choose α as small as possible, this achieves the
proof.
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Appendix A. Proof of Lemma 16 and Lemma 17

Lemma 16

Proof If A,B ∈ Rm1×m2 are two matrices satisfying Si(A) ⊥ Si(B), i = 1, 2, (see Definition
(17)) then ‖A+B‖σ,1 = ‖A‖σ,1 + ‖B‖σ,1. Applying this identity with A = X and B = P⊥X(X̃),
we obtain

‖X + P⊥X(X̃)‖σ,1 = ‖X‖σ,1 + ‖P⊥X(X̃)‖σ,1 ,

showing (i).
From the definition of PX(·), PX(X̃) = PS1(X)X̃PS⊥2 (X) + X̃PS2(X) holds and therefore

rk(PX(X̃)) ≤ 2 rk(X). On the other hand, the Cauchy-Schwarz inequality implies that for any
matrix A, ‖A‖σ,1 ≤

√
rk(A)‖C‖σ,2. Consequently (ii) follows from

‖PX(X̃)‖σ,1 ≤
√

2 rk(X)‖PX(X̃)‖σ,2 ≤
√

2 rk(X)‖X̃‖σ,2 .

Finally, since X̃ = X + P⊥X(X̃ −X) + PX(X̃ −X) we have

‖X̃‖σ,1 ≥ ‖X + P⊥X(X̃ −X)‖σ,1 − ‖PX(X̃ −X)‖σ,1 ,
= ‖X‖σ,1 + ‖P⊥X(X̃ −X)‖σ,1 − ‖PX(X̃ −X)‖σ,1 ,

leading to (iii).

Lemma 17

Proof Since Φλ
Y (X) ≤ Φλ

Y (X̃), we have

ΦY(X̃)− ΦY(X) ≥ λ(‖X‖σ,1 − ‖X̃‖σ,1).

14



EXPONENTIAL FAMILY MATRIX COMPLETION

For any X ∈ Rm1×m2 , using X = X̃ + P⊥
X̃

(X − X̃) + PX̃(X − X̃), Lemma 16-(i) and the
triangular inequality, we get

‖X‖σ,1 ≥ ‖X̃‖σ,1 + ‖P⊥
X̃

(X − X̃)‖σ,1 − ‖PX̃(X − X̃)‖σ,1 ,

which implies

ΦY(X̃)− ΦY(X) ≥ λ
(
‖P⊥

X̃
(X − X̃)‖σ,1 − ‖PX̃(X − X̃)‖σ,1

)
. (30)

Furthermore by convexity of ΦY we have

ΦY(X̃)− ΦY(X) ≤ 〈∇ΦY(X̃) | X̃ −X〉 ,

which yields by duality

ΦY(X̃)− ΦY(X) ≤ ‖∇ΦY(X̃)‖σ,∞‖X̃ −X‖σ,1 ≤
λ

2
‖X̃ −X‖σ,1 ,

≤ λ

2
(‖P⊥

X̃
(X − X̃)‖σ,1 + ‖PX̃(X − X̃)‖σ,1) , (31)

where we used λ > ‖∇ΦY(X̃)‖σ,∞ in the second line. Then combining (30) with (31) gives (i).
Since X − X̃ = P⊥

X̃
(X − X̃) + PX̃(X − X̃), using the triangular inequality and (i) yields

‖X − X̃|σ,1 ≤ 4‖PX̃(X − X̃)‖σ,1. (32)

Combining (32) and Lemma 16-(i) leads to (ii).

Appendix B. Proof of Lemma 19

Proof The proof is adapted from (Negahban and Wainwright, 2012, Theorem 1) and (Klopp, 2014,
Lemma 12). We use a peeling argument combined with a sharp deviation inequality detailed in
Theorem 22. For any α > 1, β > 0 and 0 < η < 1/2α, define

ε(r, α, η) :=
4

1/(2α)− η
(E‖ΣR‖σ,∞)2r , (33)

and consider the events

B :=

{
∃X ∈ C(β, r)

∣∣∣∣ ∣∣∆2
Y (X, X̄)− E

[
∆2
Y (X, X̄)

]∣∣ > E
[
∆2
Y (X, X̄)

]
2

+ ε(r, α, η)

}
,

and
Rl :=

{
X ∈ C(β, r)|αl−1β < E

[
∆2
Y (X, X̄)

]
< αlβ

}
.

Let us also define the set

C(β, r, t) :=
{
X ∈ C(β, r)| E

[
∆2
Y (X, X̄)

]
≤ t
}
,

15
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and
Zt := sup

X∈C(β,r,t)
|∆2

Y (X, X̄)− E
[
∆2
Y (X, X̄)

]
| . (34)

Then for any X ∈ B ∩Rl we have

|∆2
Y (X, X̄)− E

[
∆2
Y (X, X̄)

]
| > 1

2
αl−1β + ε(r, α, η) ,

Moreover by definition ofRl, X ∈ Cβ(r, αlβ). Therefore

B ∩Rl ⊂ Bl := {Zαlβ >
1

2α
αlβ + ε(r, α, η)} ,

If we now apply a union bound argument combined to Lemma 22 we get

P(B) ≤
+∞∑
l=1

P(Bl) ≤
+∞∑
l=1

exp

(
−nη

2(αlβ)2

8γ4

)
≤

exp(−nη2 log(α)β2

4γ4
)

1− exp(−nη2 log(α)β2

4γ4
)
,

where we used x ≤ ex in the second inequality. Choosing α = e, η = (4e)−1 and β as stated in the
Lemma yields the result.

Lemma 22 Let α > 1 and 0 < η < 1
2α . Then we have

P (Zt > t/(2α) + ε(r, α, η)) ≤ exp
(
−nη2t2/(8γ4)

)
, (35)

where ε(r, α, η) and Zt are defined in (33) and (34).

Proof From Massart’s inequality ((Massart, 2000, Theorem 9)) we get for 0 < η < 1/(2α)

P(Zt > E[Zt] + ηt) ≤ exp
(
−η2nt2/(8γ4)

)
. (36)

A symmetrization argument gives

E[Zt] ≤ 2E

[
sup

X∈C(β,r,t)

∣∣∣∣∣ 1n
n∑
i=1

εi(Xi − X̄i)
2

∣∣∣∣∣
]
,

where ε := (εi)1≤i≤n is a Rademacher sequence independent from (Yi, ωi)
n
i=1. The contraction

principle ((Ledoux and Talagrand, 1991, Theorem 4.12)) yields

E[Zt] ≤ 4E

[
sup

X∈C(β,r,t)

∣∣∣∣∣ 1n
n∑
i=1

εi(Xi − X̄i)

∣∣∣∣∣
]

= 4E

[
sup

X∈C(β,r,t)

∣∣〈ΣR |X − X̄〉
∣∣] ,

where ΣR is defined in (9). Applying the duality inequality and then plugging into (36) gives

P(Zt > 4E[‖ΣR‖σ,∞]
√
rt+ γ2ηt) ≤ exp

(
−η2nt2/(8γ4)

)
.

Since for any a, b ∈ R and c > 0, ab ≤ (a2/c+ cb2)/2, the proof is concluded by noting that,

4E[‖ΣR‖σ,∞]
√
rt ≤ 1

1/(2α)− η
4E[‖ΣR‖σ,∞]2r + (1/(2α)− η)t .
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Appendix C. Proof of Oracle inequalities and Bounds for Completion with known
sampling

C.1. Proof of Theorem 9

Proof The proof is an extension (to the exponential family case) of the one proposed in (Koltchinskii
et al., 2011, Theorem 1). For ease of notation, let us define H := ∇ΦΠ

Y(X̄) and the set Γ := {X ∈
Rm1×m2 | ‖X‖∞ ≤ γ}. In view of Remark 1, one obtains

H =

∑n
i=1 YiEi
n

−∇GΠ(X̄) =

∑n
i=1(YiEi − E[YiEi])

n
.

From the definition of X̌ , for any X ∈ Γ,

GΠ(X̌)−
∑n

i=1 X̌iYi
n

≤ GΠ(X)−
∑n

i=1XiYi
n

+ λ(‖X‖σ,1 − ‖X̌‖σ,1)

or equivalently

GΠ(X̌)−GΠ(X̄)− 〈∇GΠ(X̄) | X̌ − X̄〉
≤ GΠ(X)−GΠ(X̄)− 〈∇GΠ(X̄) |X − X̄〉+ 〈H | X̌ −X〉+ λ(‖X‖σ,1 − ‖X̌‖σ,1)

Applying Lemma 16 (ii),(iii) and duality yields

DΠ
G(X̌, X̄)−DΠ

G(X, X̄) ≤ λ(‖X̌ −X‖σ,1 + ‖X‖σ,1 − ‖X̌‖σ,1) ≤ 2λ‖X‖σ,1 .

where we used the assumption λ ≥ ‖H‖σ,∞. This proves (13).
For (14), by definition

X̌ = arg min
X∈Rm1×m2

F (X) := GΠ(X)−
∑n

i=1XiYi
n

+ λ‖X‖σ,1 + δΓ(X) ,

where δΓ is the indicatrice function of the bounded closed convex set Γ i.e., δΓ(x) = 0 if x ∈ Γ
and δΓ(x) = +∞ otherwise. Since F is convex, X̌ satisfies 0 ∈ ∂F (X̌) with ∂F denoting the
subdifferential of F . It is easily checked that the subdifferential ∂δΓ(X̌) is the normal cone of Γ at
the point X̌ . Hence, 0 ∈ ∂F (X̌) implies that there exists V̌ ∈ ∂‖X̌‖σ,1 such that for any X ∈ Γ,

〈∇GΠ(X̌) | X̌ −X〉 −
〈∑n

i=1 YiEi
n

| X̌ −X
〉

+ λ〈V̌ | X̌ −X〉 ≤ 0 ,

or equivalently

〈∇GΠ(X̌)−∇GΠ(X̄) | X̌ −X〉+ λ〈V̌ | X̌ −X〉 ≤ 〈H | X̌ −X〉 .

For any x̃, x̄, x ∈ R, from the Bregman divergence definition it holds

(G′(x̌)−G′(x̄))(x̌− x) = dG(x, x̌) + dG(x̌, x̄)− dG(x, x̄) . (37)

In addition, for any V ∈ ∂‖X‖σ,1, the subdifferential monotonicity yields 〈V̌ − V | X̌ −X〉 ≥ 0.
Therefore

DΠ
G(X, X̌) +DΠ

G(X̌, X̄)−DΠ
G(X, X̄) ≤ 〈H | X̌ −X〉 − λ〈V | X̌ −X〉 . (38)
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In Watson (1992), it is shown that:

∂‖X‖σ,1 = {
r∑
i=1

uiv
>
i + P⊥XW |W ∈ Rm1×m2 , ‖W‖σ,∞ ≤ 1} , (39)

where r := rk(X), ui (resp. vi) are the left (resp. right) singular vectors of X and P⊥X is defined
in (17). Denote by S1 (resp. S2) the space of the left (resp. right) singular vectors of X . For
W ∈ Rm1×m2 ,〈

r∑
i=1

uiv
>
i + P⊥XW | X̌ −X

〉
=

〈
r∑
i=1

uiv
>
i |PS1(X̌ −X)PS1

〉
+
〈
W | P⊥X(X̌)

〉
,

and W can be chosen such that 〈W | P⊥X(X̌)〉 = ‖P⊥X(X̌)‖σ,1 and ‖W‖σ,∞ ≤ 1. Taking V ∈
∂‖X‖σ,1 associated to this choice of W (in the sense of (39)) and ‖

∑r
i=1 uiv

>
i ‖σ,∞ = 1 yield

DΠ
G(X, X̌) +DΠ

G(X̌, X̄)−DΠ
G(X, X̄) + λ‖P⊥X(X̌)‖σ,1

≤ 〈H | X̌ −X〉+ ‖PS1(X̌ −X)PS1‖σ,1 . (40)

The first right hand side term can be upper bounded as follows

〈H | X̌ −X〉 = 〈H | PX(X̌ −X)〉+ 〈H | P⊥X(X̌)〉

≤ ‖H‖σ,∞(
√

2 rk(X)‖X̌ −X‖σ,2 + ‖P⊥X(X̌)‖σ,1) , (41)

where duality and Lemma 16-(ii) are used for the inequality. Since rk(PS1(X̌ −X)PS1) ≤ rk(X),
the second term satisfies

‖PS1(X̌ −X)PS1‖σ,1 ≤
√

rkX‖X̌ −X‖σ,2 . (42)

Using λ ≥ ‖H‖σ,∞, (40), (41) and (42) gives

DΠ
G(X, X̌) +DΠ

G(X̌, X̄) + (λ− ‖H‖σ,∞)‖P⊥X(X̌)‖σ,1
≤ DΠ

G(X, X̄) + λ(1 +
√

2)
√

rk(X)‖X̌ −X‖σ,2 . (43)

By H1 and H2, ‖X̌ −X‖σ,2 ≤ σ−1
γ

√
2m1m2µDΠ

G(X, X̌), hence

DΠ
G(X̌, X̄) + (λ− ‖H‖σ,∞)‖P⊥X(X̌)‖σ,1

≤ DΠ
G(X, X̄) + (

1 +
√

2

2
)2σ−2

γ m1m2µλ
2 rk(X) , (44)

proving (14).
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EXPONENTIAL FAMILY MATRIX COMPLETION

C.2. proof of Theorem 11

Proof By the triangle inequality,

‖H‖σ,∞ ≤
∥∥∥∥∑n

i=1(Yi −G′(Xi)Ei
n

∥∥∥∥
σ,∞

+

∥∥∥∥∑n
i=1G

′(Xi)Ei
n

− E[G′(X1)E1

∥∥∥∥
σ,∞

, (45)

holds. As seen in the proof of Theorem 6 (in Section 3.2), the first term of the right hand side
satisfies (26) with probability at least 1 − d−1. If we define Zi = G′(Xi)Ei − E[G′(X1)E1], then
E[Zi] = 0 gives ‖Zi‖σ,∞ ≤ 2Lγ , with Lγ defined in (16). A similar argument to the one used to
derive Equation (24) yields∥∥∥E [Z>i Zi]∥∥∥

σ,∞
≤ ‖E[(G′(Xi)Ei)(G

′(Xi)Ei)
>]‖σ,∞ ≤ L2

γ

1

m
,

and the same bound holds for E[ZiZ
>
i ]. Therefore, the uniform version of the noncommutative

Bernstein inequality (Proposition 23) ensures that with probability at least 1− d−1∥∥∥∥∑n
i=1G

′(Xi)Ei
n

− E[G′(X1)E1

∥∥∥∥
σ,∞
≤ c∗max

(
Lγ√
m

√
2 log(d)

n
, 4Lγ

log(d)

3n

)
. (46)

Combining (26), (46) with the assumption made on n in Theorem 11, achieves the proof.

Proposition 23 Consider a finite sequence of independent random matrices (Zi)1≤i≤n ∈ Rm1×m2

satisfying E[Zi] = 0 and for some U > 0, ‖Zi‖σ,∞ ≤ U for all i = 1, . . . , n. Then for any t > 0

P

∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
σ,∞

> t

 ≤ d exp

(
− nt2/2

σ2
Z + Ut/3

)
,

where d = m1 +m2 and

σ2
Z := max


∥∥∥∥∥ 1

n

n∑
i=1

E[ZiZ
>
i ]

∥∥∥∥∥
σ,∞

,

∥∥∥∥∥ 1

n

n∑
i=1

E[Z>i Zi]

∥∥∥∥∥
σ,∞

 .

In particular it implies that with at least probability 1− e−t∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
σ,∞

≤ c∗max

{
σZ

√
t+ log(d)

n
,
U(t+ log(d))

3n

}
,

with c∗ = 1 +
√

3.

Proof The first claim of the proposition is Bernstein’s inequality for random matrices (see for
example (Tropp, 2012, Theorem 1.6)). Solving the equation (in t) − nt2/2

σ2
Z+Ut/3

+ log(d) = −v gives

with at least probability 1− e−v∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
σ,∞

≤ 1

n

[
U

3
(v + log(d)) +

√
U2

9
(v + log(d))2 + 2nσ2

Z(v + log(d))

]
,
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we conclude the proof by distinguishing the two cases nσ2
Z ≤ (U2/9)(v + log(d)) or nσ2

Z >
(U2/9)(v + log(d)).
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