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Abstract
In this paper we derive high probability lower and upper bounds on the excess risk of stochastic
optimization of exponentially concave loss functions. Exponentially concave loss functions encom-
pass several fundamental problems in machine learning such as squared loss in linear regression,
logistic loss in classification, and negative logarithm loss in portfolio management. We demonstrate
an O(d log T/T ) upper bound on the excess risk of stochastic online Newton step algorithm, and
an O(d/T ) lower bound on the excess risk of any stochastic optimization method for squared loss,
indicating that the obtained upper bound is optimal up to a logarithmic factor. The analysis of up-
per bound is based on recent advances in concentration inequalities for bounding self-normalized
martingales, which is interesting by its own right, and the proof technique used to achieve the lower
bound is a probabilistic method and relies on an information-theoretic minimax analysis.
Keywords: stochastic optimization, exponentially concave losses, excess risk

1. Introduction

We study the generalization performance of stochastic optimization algorithms for exponentially
concave losses. The problem of stochastic optimization is generally formulated as

min
w∈W

L(w) ≡ E [`(w; ξ)] =

∫
Ξ
`(w; ξ)dP(ξ), (1)

where domainW ⊆ Rd is a closed convex set, ξ is a random variable taking values in Ξ, and P is
a probability distribution over the instance space Ξ. The distribution of ξ may be unknown, but we
assume only that we have access to a stochastic oracle that allows us to obtain independent and iden-
tically distributed (i.i.d.) samples ξ1, ξ2, . . . ∈ Ξ realized by underlying distribution P (Nemirovski
et al., 2009). We study the performance of stochastic optimization algorithms characterized by the
excess risk defined as:

L(wT )− min
w∈W

L(w),

where wT is the solution obtained after receiving i.i.d samples ξ1, . . . , ξT ∈ Ξ.
Stochastic optimization has been well-studied when the objective function is convex or strongly

convex. For general Lipschitz continuous convex functions, the stochastic gradient descent al-
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gorithm exhibits the optimal O(1/
√
T ) rate of convergence (Nemirovski and Yudin, 1983; Ne-

mirovski et al., 2009). For strongly convex functions, some variant of SGD (Juditsky and Nesterov,
2010; Rakhlin et al., 2012), such as the epoch gradient descent (Hazan and Kale, 2011), achieve an
O(1/T ) convergence rate which is known to be minimax optimal (Agarwal et al., 2012). In terms
of generalization bounds, an O(1/T ) high probability regret bound on the excess risk of strongly
convex losses has been shown in (Kakade and Tewari, 2009) which is more appealing than the
generalization of Lipschitz continuous cases.

In this study, we consider the scenario that the function `(·; ξ) is exponentially concave (abbr.
exp-concave) (Cesa-Bianchi and Lugosi, 2006), a property which is stronger than convexity but
weaker than strong convexity. In particular, the exp-concavity makes it possible to apply second-
order methods and obtain theoretically superior convergence and/or regret bounds. This setting
allows us to model many popular losses used in machine learning, such as the square loss in re-
gression, logistic loss in classification (Hazan et al., 2014) and negative logarithm loss in portfolio
management (Koren, 2013).

Despite its wide applicability, the stochastic optimization of exp-concave functions is not fully
studied. In the online setting, (Hazan et al., 2007) have developed an Online Newton Step (ONS)
algorithm that achieves a regret bound of O(d log T/T ). Although a standard online-to-batch con-
version (Cesa-Bianchi et al., 2004) of ONS yields an algorithm that attains an excess risk bound of
O(d log T/T ), this convergence rate only holds in expectation and does not precise the fluctuations
of its risk. In fact, as it has been investigated in (Audibert, 2008), due to significant deviations of the
estimator obtained by online-to-batch conversion from its expected performance, the high probabil-
ity fast rates are not easily attainable in a closely related setting with exp-concave losses. Recently,
(Mahdavi and Jin, 2014) have derived a high probability bound for a variant of ONS, but they im-
pose a very strong assumption about the distribution. We believe there is considerable value in
precisely characterizing the statistical risk of solutions in stochastic exp-concave optimization that
holds with a high probability under standard assumptions such as boundedness and Lipschitzness.

To address the limitations mentioned above, we provide an in-depth analysis of ONS in stochas-
tic setting. In particular, we demonstrate that ONS indeed achieves an O(d log T/T ) excess risk
bound that holds with a high probability. The only assumption that we make is the boundedness
of the domain and the stochastic gradients, in contrast to the strong assumption made in (Mahdavi
and Jin, 2014). Central to our analysis is a novel concentration inequality for bounding martingales,
which is interesting by its own right. We also present an Ω(d/T ) lower bound on the excess risk of
any stochastic optimization method for squared loss as an instance of exp-concave losses. The proof
of the lower bound is a probabilistic method that build off of an extension of information-theoretic
Fano’s inequality to stochastic optimization setting addressed here. In particular, we show that, for
any stochastic optimization algorithm for minimizing squared loss, the linear dependency of excess
risk on the dimensionality of data is unavoidable.

Organization The remainder of the paper is organized as follows. In Section 2 we describe the
setting we consider, give the necessary background, and introduce the stochastic online Newton
step algorithm. Also, in this section we state the main result on the lower and upper bounds on
the generalization of exp-concave losses for stochastic ONS algorithm. We present the proof of
upper bound in Section 3, and in Section 4 we provide an information-theoretic minimax analysis
of the performance of any stochastic estimation method for exp-concave losses, though we defer few
technical results to the appendices. We conclude in Section 5 with few problems as future research
directions.
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2. The Algorithm and Main Results

In this section we first provide definitions and assumptions that we need, and then introduce the
stochastic online Newton step followed by stating the main theorems on the lower and upper bounds
of the generalization of stochastic optimization of exp-concave functions.

We adopt the following notation throughout the paper. We use bold face lower case letters such
as w to denote vectors and bold face upper case letters such as A to denote matrices. The `2 and
weighted `2-norm of a vector x ∈ Rd with respect to a positive definite matrix A ∈ Rd×d are
denoted by ‖x‖ and ‖x‖A =

√
x>Ax, respectively. The `0 of vector x is denoted by ‖x‖0. The

dot product between two vectors x and y is denoted by 〈x,y〉. The Frobenius norm of a matrix A is
denoted by ‖A‖F. The transpose of a matrix A is denoted A>. The identity matrix of dimension d
is denoted by Id×d, and if d is clear in the context, we will skip the subscript. The random variables
are denoted by upper case letters such as X . The notation ξ ∼ P indicates that the random variable
ξ is drawn from the distribution P. For a random variable X measurable w.r.t. the randomness until
round t, we use Et−1[X] to denote its expectation conditioned on the randomness until round t− 1.
Finally, we use Xn

1 to denote the sequence of random variables X1, X2, · · · , Xn.

2.1. Definitions and Assumptions

The definition of exp-concave function is given below.

Definition 1 (Cesa-Bianchi and Lugosi, 2006) A function f : Rd 7→ R is α-exp-concave over the
convex domainW ⊆ Rd if exp(−αf(·)) is concave overW .

A nice property of exp-concave functions is that they can be approximated up to the second order
by the their gradients, as indicated by the following lemma.

Lemma 1 (Hazan et al., 2007, Lemma 3) For a function f : W 7→ R, where W has diameter
D, such that ∀w ∈ W , ‖∇f(w)‖ ≤ G and exp(−αf(·)) is concave, the following holds for
β ≤ 1

2 min{ 1
4GD , α} and ∀w1,w2 ∈ W:

f(w1) ≥ f(w2) + (w1 −w2)>∇f(w2) +
β

2
(w1 −w2)>

[
∇f(w2)∇f(w2)>

]
(w1 −w2).

In order to apply the above lemma, we make the following assumptions about the stochastic
optimization problem in (1).

(I) Exp-cancavity For all ξ ∈ Ξ, `(·; ξ) is α-exp-concave over domainW .

(II) Boundedness The domainW is bounded: W has diameter D, i.e.,

‖w1 −w2‖2 ≤ D, ∀ w1,w2 ∈ W. (2)

(III) Lipschitzness The stochastic gradient is bounded:

‖∇`(w; ξ)‖2 ≤ G, ∀ w ∈ W, ξ ∈ Ξ. (3)

We note that in learning problem such as regression where ξ = (x, y) ∈ Rd × R, the condition of
having a non-degenerate covariance for samples that each x, the expected loss is strongly convex
as well as exp-concave, and thus the excess risk bound could be O(1/T ). However, in this case
the parameter of strong convexity is generally unknown, which makes it difficult to utilize existing
algorithms. Furthermore, in high-dimensional setting, it is very likely that the covariance matrix
degenerates, leading to a exp-concave loss rather than a strongly convex loss.
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Algorithm 1 Stochastic Online Newton Step
1: input: Parameter λ
2: Initialize w1 as an arbitrary point inW , and Z1 = λI
3: for t = 1, . . . , T do
4: Receive ξt ∈ Ξ
5: Calculate Zt+1 according to (5)
6: Solve (4) to get wt+1

7: end for
8: return ŵ = 1

T

∑T
t=1 wt

2.2. Stochastic Online Newton Step Algorithm

The online learning approach is summarized in Algorithm 1, which is a combination of the online
Newton step (ONS) (Hazan et al., 2007) with the online-to-batch conversion (Cesa-Bianchi et al.,
2004).

In the beginning, we initialize the algorithm by setting w1 to be any point inW and Z1 = λI,
where λ is a parameter that is introduced to ensure Zt is invertible for all t ≥ 1. At the tth round, a
random sample ξt is received. To simplify the presentation, we define the instantaneous loss at round
t on random sample ξt by `t(w) = `(w, ξt). Given the current solution wt, and the instantaneous
loss `t(·), the next solution wt+1 is obtained by solving the following convex optimization problem

min
w∈W

1

2
‖w −wt‖2Zt+1

+
3

β
(w −wt)

>∇`t(wt) (4)

where
Zt+1 = Zt +∇`t(wt)∇`t(wt)

>, (5)

where β > 0 is the constant defined in Lemma 1. The matrix Zt+1 is an approximation of the
Hessian matrix, and thus the updating rule is an analogue of the Newton–Raphson method. This is
reason why it is refereed to as online Newton step (Hazan et al., 2007). In the last step, we return
the average of all intermediate solutions, a standard operation which is dubbed as online-to-batch
conversion (Cesa-Bianchi et al., 2004).

Denote the the minimizer of L(w) within domain W by w∗, i.e., w∗ = argminw∈W L(w).
Our first and main result is the following upper bound on the attainable excess risk by the stochastic
ONS algorithm which holds in high probability.

Theorem 1 Let ŵ be the solution returned by Algorithm 1 after observing T random realizations
of the loss function where each individual loss is β exp-concave. Then, with probability at least
1− 2δ, we have

L(ŵ)− L(w∗) ≤ O

(
d
(
log T + log

(
1
δ

))
βT

)
.

The next main result of this paper is the following lower bound on the excess risk of any stochas-
tic exp-concave optimization method when utilize to minimize the square loss in regression problem.

Theorem 2 Assume d > 4 and satisfy the condition 2d/4+1 ≥ T (d − 2). Then there exists there
is a distribution over individual instances such that for any stochastic exp-concave optimization
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algorithm A applied to the least squared problem, for any solution ŵ returned by the A after
making T calls to the stochastic oracle, it holds that

L(ŵ)− L(w∗) = Ω

(
d

T

)
.

A few comments on Theorems 1 and 2 are in place here. First, as indicated in above theorem,
the excess risk is reduced at the rate of O(d log T/T ), which is consistent with the regret bound for
online optimizing of exp-concave functions (Hazan et al., 2007). Second, for square loss which is
a special case of exp-concave functions, a lower bound of Ω(d/T ) has been established (Shamir,
2014) which matches the bound obtained here. This also indicates that theO(d log T/T ) risk bound
is optimal up to a logarithmic factor. We note that the linear dependence on d is in general unavoid-
able as stated in Theorem 2.

3. Generalization of Stochastic Online Newton Step

Our definitions and assumptions in place, we show in this section that stochastic ONS method
enjoys a high-probability O(d log T/T ) generalization guarantee for exp-concave loss functions. In
particular, we prove the following result on the excess risk of the stochastic ONS algorithm. The
omitted proofs are deferred to the appendix.

Theorem 3 Let ŵ be the solution returned by Algorithm 1 after observing T random realizations
of the loss function. With a probability at least 1− 2δ, we have

L(ŵ)− L(w∗) ≤
1

T

[
λβ

6
D2 +

3d

2β
log

(
1 +

TG2

λd

)
+ Γ1 log

√
2T + 1

δ
+ Γ2

√
log

2T + 1

δ2

]
where

Γ1 =
24

β
+

8βG2D2

3
and Γ2 = 2GD +

βG2D2

3
.

The proof build off of a concentration inequality for the sum of martingale difference sequences
and characteristics of exp-concave functions discussed before. Our starting point is the following
concentration inequality that underlies the proof of upper bound.

Theorem 4 Let {Xi : i ≥ 1} be a martingale difference with respect to the filtration F = {Fn :
n ≥ 1} and suppose |X2

i | < R for all i ≥ 1. Then, for any 0 < δ < 1, α > 0, with a probability at
least 1− δ,∣∣∣∣∣

t∑
i=1

Xi

∣∣∣∣∣ ≤ α
(

t∑
i=1

X2
i +

t∑
i=1

E[X2
i |Fi−1]

)
+

1

α
log

√
2t+ 1

δ
+
√

2R

√
log

2t+ 1

δ2
, ∀t > 0.

The theorem will be proved later based on tools from the self-normalized processes (de la Peña
et al., 2004; de la Peña and Pang, 2009; Abbasi-yadkori et al., 2011). It is remarkable that the
concentration result our proof relies on makes our proof more elegant. If Freedman’s inequality is
applied as (Kakade and Tewari, 2009), two additional steps are required: (i) utilizing the peeling
process to decouple dependence and (ii) taking a union bound to make the result holds for all t > 0.

We then introduce one lemma that is devoted to analyze the property of the updating rule in (4).
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Lemma 2 Let M be a positive definite matrix, and

y = arg min
w∈W

η〈w,g〉+
1

2
‖w − x‖2M

Then for all w ∈ W , we have

〈x−w,g〉 ≤ 1

2η

(
‖x−w‖2M − ‖y −w‖2M

)
+
η

2
‖g‖2M−1 .

Proof See Appendix A.1 for the proof.

To prove the result stated in Theorem 3, first according to Lemma 2, and based on the updating rule
of stochastic ONS method, we have

〈wt −w∗,∇`t(wt)〉 ≤
β

6
‖wt −w∗‖2Zt+1

− β

6
‖wt+1 −w∗‖2Zt+1

+
3

2β
‖∇`t(wt)‖2Z−1

t+1
. (6)

From the property of exp-concave functions in Lemma 1, we have

`t(w∗) ≥ `t(wt) + (w∗ −wt)
>∇`t(wt) +

β

2
(w∗ −wt)

>∇`t(wt)∇`t(wt)
>(w∗ −wt)

Taking the conditional expectation of both sides and rearranging, we obtain

L(wt)− L(w∗)

≤〈∇L(wt),wt −w∗〉 −
β

2
Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2]
=〈∇`t(wt),wt −w∗〉 −

β

6
‖wt −w∗‖2Zt+1

+
β

6
‖wt −w∗‖2Zt+1

− β

2
Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2]+ 〈∇L(wt)−∇`t(wt),wt −w∗〉

(6)
≤ − β

6
‖wt+1 −w∗‖2Zt+1

+
3

2β
‖∇`t(wt)‖2Z−1

t+1
+
β

6
‖wt −w∗‖2Zt+1

− β

2
Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2]+ 〈∇L(wt)−∇`t(wt),wt −w∗〉

(5)
=
β

6
‖wt −w∗‖2Zt

− β

6
‖wt+1 −w∗‖2Zt+1

+
3

2β
‖∇`t(wt)‖2Z−1

t+1
+
β

6

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2
− β

2
Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2]+ 〈∇L(wt)−∇`t(wt),wt −w∗〉.

By adding the above inequalities over all t = 1, . . . , T , we have
T∑
t=1

L(wt)− TL(w∗)

≤λβ
6
D2 +

3

2β

T∑
t=1

‖∇`t(wt)‖2Z−1
t+1︸ ︷︷ ︸

:=UT
1

+
T∑
t=1

〈∇L(wt)−∇`t(wt),wt −w∗〉︸ ︷︷ ︸
:=UT

2

+
β

6

T∑
t=1

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2 − β

2

T∑
t=1

Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2] .
(7)
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Now we proceed to bounding each individual terms UT1 and UT2 in the R.H.S of the above
inequality on the excess risk. First, we discuss how to bound UT1 . To this end, we have the following
lemma.

Lemma 3
T∑
t=1

‖∇`t(wt)‖2Z−1
t+1
≤ d log

(
1 +

TG2

λd

)
. (8)

Proof See Appendix A.2 for the proof.

Then, we utilize Theorem 4 to upper bound UT2 , which is a summation of martingale difference
sequences.

Lemma 4 With a probability at least 1− δ, we have

UT2 ≤
β

12

T∑
t=1

(
〈∇`t(wt),wt −w∗〉2 + Et−1

[
〈∇`t(wt),wt −w∗〉2

])
+ ΘT , ∀T > 0 (9)

where

ΘT =
24

β
log

√
2T + 1

δ
+ 2GD

√
log

2T + 1

δ2
.

Proof See Appendix A.3 for the proof.

Substituting (8) and (9) into (7), we have

T∑
t=1

L(wt)− TL(w∗) ≤
λβ

6
D2 +

3d

2β
log

(
1 +

TG2

λd

)
+ ΘT

+
β

12

(
3

T∑
t=1

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2 − 5
T∑
t=1

Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2])︸ ︷︷ ︸
:=UT

3

(10)

Next, we provide an upper for UT3 in (10), which is also derived based on Theorem 4.

Lemma 5 With a probability at least 1− δ, we have

UT3 ≤ 4

(
8G2D2 log

√
2T + 1

δ
+G2D2

√
log

2T + 1

δ2

)
︸ ︷︷ ︸

:=ΛT

, ∀T > 0. (11)

Plugging (11) in (10), we have

T∑
t=1

L(wt)− TL(w∗) ≤
λβ

6
D2 +

3d

2β
log

(
1 +

TG2

λd

)
+ ΘT +

β

3
ΛT

We complete the proof by noticing

T∑
t=1

L(wt)− TL(w∗) ≥ T

(
L

(
1

T

T∑
t=1

wt

)
− L(w∗)

)
= T (L(ŵ)− L(w∗)) ,

which follows from the convexity of expected loss function and Jensen’s inequality.
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3.1. Proof of Lemma 5

We define a martingale difference sequences

Yt =
∣∣∣(wt −w∗)

>∇`t(wt)
∣∣∣2 − Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2] .
It is easy to verify that

|Yt| ≤ max

(∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2 ,Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2]) ≤ G2D2.

Applying Theorem 4 with α = 1/[8G2D2], with a probability at least 1− δ, we have

T∑
t=1

Yt ≤
1

8G2D2

(
T∑
t=1

Y 2
t +

T∑
t=1

Et−1[Y 2
t ]

)
+ ΛT , ∀T > 0.

Following the proof of Lemma 4, we have

T∑
t=1

Yt =

T∑
t=1

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2 − T∑
t=1

Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2]

≤ 1

4G2D2

(
T∑
t=1

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣4 +

T∑
t=1

Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣4])+ ΛT

≤1

4

(
T∑
t=1

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2 +

T∑
t=1

Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2])+ ΛT

which implies

3

4

T∑
t=1

∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2 − 5

4

T∑
t=1

Et−1

[∣∣∣(wt −w∗)
>∇`t(wt)

∣∣∣2] ≤ ΛT .

3.2. Proof of Theorem 4

Before proving the concentration inequality in Theorem 4, we introduce two known results on the
concentration of self-normalized processes from literature.

Theorem 5 (de la Peña and Pang, 2009, Theorem 3.1) Let {Xi : i ≥ 1} be a martingale difference
with respect to the filtration F = {Fn : n ≥ 1} and suppose E[X2

i ] <∞ for all i ≥ 1. Let τ be any
stopping time with respect to the filtration F and assume τ <∞ almost surely. Then for all λ ∈ R,

E

[
exp

(
λ

τ∑
i=1

Xi −
λ2

2

(
τ∑
i=1

X2
i +

τ∑
i=1

E[X2
i |Fi−1]

))]
≤ 1.

Theorem 6 (de la Peña et al., 2004, Theorem 2.1) Let A and B with B > 0 are two random
variables such that

E
[
exp

(
λA− λ2

2
B2

)]
≤ 1, ∀λ ∈ R.

8
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Then for all y > 0,

E

[
y√

B2 + y2
exp

(
A2

2(B2 + y2)

)]
≤ 1.

In the following, we define

Aτ =
τ∑
i=1

Xi and B2
τ =

τ∑
i=1

X2
i +

τ∑
i=1

E[X2
i |Fi−1].

We are now in position to prove Theorem 4 inspired by the above two theorems. From above results
we immediately get

E

[
R√

B2
τ +R2

exp

(
A2
τ

2(B2
τ +R2)

)]
≤ 1. (12)

By Markov’s inequality, we have

Pr

[
A2
τ

2(B2
τ +R2)

> log

(√
B2
τ +R2

R2

1

δ

)]

= Pr

[
δ

R√
B2
τ +R2

exp

(
A2
τ

2(B2
τ +R2)

)
> 1

]

≤E

[
δ

R√
B2
τ +R2

exp

(
A2
τ

2(B2
τ +R2)

)]
(12)
≤ δ.

(13)

Then, we utilize the stopping time trick (Abbasi-yadkori et al., 2011) to derive a uniform bound
that holds for all t > 0. Using the stopping time construction suggested by (Freedman, 1975), we
define the bad event

Et(δ) =

{
ω :

A2
t

2(B2
t +R2)

> log

(√
B2
t +R2

R2

1

δ

)}
.

To bound the probability that
⋃
t>0Et(δ) happens, we define the stopping time τ(ω) =

min {t > 0 : ω ∈ Et(δ)} with the convention min ∅ = ∞. Evidently,
⋃
t>0

Et(δ) =

{ω : τ(ω) <∞}. Thus,

Pr

[⋃
t>0

Et(δ)

]
= Pr[τ <∞]

= Pr

[
A2
τ

2(B2
τ +R2)

> log

(√
B2
τ +R2

R2

1

δ

)
, τ <∞

]

≤Pr

[
A2
τ

2(B2
τ +R2)

> log

(√
B2
τ +R2

R2

1

δ

)]
(13)
≤ δ.

As a result, with a probability at least 1− δ, ∀t > 0, we have

A2
t ≤ log

(√
B2
t +R2

R2

1

δ

)
2(B2

t +R2) ≤ 2(B2
t +R2) log

√
2t+ 1

δ

9
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which implies

|At| ≤ αB2
t +

1

α
log

√
2t+ 1

δ
+
√

2R

√
log

2t+ 1

δ2
, ∀α > 0.

4. A Lower Bound On the Generalization of Stochastic Exp-Concave Optimization

We now show that for squared loss in regression problem, the minimax risk of any stochastic op-
timization method is Ω(d/T ) as stated in Theorem 2. As a result, the stochastic Newton method
algorithm achieves the almost optimal generalization error up to a logarithmic factor.

The proof of lower bound is a probabilistic method and utilizes results from (Duchi and Wain-
wright, 2013) to compute the lower bound of the minimax risk. Let V be a random variable taking
values in a finite set V with cardinality |V| ≥ 2. Here we consider a discrete set V and each element
v ∈ V is associated with parameter θv := θ (P(·|v)) that results in a distribution P. Let P be the
distribution family created by the discrete set V , and let ρ : V × V 7→ R be a (semi)-metric on the
parameter space, and let Φ : R+ → R+ be a non-decreasing function with Φ(0) = 0 1. Then, we
define the associated minimax excess risk for the family P as follows

Mn (θ(P),Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP

[
Φ
(
ρ
(
θ̂(Xn

1 ), θ(P)
))]

where θ(P ) is the parameter for distribution P, Xn
1 are n i.i.d sampled from distribution P, and θ̂(·)

is an estimator obtained using the sampled data points.
Our proof of lower bound is a probabilistic method and is based on the following result

from (Duchi and Wainwright, 2013, Corollary 2) on the generalization of Fano’s inequality:

Lemma 6 Given V uniformly distributed over V with separation function δ(t), we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ

(
δ(t)

2

)(
1− I(Xn

1 ;V ) + log 2

log |V| − logNmax
t

)
, ∀t,

where Nmax
t := maxv∈V |{v′ ∈ V|ρ(v, v′) ≤ t}| is the maximum neighborhood size at radius t and

δ(t) := sup{δ|ρ(θv, θv′) ≥ δ for all v, v′ ∈ V such that ρ(v, v′) ≤ t} is the separation of the set V .

In our case, we are interested in the generalization error bound L(ŵ)−L(w∗). To simplify our
analysis and for the ease of exposition, we limit the analysis of lower bound to square loss, which is a
special case of exponentially concave loss, and use a fixed design pattern X = [x1, . . . ,xT ] ∈ Rd×T
(the generalization to other loss functions with linear classifiers is straightforward). We assume that
the response Y are sampled from a Gaussian distribution, i.e., Y ∼ N (X>w∗, I), where w∗ ∈ Rd
is the parameter vector. It is easy to verify, under the above assumption, that for any estimator ŵ
the following equality on its excess risk holds:

L(ŵ)− L(w∗) =
1

T
‖X(ŵ −w∗)‖2.

1. For instance, for a univariate mean problem one can set ρ(θ − θ′) = |θ − θ′| and Φ(t) = t2, which leads to a risk in
terms of mean-squared error.

10
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Hence, we define the semi-metric as ρ(w,w′) = 1√
T
‖X(w −w′)‖2 and Φ(z) = z2. Using these

notations, the minimax risk for the generalization error becomes as

MT (X) = inf
ŵ

sup
P∈P

EP

[
1

T

∥∥∥X>(ŵY −w(P))
∥∥∥2
]
,

where w(P) is used to represent the parameter vector for distribution P, and ŵY denotes the solution
obtained based on Y ∈ RT which is sampled from distribution P.

The following theorem bounds the minimax risk MT (X).

Theorem 7 We have

MT (X) >
cµ2d2

‖X‖2F
where

µ2 = min

{
‖X>z‖22
dT

: z ∈ {−1,+1}d, ‖z‖0 =
d

4

}
.

Proof To utilize Lemma 6, we introduce a discrete set V = {v ∈ {−1, 1}d}, and define wv = εv
for ε > 0. The family distribution P is then given by

P = {N (Xw, I)|w ∈ W}

whereW = {w = εv : v ∈ V}. In our analysis, we set t = d/4. We have

δ

(
d

4

)
≥ min

{
2ε√
T
‖X>z‖2 : z ∈ {−1,+1}d, ‖z‖0 =

d

4

}
= 2
√
dµε

Using Lemma 6, we have

MT (X) > dµ2ε2

(
1− I(V ;Y ) + log 2

log |V| − logNmax
t

)
.

In addition, we have

I(V ;Y ) ≤ 1

|V|
∑
u∈V

∑
v∈V

KL (N (Xwu, I)‖N (Xwv, I)) = ε2‖X‖2F

where KL(·, ·) denotes the Kullback–Leibler divergence between two distributions (Cover and
Thomas, 2012). We also have

log |V| − logNmax
t ≥ cd

Combining the above results, we get

MT (X) > dµ2ε2

(
1− ε2‖X‖2F

cd

)
≥ cµ2d2

4‖X‖2F

where the second inequality follows by setting ε2 = cd/(2‖X‖2F). When d is sufficiently large, with
high probability we have ‖X‖2F = O(dT ), and therefore we get MT (X) > d

T as desired.

To show the minimax risk is of O(d/T ), we need to construct a matrix X such that ‖X‖2F = dT
and µ2 is sufficiently large constant, which is revealed by the following theorem.

11



MAHDAVI ZHANG JIN

Theorem 8 Assume d > 4 and satisfy the condition 2d/4+1 ≥ T (d−2). Then, there exists a matrix
X ∈ Rd×T , for which µ ≥ 1/[2

√
2] holds.

Proof We prove this theorem by a probabilistic argument. We construct X by sampling each entry
Xi,j independently with Pr(Xi,j = −1) = Pr(Xi,j = 1) = 1/2. Evidently ‖X‖2F = dT . The
proof of lower bound for µ is as follows. First, we establish a lower bound on the probability
that ‖X>z‖22/dT ≥ 1/8 holds for all Ω ≡ {z ∈ {−1,+1}d, ‖z‖0 = d

4}. Then, we estimate
the expected number of such matrices X ∈ {−1,+1}d×T that satisfies the above inequality. This
immediately implies that there exists at least a matrix X such that the above inequality holds.

Fix a matrix X ∈ {−1,+1}d×T . Our goal is to lower bound the quantity
P
(
‖X>z‖22/dT ≥ 1/8

)
. For a column vector xi in X, we have E

[
|x>i z|2

]
= d

4 . Define

δ = P

(
|x>i z| >

√
d

2
√

2

)
.

Since |x>i z| ≤ d/4, we have (1− δ)d8 + δ d
2

16 ≥
d
4 , and therefore δ > 2

d−2 . Since |Ω| =
(

d
d/4

)
,

and we have T vectors in X, hence, the probability for µ2 ≥ 1/8 is δ/[T |Ω|]. Therefore by

2dδ

T |Ω|
>

2d/4δ

T
=

2d/4+1

T (d− 2)
≥ 1,

we guarantee to find a matrix X with µ ≥ 1/[2
√

2].

5. Conclusions and Future Work

In this paper, we derived lower and upper bounds on the excess risk of exp-concave loss functions
in stochastic setting. We derived an O(d log T/T ) upper bound on the excess risk of a stochastic
version of Online Newton Step algorithm. We presented a novel concentration inequality for mar-
tingales on which the proof of excess risk bound relies. For the regression problem with squared
loss, we proved an Ω(d/T ) lower bound using tools from information-theoretic analysis of minimax
bounds. In particular, the proof of the lower bound was a probabilistic method using a simple gener-
alization of Fano’s inequality for minimax risk analysis. We believe that the obtained bounds on the
generalization performance of exp-concave loss functions deepen our understanding exp-cancave
loss functions including square loss, logistic loss, and logarithmic loss in stochastic optimization.

This work leaves few directions as future work. One open question to be addressed in the
future is to investigate to see if the log T factor in the upper excess risk bound can be removed for
exponentially concave loss functions by a more careful analysis. A solution to this question provides
tighter bounds that matches the attainable minimax lower bound. Another open question that needs
to be investigated in the future is to improve the dependence on d if we are after a sparse solution. In
this regard, a question that is worthy of investigation is to see whether or not it is possible to obtain
excess risk bounds stated in terms of sparsity of optimal solution rather than the dimension d.
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Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

Victor H de la Peña and Guodong Pang. Exponential inequalities for self-normalized processes with
applications. Electronic Communications in Probability, 14:372–381, 2009.

Victor H de la Peña, Michael J. Klass, and Tze Leung Lai. Self-normalized processes: Exponential
inequalities, moment bounds and iterated logarithm laws. The Annals of Probability, 32(3):1902–
1933, 2004.

John C Duchi and Martin J Wainwright. Distance-based and continuum fano inequalities with
applications to statistical estimation. arXiv preprint arXiv:1311.2669, 2013.

David A. Freedman. On tail probabilities for martingales. The Annals of Probability, 3(1):100–118,
1975.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for
stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on Learn-
ing Theory, pages 421–436, 2011.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Elad Hazan, Tomer Koren, and Kfir Y. Levy. Logistic regression: Tight bounds for stochastic
and online optimization. In Proceedings of The 27th Conference on Learning Theory, COLT
2014, Barcelona, Spain, June 13-15, 2014, pages 197–209, 2014. URL http://jmlr.org/
proceedings/papers/v35/hazan14a.html.

Anatoli Juditsky and Yuri Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. Technical report, 2010.

13

http://jmlr.org/proceedings/papers/v35/hazan14a.html
http://jmlr.org/proceedings/papers/v35/hazan14a.html


MAHDAVI ZHANG JIN

Sham M Kakade and Ambuj Tewari. On the generalization ability of online strongly convex pro-
gramming algorithms. In Advances in Neural Information Processing Systems, pages 801–808,
2009.

Tomer Koren. Open problem: Fast stochastic exp-concave optimization. In Proceedings of the 26th
Annual Conference on Learning Theory, pages 1073–1075, 2013.

Mehrdad Mahdavi and Rong Jin. Excess risk bounds for exponentially concave losses. ArXiv
e-prints, arXiv:1401.4566, 2014.

A. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. John
Wiley & Sons Ltd, 1983.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course, volume 87 of Applied
optimization. Kluwer Academic Publishers, 2004.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. In Proceedings of the 29th International Conference on
Machine Learning, pages 449–456, 2012.

Ohad Shamir. The sample complexity of learning linear predictors with the squared loss. ArXiv
e-prints, arXiv:1406.5143, 2014.

Appendix A. Omitted Proofs from the Analysis of Upper Bound

In this appendix we provide the proofs of few technical results omitted from the analysis of upper
bound.

A.1. Proof of Lemma 2

Since y is the optimal solution to the following optimization problem

y = arg min
w∈W

η〈w,g〉+
1

2
‖w − x‖2M,

from the first order Karush-Kuhn-Tucker optimality condition (Nesterov, 2004; Boyd and Vanden-
berghe, 2004), we have

〈ηg + M(y − x),w − y〉 ≥ 0, ∀w ∈ W. (14)
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Then,

‖x−w‖2M − ‖y −w‖2M
=x>Mx− y>My + 2〈M(y − x),w〉

(14)
≥ x>Mx− y>My + 2〈M(y − x),y〉 − 2〈ηg,w − y〉
=‖y − x‖2M + 2〈ηg,y − x + x−w〉
≥2〈ηg,x−w〉+ min

w
2〈ηg,w〉+ ‖w‖2M

=2〈ηg,x−w〉 − η2‖g‖2M−1 .

where in the last inequality the scope of minimum over w is unbounded which is a clear lower
bound.

By rearranging the terms we get

〈x−w,g〉 ≤ 1

2η

(
‖x−w‖2M − ‖y −w‖2M

)
+
η

2
‖g‖2M−1 .

as desired.

A.2. Proof of Lemma 3

The analysis is almost identical to the proof of Lemma 11 in (Hazan et al., 2007). Following (Hazan
et al., 2007, Lemma 12), we have

‖∇`t(wt)‖2Z−1
t+1

(5)
= 〈Z−1

t+1,Zt+1 − Zt〉 ≤ log
det(Zt+1)

det(Zt)
,

and thus
T∑
t=1

‖∇`t(wt)‖2Z−1
t+1
≤

T∑
t=1

log
det(Zt+1)

det(Zt)
= log

det(ZT+1)

det(Z1)
.

Recall that ‖∇`t(wt)‖ ≤ G. From (Abbasi-yadkori et al., 2011, Lemma 10), we have

det(Zt+1) ≤
(
λ+

TG2

d

)d
.

Since det(Z1) = λd, we have

log
det(Zt+1)

det(Z1)
≤ d log

(
1 +

TG2

λd

)
.

A.3. Proof of Lemma 4

Define Xt = 〈∇L(wt)−∇`t(wt),wt −w∗〉. From our assumption, we have

|Xt| ≤ ‖∇L(wt)−∇`t(wt)‖2‖wt −w∗‖2
(2),(3)
≤ 2GD.
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Applying Theorem 4 with α = β/24, with a probability at least 1− δ, we have

UT2 ≤
β

24

(
T∑
t=1

X2
t +

T∑
t=1

Et−1[X2
t ]

)
+

24

β
log

√
2T + 1

δ
+ 2GD

√
log

2T + 1

δ2
, ∀T > 0. (15)

Notice that

X2
t = 〈∇L(wt)−∇`t(wt),wt −w∗〉2 ≤ 2〈∇L(wt),wt −w∗〉2 + 2〈∇`t(wt),wt −w∗〉2,

Et−1

[
X2
t

]
= Et−1

[
∇`t(wt),wt −w∗〉2

]
− 〈∇L(wt),wt −w∗〉2.

And thus using Jensen’s inequality and some algebraic manipulation we get

X2
t + Et−1[X2

t ]

≤2〈∇`t(wt),wt −w∗〉2 + 〈∇L(wt),wt −w∗〉2 + Et−1

[
∇`t(wt),wt −w∗〉2

]
≤2〈∇`t(wt),wt −w∗〉2 + 2Et−1

[
∇`t(wt),wt −w∗〉2

]
We complete the proof by plugging the above inequality in (15).
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