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Abstract
We consider an online density estimation problem for the Bradley-Terry model, where each model
parameter defines the probability of a match result between any pair in a set of n teams. The
problem is hard because the loss function (i.e., the negative log-likelihood function in our prob-
lem setting) is not convex. To avoid the non-convexity, we can change parameters so that the loss
function becomes convex with respect to the new parameter. But then the radius K of the repa-
rameterized domain may be infinite, where K depends on the outcome sequence. So we put a mild
assumption that guarantees that K is finite. We can thus employ standard online convex optimiza-
tion algorithms, namely OGD and ONS, over the reparameterized domain, and get regret bounds
O(n

1
2 (lnK)

√
T ) andO(n

3
2K lnT ), respectively, where T is the horizon of the game. The bounds

roughly means that OGD is better when K is large while ONS is better when K is small. But how
large can K be? We show that K can be as large as Θ(Tn−1), which implies that the worst case
regret bounds of OGD and ONS are O(n

3
2

√
T lnT ) and Õ(n

3
2 (T )n−1), respectively.

We then propose a version of Follow the Regularized Leader, whose regret bound is close to
the minimum of those of OGD and ONS. In other words, our algorithm is competitive with both
for a wide range of values of K. In particular, our algorithm achieves the worst case regret bound
O(n

5
2T

1
3 lnT ), which is slightly better than OGD with respect to T . In addition, our algorithm

works without the knowledge K, which is a practical advantage.
Keywords: online density estimation, Bradley-Terry model, ranking

1. Introduction

Prediction problems of ranking over a set of items appear in many contexts, such as information re-
trieval and recommendation tasks. Probabilistic modeling of rankings is useful for such tasks. The
Bradley-Terry model (Ford, Jr., 1957; Marden, 1995; Hunter, 2004) is arguably the most fundamen-
tal model. Given a set [n] = {1, . . . , n} of n teams (or items), let Θ = {θ ∈ Rn+ |

∑n
i=1 θi = 1} be

the set of model parameters. In the Bradley-Terry model, given a pair of team i and j, the probabil-
ity that team i beats team j, denoted as the ordered pair (i, j), under the parameter θ ∈ Θ is defined
as follows:

P ((i, j) | θ, {i, j}) =
θi

θi + θj
.

Here, each weight θi can be interpreted as the strength of player i. For simplicity, we do not consider
ties.

c© 2015 I. Matsumoto, K. Hatano & E. Takimoto.
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Algorithm
Regret Upper Bounds

General case Easy case Hard case
(K: arbitrary) (K, K̃: constant) (K, K̃ : O(Tn−1))

OGD
n

1
2 (lnK)

√
T n

1
2

√
T n

3
2

√
T lnT(Zinkevich, 2003)

ONS
n

3
2K lnT n

3
2 lnT n

3
2Tn−1 lnT(Hazan et al., 2007)

nmin

{
(ln K̃)

√
T
λ
, K̃ ln T

}
n ln T n

5
2T

1
3 ln Ta version of FTRL

(this paper) +λn2(lnK)

Table 1: Comparison of regret bounds of the proposed and previous algorithms for Bradley-Terry
models. Better bounds w.r.t. T are shown in bold face. For OGD and ONS, the radius K
needs to be known a priori.

In this paper, we consider an online density estimation problem for Bradley-Terry models with
the logarithmic loss. The protocol is defined as follows for each trial t = 1, . . . , T .

1. The player guesses a parameter θt ∈ Θ.

2. The adversary chooses a pair of teams it and jt and their game result (it, jt), meaning that
team it beats team jt.

3. The player incurs the loss ft(θt) = − lnP ((it, jt) | θt, {it, jt}) = − ln
θit

θit+θjt
.

The goal of the player is to minimize the regret: Regret(T ) =
∑T

t=1 ft(θt)−minθ∈Θ

∑T
t=1 ft(θ),

where the second term corresponds to the cumulative loss of the maximum likelihood estimator in
hindsight.

Many studies have examined online density estimation problems for the exponential family
including Bernoulli and Gaussian (e.g., Shtar’kov (1987); Freund (1996); Takimoto and Warmuth
(2000); Azoury and Warmuth (2001); Kotlowski et al. (2010)). The exponential family has various
nice properties that imply robust algorithms with O(lnT ) regret bounds. However, previous work
on the exponential family does not appear to be directly applicable to Bradley-Terry models and
logistic regression. In addition, to the best of our knowledge, online density estimation for Bradley-
Terry models has not been previously presented.

One issue is that the loss function ft(θ) is not convex w.r.t. θ. An equivalent convex loss
function can be obtained by replacing the variable θ with a new variable γ using some bijection
φ : Γ → Θ (see, e.g., Hunter (2004)). In other words, we can reduce the online density estimation
problem for Bradley-Terry models to an online convex optimization problem with convex loss func-
tions gt(γ) = ft(φ(γ)) = ft(θ). In fact, the new loss function gt can be viewed as a special case of
the logistic loss function. Thus, by the reparametrization, our online prediction problem becomes
an online logistic regression problem.

However, there is a drawback to the reparametrization approach, i.e., the radius of the new
domain Γ is unknown and infinitely large in general. Let γ∗ be the offline minimizer in hindsight
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over the new domain and let K = maxi,j∈[n] e
γ∗i −γ∗j . Then, it can be shown that lnK ≤ 2‖γ∗‖2 =

O(
√
n lnK). Note that there are sequences of game results for which K = ∞, which implies

‖γ∗‖2 =∞.
When we have knowledge of K, standard algorithms are applicable, such as Online Gradient

Descent (OGD, Zinkevich (2003)) and Online Newton Step (ONS). When the radius K is known,
both algorithms can be shown to have regret bounds O(n

1
2 (lnK)

√
T ) and O(n

3
2K lnT ), which

seems suboptimal w.r.t. parameters K or T . In addition, these regret bounds are not meaningful
when the radius K is infinitely large.

A natural question would be how large is the radius K when K is finite? In this paper, we first
give a complete answer to this question. We show that there exists a set of matches for which the
radiusK of the reparameterized space must be Ω((T/n)n−1). In addition, under a weak assumption
that, for each pair of teams i and j, team i beats team j a constant number of times (and vice versa),
the radius K is bounded above as O(T/n)n−1. Thus, the bound is tight. We believe that the tight
bound of the radius is valuable in its own right. Our analysis of the radius implies that the radius can
grow polynomially in T ! This is quite strange since the radius is assumed constant in the standard
online prediction literature. As a result, when K is constant (we call this the “easy” case), the regret
of ONS is O(n

3
2 lnT ) which is better than the bound O(n

1
2

√
T ) of OGD in terms of T . But, when

K = O(Tn−1) (the “hard” case), the regret bound of OGD becomes O(n
3
2

√
T lnT ), while that of

ONS increases up to O(nTn−1 lnT ).
We then propose an algorithm for the online density estimation of Bradley-Terry models that

performs well in both easy and hard cases. The proposed algorithm is a Follow the Regular-
ized Leader with a natural regularizer, which we just call FTRL for simplicity. At each trial t,
FTRL guesses the offline optimizer for the past t− 1 trials with λn(n− 1) “virtual” matches where
team i beats team j for λ times (and vice versa) for any i 6= j. That is, our regularizer is log loss
over such additional fictitious “even” matches. For FTRL with any parameter λ > 0, we show a
regret boundO(min{n

3
2 (ln K̃)

√
T/λ, nK̃ lnT}+λn2(lnK)), where K̃ is the maximum of radius

of the set of guesses produced by FTRL. Therefore, FTRL performs competitively in both easy and
hard cases. Our first result also guarantees that K̃ is bounded as O(Tn−1). Furthermore, by tuning
the parameter λ appropriately, we obtain the regret boundO(n

5
2T

1
3 lnT ) of FTRL, which improves

OGD in the worst case w.r.t. T . Regret bounds are summarized in Table 1. In addition, the proposed
algorithm works without any prior knowledge of K or K̃, which is a practical advantage.

2. Preliminaries

2.1. Reparametrization and Offline Algorithms

Recall that in our problem, each loss function ft(θ) is not convex w.r.t. θ. Yet, by simple reparametriza-
tion (see, e.g., Hunter (2004)), an equivalent convex formulation can be obtained. Let γi =
ln θi − ln θ1 for i = 1, . . . , n. Then, θi = eγi/

∑n
i=1 e

γi . This mapping is a bijection between
Θ = {θ ∈ Rn+ |

∑
i θi = 1} and Γ = {γ ∈ Rn | γ1 = 0}. Then, observe that

ft(θ) = − ln
θit

θit + θjt
= − ln

eγit

eγit + eγjt
= ln(1 + eγ·xt)

def
= gt(γ),

where xt ∈ Rn is such that xit = −1, xjt = 1, and xk = 0 for k ∈ [n] s.t. k 6= it, jt. Here,
gt is convex w.r.t. the new variable γ ∈ Γ. Note that, gt can be viewed as a logistic loss function
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for sparse instances with the specific form. Therefore, by this reparametrization, online density
estimation for Bradley-Terry models is reduced to an online logistic regression problem where each
loss function is defined as gt.

Unfortunately, there is a drawback with the reparametrization scheme. For the corresponding
offline optimizer γ∗ = arg minγ∈Γ

∑T
t=1 gt(γ), let θ∗ be the corresponding optimizer in the origi-

nal domain Θ and let
K = max

i,j∈[n]
θ∗i /θ

∗
j = max

i,j∈[n]
eγ
∗
i −γ∗j .

Note that lnK = maxi,j∈[n] |γ∗i − γ∗j | ≤ 2‖γ∗‖2 and ‖γ∗‖2 = O(
√
n lnK). Generally, K and

‖γ∗‖2 are infinitely large. For example, consider the case where n = 2 and only the event (1, 2) is
observed. Then, the offline optimum θ∗ = (1, 0); however, the corresponding optimum γ∗ in the
new domain is γ∗ = (0,−∞). So, K = ‖γ∗‖2 =∞. In addition, for the case with T games where
there exists a team who beats others and is not beaten by anyone, K = ∞. Infinitely large domain
is not desirable especially for regret analyses, which typically requires knowledge of the diameter
of the domain ‖γ∗‖2.

Typical research of offline optimization of Bradley-Terry models assumes that there is no “too
strong team” for which K =∞. In particular, Hunter (2004) considered the following assumption.

Assumption 1 Let S1 and S2 be any partition of [n], i.e., S1 ∪ S2 = [n] and S1 ∩ S2 = ∅. Then,
there exists a team i ∈ S2 such that i beats some team in S1 at least once.

Under Assumption 1, K is always finite and ‖γ∗‖ = O(
√
n lnK). In particular, Hunter proposed

the algorithm Minorization-Maximization (MM) algorithm, which works on the original domain Θ.
The MM algorithm iteratively approximates the non-convex part of the objective with a linear func-
tion and maximizes the approximated objective. The MM algorithm has been shown to converge to
the offline optimum and often runs faster than the Newton-Raphson method (Hunter, 2004).

In the following, for simplicity, we sometimes neglect the constraint γ1 = 0 for Γ and simply
assume Γ = Rn.

2.2. Application of Existing Algorithms

In this subsection, we assume that the parameter K is known. Under this assumption, we review
OGD (Zinkevich, 2003) and ONS (Hazan et al., 2007), as well as their applications to the Bradley-
Terry Model. Here we consider the bounded reparameterized space ΓK = {γ ∈ Rn | |γi − γj | ≤
lnK for any i, j ∈ [n]}.

The standard algorithm OGD has the regret bound O(GD
√
T ) when its learning rate η =

G/(D
√
T ). where Γ = {γ ∈ Rn | ‖γ‖2 ≤ D} and ‖∇gt(γ)‖2 ≤ G for any t = 1, . . . , T and

γ ∈ Γ. For our problem, it can be shown thatG = maxTt=1 ‖∇gt(γ)‖ ≤
√

2 andD = O(
√
n lnK).

Thus, when K is known, the regret of OGD for our problem is O(n
1
2 (lnK)

√
T ). If the loss func-

tions are m-strongly convex, i.e., ∇2gt(γ) � mI for some m > 0 and the identity matrix I , then,
OGD with a different learning parameter setting has the regret bound O((G/m) lnT ). However,
for Bradley-Terry models or logistic regression models, loss functions gt are not strongly convex
and the improved O(lnT ) bound is not applicable.

ONS is another popular algorithm for online convex optimization tasks, designed especially
for when each loss function g is α-exp concave, i.e., exp(−αg(γ)) is concave for any γ ∈ Γ. It
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is known that m-strong convexity implies α-exp concavity for α ≤ m/G2 (see,e.g., Hazan et al.
(2007)). Thus, α-exp concavity is a weaker assumption than strong convexity.

When each loss function gt is α-exp concave, ONS is known to achieve O(( 1
α + GD)n lnT )

regret (Hazan et al., 2007). In particular, it can be shown that gt or logistic loss is 1/K-exp concave
(see, e.g., McMahan and Streeter (2012)). Thus, the regret of ONS for Bradley-Terry models is
O((K +

√
n lnK)n lnT ).

2.3. Relationship with Online Logistic Regression

Recently, Hazan et al. (2014) showed a lower bound Ω(
√
DT ) of the regret for online logistic re-

gression. But, the proof of their lower bound does not hold for online density estimation of Bradley-
Terry models, because it assumes any vectors in a bounded Euclidean ball as instances, while the
instances transformed from Bradley-Terry models have a restricted form wherein only a pair of
components takes values±1 and others are zeros. In addition, our analysis exploits the structures of
instances and is not applicable to general online logistic regression problems. Therefore, our regret
bounds do not contradict their results.

In particular, for a one-dimensional online logistic regression problem with instances x ∈
{−1, 0, 1}, McMahan and Streeter (2012) showed that FTRL with a virtual match regularization
achieves O(

√
D + lnT ) regret bound. The algorithm discussed later is a multi-dimensional ex-

tension of their algorithm. Furthermore, online density estimation for Bradley-Terry models can
be reduced to (n − 1)-dimensional online logistic regression; thus their algorithm also obtains
O(lnK + lnT ) for Bradley-Terry models with n = 2.

3. Bounds on the Radius K

In this section, we derive the upper and lower bounds of the radius K.

3.1. Lower Bound of the Radius K

We show the lower bound onK by explicitly constructing the following set of games: 1 beats 2 for a
times, 2 beats 3 for a times, ..., n−1 beats n for a times and n beats 1 once. Thus, T = a(n−1)+1.
Then, we can show the lower bound for this set.

Theorem 1 There exists a set of T games for which the offline optimizer θ∗ of the Bradley-Terry
model satisfies

K = max
i,j∈[n]

θ∗i /θ
∗
j >

(
T − 1

n− 1
− 1

)n−1

.

The proof is shown in the Appendix.

3.2. Upper Bound of the Radius K under a Mild Condition

Next, we derive the upper bound of the radius K under mild assumptions that satisfy Assumption 1.
We begin with a general lemma that holds for arbitrary games.
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Lemma 1 Assume any set of T games and that the maximum likelihood parameter θ∗ of the
Bradley-Terry model satisfies θ∗1 ≥ θ∗2 ≥ · · · ≥ θ∗n without loss of generality. Then,

K = max
i,j

θ∗i
θ∗j
≤

n−1∏
i=1

c({1, . . . , i}, {i+ 1, . . . , n})
c({i+ 1, ..., n}, {1, . . . , i})

,

where c(U, V ) denotes the total number of wins of teams in U against teams in V .

Proof For each i, j ∈ [n], let Tij be the number of games where team i beats team j. We denote
Ti as Ti =

∑
j 6=i Tij and T{i,j} = Tij + Tji, respectively. Furthermore, for i = 1, . . . , n − 1, let

T1:i,i+1:n be the number of matches between teams in {1, . . . , i} and teams in {i + 1, . . . , n}. Let
L(θ) =

∑T
t=1 ft(θ). The maximum likelihood estimate θ satisfies∇L(θ) = 0. We can then obtain∑

k 6=j
T{j,k}

θj
θj + θk

= Tj , (1)

for j = 1, . . . , n. By summing up equation (1) for j = 1, . . . , i,

i∑
j=1

∑
k∈{1,...,i}\{j}

T{j,k}
θj

θj + θk
+

i∑
j=1

n∑
k=i+1

T{j,k}
θj

θj + θk
=

i∑
j=1

Tj . (2)

The first term of the left hand side of equation (2) is exactly
∑

j<k≤i T{j,k}. Since f(x) = x/(x+a)
for x ≥ 0 and a > 0 monotonically increases, θj/(θj + θk) ≥ θi/(θi + θk) for j < i and any k.
This fact implies that the second term of the left hand side is lower bounded as

i∑
j=1

n∑
k=i+1

T{j,k}
θj

θj + θk
≥

i∑
j=1

n∑
k=i+1

T{j,k}
θi

θi + θk
≥

i∑
j=1

n∑
k=i+1

T{j,k}
θi

θi + θi+1

=
θi

θi + θi+1

i∑
j=1

n∑
k=i+1

T{j,k} =
θi

θi + θi+1
T{1:i,i+1:n}, (3)

where the inequality holds because θi/(θi + θk) ≥ θi/(θi + θi+1) for k ≥ i+ 1 since θk ≤ θi. By
combining equation (2) and inequality (3), we obtain

θi
θi + θi+1

T{1:i,i+1:n} ≤
i∑

j=1

Tj −
∑
j<k≤i

T{j,k}.

Equivalently,

θi
θi+1

≤
∑i

j=1 Tj −
∑

j<k≤i T{j,k}

T{1:i,i+1:n} −
(∑i

j=1 Tj −
∑

j<k≤i T{j,k}

) =
c({1, . . . , i}, {i+ 1, . . . , n})
c({i+ 1, ..., n}, {1, . . . , i})

.

Finally, we obtain
θ1

θn
≤

n−1∏
i=1

θi
θi+1

≤
n−1∏
i=1

c({1, . . . , i}, {i+ 1, . . . , n})
c({i+ 1, ..., n}, {1, . . . , i})

,
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as claimed.

Now we consider two specific cases where Assumption 1 holds.

With λ-cyclic matches: T arbitrary matches with additional nλ cyclic matches where team 1 beats
team 2 λ times, team 2 beats team 3 λ times, · · · , team n− 1 beats team n λ times, and team
n beats team 1 λ times, respectively.

With λ-complete matches : T arbitrary matches with additional n(n − 1)λ matches where for
each team i and j, team i beats team j λ times (and vise versa).

Theorem 2 (i) For any T matches with λ-cyclic matches,

K ≤

(
T
n−1 + λ

λ

)n−1

=

(
T

(n− 1)λ
+ 1

)n−1

(ii) For any T matches with λ-complete matches,

K ≤
n−1∏
i=1

(
T
n−1 + i(n− i)λ

i(n− i)λ

)
≤
(

T

(n− 1)2λ
+ 1

)n−1

.

Proof The right hand side of Lemma 1 is maximized when T matches are distributed uniformly
over n− 1 factors. For any set of i teams, (i) there are λ wins against the other set and (ii) λi(n− i)
wins against the other set, respectively. These facts imply the result.

Note that the bound of Theorem 2 is tight in general, since the upper bound of K for T games
with 1-cyclic games matches the lower bound of Theorem 1. Theorem 2 states that adding λ-
complete matches are more effective by roughly 1/(n − 1)n−1 times than the cyclic matches. In
addition, λ/(n − 1) complete matches induce the same upper bound of the radius obtained by λ-
cyclic matches.

4. FTRL with “Virtual Match” Regularization

Here, we consider the situation wherein prior knowledge ofK is unsavailable. For this situation, we
propose a variant of FTRL, whose regularizer is defined using some “virtual even matches.” FTRL,
at each trial t, given the initial guess θ1 = 1

n1 and a parameter λ > 0, predicts

θt = arg min
θ∈Θ

t−1∑
τ=1

fτ (θ) + λ
∑
i 6=j

fij(θ), (4)

where fij(θ) = − ln θi
θi+θj

. FTRL simply predicts the maximum likelihood estimator of all past
data with additional λn(n − 1)“virtual matches” in which for each team i and j, each beats the
other λ times, respectively.

Recall that the optimization problem (4) is not convex. However, the additional virtual matches
ensure Assumption 1. Then, the solution θ∗t is unique and we can use previously proposed al-
gorithms, e.g., the MM algorithm (Hunter, 2004) to solve the problem (4) in the original domain
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Θ without changing the variables. Problem (4) can also be solved in the reparameterized convex
domain using standard approaches.

Let
K̃ =

T
max
t=1

max
i,j∈[n]

θt,i/θt,j =
T

max
t=1

max
i,j∈[n]

eγt,i−γt,j .

As shown in Theorem 2, K̃ is always finite, even if K is infinitely large.
An outline of the analysis of FTRL is presented in the following. We analyze FTRL in the

reparameterized domain Γ. Then the analysis, again, becomes an online logistic regression problem.
Our analysis is close to the approach adopted by Azoury and Warmuth (2001), who investigated
FTRL for online density estimation with the exponential family of distributions. However, our
analysis is more specialized for Bradley-Terry models.

Here, we use the notion of Bregman divergence. Given a convex function g : Γ→ R, the Breg-
man divergence ∆g(p, q) is defined as ∆g(p, q) = g(p)− g(q)−∇g(q) · (p− q). Let Φt−1(γ) =∑t−1

τ=1 gτ (γ) + λ
∑

ij gij(γ), where gij(γ) = ln(1 + eγj−γi), and let γt = infγ∈Γ Φt−1(γ). The
following lemma, which is similar to the one proved by Azoury and Warmuth (2001), is a key tool
for the analysis of our algorithm.

Lemma 2 For each t = 1, . . . , T ,

Φt(γt+1)− Φt−1(γt) ≥ gt(γt+1) + ∆Φt−1(γt+1,γt).

Proof Using the fact that Φt(γt+1) = gt(γt+1) + Φt−1(γt+1), we have

Φt(γt+1)− Φt−1(γt) ≥ gt(γt+1) + Φt−1(γt+1)− Φt−1(γt)−∇Φt−1(γt) · (γt+1 − γt)
= gt(γt+1) + ∆Φt−1(γt+1,γt),

where the inequality holds because γt is the minimizer of Φt−1; thus,∇Φt−1(γt) · (γt+1−γt) ≥ 0
(see, e.g., Boyd and Vandenberghe (2004), p. 139) and the second equation holds by definition of
Bregman divergence.

Next, we prove a regret bound of FTRL.

Theorem 3 For Bradley-Terry models, the regret of FTRL is O(nK̃ lnT + λn2(lnK)).

The proof is shown in the Appendix.
Unfortunately, the regret bound of Theorem 3 is not tight enough w.r.t. the radius K̂. Therefore,

we need an alternative approach to analyze FTRL. We exploit the particular property of the convex
function called generalized concordance proposed by Bach (Bach, 2010, 2014). We say that the
function g is R-generalized concordant1 (w.r.t. the infinity norm) if for any w,v ∈ Rn and any
t ∈ R, q(t) = g(w + tv) satisfies |q′′′(t)| ≤ R‖v‖∞q′′(t). Note that the generalized concordant
property is slightly different from the standard self-concordant property, where g is self-concordant
if |q′′′(t)| ≤ Rq′′(t)

3
2 . In fact, for Bradley-Terry models, the loss function g in the reparameterized

domain Γ is R-generalized concordant for some constant R.

Proposition 1 For each t = 1, . . . , T , gt(γ) is 2-generalized concordant.

1. We slightly modified Bach’s original definition. The original definition is given in terms of the 2-norm.
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The proof is given in the Appendix.
The generalized self-concordant property ensures that the loss function has a tighter second

order approximation than typical loss functions.

Proposition 2 If g(γ) : Rn → R is R-generalized concordant, then for any γ,γ ′ ∈ Rn,

g(γ) ≥ g(γ ′) +∇g(γ ′)(γ − γ ′) +
1

2 max{e2, 4R‖γ − γ ′‖∞}
(γ − γ ′)>∇2g(γ ′)(γ − γ ′).

The proof is given in the Appendix.

Lemma 3 For each t = 1, . . . , T ,

gt(γt+1) + ∆Φt−1(γt+1,γt) ≥ gt(γt)−
max{e2, 8 ln K̃}

2
√
t{it,jt}λ

(5)

where t{it,jt} is the number of matches between team it and team jt.

Proof Let h(x) = ln(1 + ex). Then, gt(γt) = h(γt · xt). Note that∇gt(γ) = h′(γ · xt)xt and

∇2Φt(γ) =

t∑
τ=1

h′′(γ · xτ )xτx
>
τ + λ

∑
i,j

h′′(γ · x(ij))x(ij)x
>
(ij),

where gij(γ) = ln(1 + eγ·x(ij)), x(ij) is such that x(ij),i = −1, x(ij),j = 1 and x(ij),k = 0 for
k 6= i, j, respectively. Note that Φt(γ) is 2-generalized concordant by Proposition 1 and the fact
that the concordant property is closed under summation. Then, using Proposition 2 around γt, the
l.h.s. of inequality (5) is given as

gt(γt+1) + Φt−1(γt+1)− Φt−1(γt)−∇Φt−1(γt) · (γt+1 − γt)

≥ gt(γt) +∇gt(γt) · (γt+1 − γt) +
1

2 max{e2, 8 ln K̃}
(γt+1 − γt)>∇2Φt(γt)(γt+1 − γt), (6)

Then, since h′(x) = ex/(1 + ex) and h′′(x) = ex/(1 + ex)2, h′′(γt · xτ ) = h′(γt · xτ )2e−zt·xτ .
Therefore,

∇2gτ (γt) = h′′(γt · xτ )xτx
>
τ = e−γt·xτ (h′(γt · xτ ))2xτx

>
τ = e−γt·xτ∇gτ (γt)∇gτ (γt)

>.

Now the second term of the r.h.s. of inequality (6) is

1

2 max{e2, 8 ln K̃}
(γt+1 − γt)>Bt(γt+1 − γt),

where Bt =
∑t

τ=1 e
−γt·xτ∇gτ (γt)∇gτ (γt)

> + λ
∑

i,j e
−γt·x(ij)∇gij(γt)∇gij(γt)>. Let tij be

the number of team i’ wins against team j in t trials (including wins in virtual matches). Then, by
using the fact that x(ij) = −x(ji) for each i, j ∈ [n], Bt can be written as

Bt =
∑
i<j

(tije
−γt·x(ij) + tjie

γt·x(ij))∇gij(γt)∇gij(γt)>.

9
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Recall that ∇gij(γt) = h′(γt · x(ij))x(ij). Then, by letting ηt,ij = γt · x(ij), the second and the
third terms of r.h.s. of inequality (6) are given as follows.

h′(ηt,itjt)(ηt+1,itjt − ηt,itjt) +

∑
i<j(tije

−ηt,ij + tjie
ηt,ij )(h′(ηt,ij))

2(ηt+1,ij − ηt,ij)2

2 max{e2, 8 ln K̃}
.

By replacing ηt+1 with a variable η, the above terms are further lower bounded by

min
η

(
h′(ηit,jt)(ηit,jt − ηt,it,jt) +

∑
i,j(tije

−ηt,ij + tjie
ηt,ij )(h′(ηt,ij))

2(ηij − ηt,ij)2

2 max{e2, 8 ln K̃}

)
.

This is equivalent to

− max{e2, 8 ln K̃}
tije
−ηt,itjt + tjie

ηt,itjt
.

Note that this term is minimized if the denominator is minimized as 2
√
tijtji, which is achieved

when ηt,itjt = (1/2) ln(tij/tji). In addition,
√
tijtji is minimized if tij and tji are biased, i.e.,

tij = t{i,j} + λ and tji = λ (or vice versa). This implies that the l.h.s. of inequality (5) is lower
bounded as

gt(γt)−
max{e2, 8 ln K̃}

2
√
t{it,jt}λ

.

We can now prove our second main result.

Theorem 4 For Bradley-Terry models, the regret of FTRL is

O(n(ln K̃)
√
T/λ+ λn2 lnK).

Furthermore, the regret bound becomes O(n
3
2 (ln K̃ + lnK)T 1/3) if λ = T

1
3 /
√
n.

Proof By Lemma 2 and Lemma 3, summing up the inequality for t = 1, . . . , T , we have

ΦT (γT+1)− Φ0(γ1) =
T∑
t=1

(Φt(γt+1)− Φt−1(γt)) ≥
T∑
t=1

gt(γt)−
T∑
t=1

max{e2, 8 ln K̃}
2
√
t{it,jt}λ

By rearranging and letting γ∗ = arg minγ
∑T

t=1 gt(γ),

T∑
t=1

gt(γt) ≤ ΦT (γT+1)− Φ0(γ1) +

T∑
t=1

max{e2, 8 ln K̃}
2
√
t{it,jt}λ

≤
T∑
t=1

gt(γ
∗) + λ

∑
i,j

gij(γ
∗) +

T∑
t=1

max{e2, 8 ln K̃}
2
√
t{it,jt}λ

where the last inequality holds by the definition of γT+1.

10
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The second term is O(λn2(lnK)). The third term is bounded as follows: Let T{ij} be the
number of matches between team i and j over T trials. Then, we obtain

T∑
t=1

max{e2, 8 ln K̃}
2
√
t{it,jt}λ

≤
∑
i<j

max{e2, 8 ln K̃}
2
√
λ

∫ T{ij}

0

1√
t

=
∑
i<j

max{e2, 8 ln K̃}
2
√
λ

√
T{i,j}

≤
(
n

2

)
max{e2, 8 ln K̃}

2
√
λ

√
T(
n
2

) =

√(
n

2

)
max{e2, 8 ln K̃}

2
√
λ

√
T ,

where the last inequality follows since the sum of the square roots is maximized when all compo-
nents are equal.

We obtain our final result by Theorem 3 and 4 .

Corollary 1 The regret of FTRL is

O
(

min
{
nK̃ lnT, n(ln K̃)

√
T/λ

}
+ λn2(lnK)

)
.

5. Discussion

In this section, we consider some issues related to our analyses.

FTRL vs FTL and FTAL It is natual to ask if the Follow the Leader (FTL, e.g., Shalev-Shwartz
(2011)) has a similar regret bound for Bradley-Terry models. FTL simply predicts the parameter
γt+1 = arg minγ

∑t
τ=1 gt(γ) at each trial t. In other words, the question is whether the virtual

match regularizer is really necessary or not. In fact, we can show that the regret bound of FTL
is O(nK̂ lnT ), where K̂ = maxTt=1 maxi,j e

γt,i−γt,j , by following the analysis in Theorem 3.
However, in early trials, Assumption 1 does not hold; thus, K̂ =∞ in general. Therefore the regret
bound is not meaningful. A similar argument is true for Follow The Approximate Leader (FTAL,
Hazan et al. (2007)). At each trial t, FTAL predicts the parameter that optimizes the cumulative
second order approximations of loss functions. The reget bound of FTAL can be shown to be
O(nK lnT )) by following the analysis of Theorem 3. However, similar to ONS, FTAL requires the
prior knowledge of K.

Virtual Match vs the 2-norm Regularization It is possible to employ the standard square norm
regularization, i.e., a version of FTRL that predicts γt = arg minγ∈Γ

∑t−1
τ=1 gt(γ) + λ‖γ‖22 can be

employed to obtain the same regret boundO(n
1
2 (lnK)

√
T ) of OGD. However, the prior knowledge

of K is required to obtain this bound. Since the objective function of this FTRL is λ-strongly con-
vex, it can be shown that K̂ = eO(T/λ) using the analysis appeared in, e.g., Boyd and Vandenberghe
(2004). The bound of the radius K̂ is exponentially worse than the virtual match regularization.

Lower Bound of the Regret To date, we have not obtained any lower bounds of the regret for
Bradley-Terry models. For Bradley-Terry models with n = 2, lower bounds are no greater than
O(lnT ), since the O(lnT ) regret bound is shown by McMahan and Streeter (2012) as discussed
in Section 2.3. In general, few Ω(lnT ) lower bound has been proven for online density estimation
problems except the Bernoulli model (Shtar’kov, 1987) and the Gaussian model (Takimoto and
Warmuth, 2000) via minimax regret analyses.

11
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Bayesian Approach For online density estimation problems, Bayesian approaches have been
quite effective for obtaining O(lnT ) regret bounds (e.g., Freund (1996); Azoury and Warmuth
(2001); Kotlowski et al. (2010)). The typical Bayesian approach assumes a prior distribution over
parameters and predicts the average of parameters w.r.t. the posterior distribution. Unfortunately,
unlike the exponential family, it is not straightforward to obtain a regret bound for Bradly-Terry
and logistic models using this approach. Note that FTRL has a natural Bayesian interpretation that,
FTRL predicts the maximum a posterior estimate of parameters w.r.t. the posterior distribution,
where the prior distribution is defined as the likelihood of the virtual 2λ matches between each two
players. It is an interesting open question whether a Bayesian approach achieves O(lnT ) regret
bound for these models.

6. Conclusion

We considered the online density estimation problem for Bradley-Terry models. We derived match-
ing upper and lower bounds of the radius, analyzed FTRL with virtual match regularization, and
showed better regret bounds than standard algorithms.

There are some interesting open questions to explore. An obvious open problem is to obtain
better upper/lower regret bounds for Bradley-Terry models. It might be possible to design Bayesian-
based algorithms for Bradley-Terry models as well. In addition, minimax analyses for Bradley-Terry
models would be an interesting approach.
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Appendix

Proof of Theorem 1

Proof The log likelihood function L(θ) is given as

L(θ) =
n−1∑
i=1

a ln(1 + θi+1/θi) + ln(1 + θ1/θn).

Now, we let θ̃1 = θ1/θ1 = 1, θ̃i = θi/θi−1 for i = 2, . . . , n. Then,

L(θ̃) =

n∑
i=2

a ln(1 + θ̃i) + ln

(
1 + 1/

n∏
i=2

θ̃i

)
.
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The offline optimizer θ∗ must satisfy, for i = 2, . . . , n

∂(L(θ̃
∗
))

∂θ̃i
=

a

1 + θ̃∗i
+

∏n
j=2 θ̃

∗
j

1 +
∏n
j=2 θ̃

∗
j

1

θ̃∗i
− 1

θ̃∗i
= 0.

Equivalently,

θ̃∗i
1 + θ̃∗i

=
1

a
(

1 +
∏n
i=2 θ̃i

) ,
implying that θ̃∗2 = θ̃∗3 = · · · = θ̃∗n. Now we let x = θ̃∗2. Then, it holds that

x

1 + x
=

1

a(1 + xn−1)
.

By rearranging, axn + (a− 1)x− 1 = 0. Since (a− 1)x− 1 = −axn < 0, x < 1/(a− 1). Now,

K = max
i,j∈[n]

θ∗i /θ
∗
j ≥ θ∗1/θ∗n =

1∏n
i=2 θ̃i

=

(
1

x

)n−1

> (a− 1)n−1 =

(
T − 1

n− 1
− 1

)n−1

.

Proof of Proposition 1

Proof Let q(t) = g(w+ tv) = ln(1 + ewj−wi + t(vj − vi)). Then the first, second and third order
derivatives are given as follows:

q′(t) =
(vj − vi)ewj−wi+t(vj−vi)

1 + ewj−wi+t(vj−vi)
.

q′′(t) =
(vj − vi)2ewj−wi+t(vj−vi)(1 + ewj−wi+t(vj−vi))

(1 + ewj−wi+t(vj−vi))2

− (vj − vi)2ewj−wi+t(vj−vi)ewj−wi+t(vj−vi)

(1 + ewj−wi+t(vj−vi))2

=
(vj − vi)2ewj−wi+t(vj−vi)

(1 + ewj−wi+t(vj−vi))2

q′′′(t) =
(vj − vi)3ewj−wi+t(vj−vi)(1 + ewj−wi+t(vj−vi))2

(1 + ewj−wi+t(vj−vi))4

− 2(vj − vi)3ewj−wi+t(vj−vi)(1 + ewj−wi+t(vj−vi))

(1 + ewj−wi+t(vj−vi))2

=
(vj − vi)3ewj−wi+t(vj−vi)(ewj−wi+t(vj−vi))

(1 + ewj−wi+t(vj−vi))3
.
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So, we have

|q′′′(t)| = |vj − vi|

∣∣∣∣∣ewj−wi+t(vj−vi) − 1

1 + ewj−wi+t(vj−vi)
|

∣∣∣∣∣ q′′(t)|
≤ |vj − vi||q′′(t)| (since |(x− 1)/(x+ 1)| ≤ 1 for x ≥ 0)

≤ 2‖v‖∞|q′′(t)|.

Proof of Proposition 2

Proof For simplicity, we omit the subscript t of gt, i.e., gt = g. We use the following result of Bach
(2010):

Proposition 3 (Bach (2010)) Let q : R → R be any three times differentiable function such that
|q′′′(t)| ≤ Sq′′(t) for some S > 0. Then, for any t ≥ 0,

q(t) ≥ q(0) + q′(0)t+
q′′(0)

S2
(e−St + St− 1).

In addition, we use the following technical proposition.

Proposition 4 For x ≥ 0, x2

e−x+x−1
≤ max{2e2, 8x}.

The proof is given in the next subsection. Using Proposition 4 and Proposition 3, we obtain that

q(t) ≥ q(0) + q′(0)t+
q′′(0)

max{2e2, 8St}
t2 (7)

By applying inequality (7) for q(t) = g(γ ′+ t(γ−γ ′)), t = 1 and S = R‖γ−γ ′‖∞, we obtain

g(γ) ≥ g(γ ′) +∇g(γ ′) · (γ − γ ′) +
(γ − γ ′)>∇2g(γ ′)(γ − γ ′)
max{2e2, 8R‖γ − γ ′‖∞}

,

as claimed.

6.1. Proof of Proposition 4

Proof Let

f(x) =
x2

e−x + x− 1
.

Let a > 1 be a positive real number. We consider two cases. (i) Suppose that x ≤ a. Then, by
second order Taylor approximation around x = 0, e−x + x− 1 ≥ e−ax2/2,

x2

e−x + x− 1
≤ x2

e−ax2/2
= 2ea.
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(ii) Otherwise, assume that x > a > 1. Then by using Taylor expansion of f around x = a,
f(x) = f(a) + f ′(z)(x− a) for some z s.t. a < z < x. Note that

f ′(z) =
−z2(−e−z + 1) + 2z(e−z + z − 1)

(e−z + z − 1)2
=
z2e−z + z2 + 2ze−z − 2z

(e−z + z − 1)2
<

2z2

(z − 1)2
.

Furthermore, the last term is maximized when z = a. Thus,

f(x) = f(a) + f ′(z)(x− z) < a2

e−a + a− 1
+

2a

(a− 1)2
x− a3

(a− 1)2
<

2a

(a− 1)2
x.

Therefore, in both cases, f(x) is bounded by max{2ea, 2a2/(a − 1)2x}. Finally, by plugging
a = 2 into the upper bound, we complete the proof.

6.2. Proof of Theorem 3

Proof By using second order Taylor expansion of gt(γt+1) + ∆Φt−1(γt+1,γt) around γt,

gt(γt+1) + ∆Φt−1(γt+1,γt) = gt(γt) +∇gt(γt) · (γt+1 − γt)
+ (γt+1 − γt)>∇2Φt(zt)(γt+1 − γt),

where zt is a convex combination of γt and γt+1. Then, since h′′(x) = ex/(1+ex)2 = 1/(ex+1+
e−x), h′′(zt·xτ ) ≥ 1

2K̃+1
. Similarly, h′(x) = 1/(1+e

x
). So, h′(γt·xt) ≥ 1/(1+K̃) ≥ 1/(2K̃+1).

Therefore,

gt(γt+1) + ∆Φt−1(γt+1,γt) ≥ gt(γt) +
1

2K̃ + 1
(xt · (γt+1 − γt)+

(γt+1 − γt)>Ct(γt+1 − γt)− ε‖γt+1 − γt‖2),

where Ct =
∑t

τ=1 xτx
>
τ + λ

∑
i,j xijx

>
ij + εIn The second term of the r.h.s. is further lower

bounded by
1

2K̃ + 1

(
xt · (γ − γt) + (γ − γt)>Ct(γ − γt)

)
,

which is minimized as
−(4K̃ + 2)x>t C

−1
t xt.

In addition, −ε‖γt+1 − γt‖2 can be lower bounded by −2εn(ln K̃)2. Therefore we have

gt(γt+1) + ∆Φt−1(γt+1,γt) ≥ gt(γt)− (4K̃ + 2)x>t C
−1
t xt −

2εn(ln K̃)2

2K̃ + 1
. (8)

Then, we use the following technical lemma.

Lemma 4 (Hazan et al. (2007)) Let ut ∈ Rn for t = 1, . . . , T , be a sequence of vectors s.t. for
some r > 0, ‖ut‖ ≤ r and let Vt =

∑t
τ=1 uτu

>
τ + εIn. Then,

T∑
t=1

u>t V
−1
t ut ≤ n ln

(
r2T/ε+ 1

)
.
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By Lemma 2 inequality (8), summing the inequality for t = 1, . . . , T , we have

ΦT (γT+1)− Φ0(γ1) =
T∑
t=1

(Φt(γt+1)− Φt−1(γt))

≥
T∑
t=1

gt(γt)− (4K̃ + 2)
T∑
t=1

x>t C
−1
t xt − 2

εTn(ln K̂)2

2K̃ + 1
.

By rearranging and letting γ∗ = arg minγ
∑T

t=1 gt(γ),

T∑
t=1

gt(γt) ≤ ΦT (γT+1)− Φ0(γ1) + (4K̃ + 2)
T∑
t=1

x>t C
−1
t xt +

2εTn(ln K̃)2

2K̃ + 1

≤
T∑
t=1

gt(γ
∗) + λ

∑
i,j

gij(γ
∗) + (4K̃ + 2)n ln

(
4T

ε
+ 1

)
+

2εTn(ln K̃)2

2K̃ + 1
,

where the last inequality holds by definition of γT+1. Note that the second term of the r.h.s. of the
above inequality is O(λn2(lnK)). Finally, by letting ε = 1/T , we complete the proof.
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