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Abstract
We study the attainable regret for online linear optimization problems with bandit feedback, where
unlike the full-information setting, the player can only observe its own loss rather than the full loss
vector. We show that the price of bandit information in this setting can be as large as d, disproving
the well-known conjecture (Dani et al. (2007)) that the regret for bandit linear optimization is at
most

√
d times the full-information regret. Surprisingly, this is shown using “trivial” modifications

of standard domains, which have no effect in the full-information setting. This and other results we
present highlight some interesting differences between full-information and bandit learning, which
were not considered in previous literature.

1. Introduction

We consider the problem of bandit linear optimization, which is a repeated game between a player
and an adversary. At each round t = 1, . . . , T the player chooses a point wt from a compact subset
W of Rd, and simultaneously the adversary chooses a loss vector xt ∈ Rd (under some regularity
assumptions described in Sec. 2). The player incurs a loss 〈xt,wt〉, and can observe the loss but not
the loss vector xt. The player’s goal is to minimize its expected cumulative loss, E

[∑T
t=1 〈xt,wt〉

]
,

where the expectation is with respect to the player’s and adversary’s possible randomization. The
performance of the player is measured in terms of expected regret, defined as

E

[
T∑
t=1

〈xt,wt〉

]
− min

w∈W
E

[
T∑
t=1

〈xt,w〉

]
. (1)

Bandit optimization has proven to be a useful abstraction of sequential decision-making prob-
lems under uncertainty, such as multi-armed bandits and online routing (see Bubeck and Cesa-
Bianchi (2012) for a survey). Moreover, using online-to-batch conversion techniques, algorithms
for this setting can be readily applied to derivative-free stochastic optimization, where our goal is to
stochastically optimize an unknown function given only noisy views of its values at various points.

The attainable regret in the bandit setting can be compared to the attainable regret in the full-
information setting, where xt is revealed to the player after each round. Clearly, since the player
receives less information in the bandit setting, the attainable regret will be larger. This degradation
is known as the “price of bandit information” (Dani et al. (2007)), and characterizing it for general
domainsW has remained an open problem. However, the standard conjecture and common wisdom
(as articulated in Dani et al. (2007)) is that for linear optimization, this price is at most a multiplica-
tive
√
d factor, where d is the dimension. Indeed, as far as we know, this holds for all domains that

have been previously studied in the literature:

c© 2015 O. Shamir.



SHAMIR

• When the domainW is the corners of the d-dimensional simplex (a.k.a. multi-armed bandits
setting), the minimax optimal regret is Θ(

√
dT ), vs. Θ(

√
log(d)T ) in the full-information

setting.

• When the domain W is the boolean hypercube {−1,+1}d, the minimax optimal regret is
Θ(d
√
T ), vs. Θ(

√
dT ) in the full-information setting (Dani et al. (2007); Audibert et al.

(2011)).

• When the domain W is the unit Euclidean ball, there is an algorithm with regret O(
√
dT ),

vs. O(
√
T ) in the full-information setting (Bubeck et al. (2012)).

• There is an Ω(d
√
T ) lower bound for a certain non-convex subset of the hypercube (a carte-

sian product of d 2-dimensional spheres) (Dani et al. (2008)). The corresponding full-information
regret bound is O(

√
dT ).

We note in passing that there are other partial-information settings where the situation is different,
but these are distinct from the bandit linear optimization setting we focus here (e.g. non-linear
bandit optimization (Shamir (2013)) or using different information feedback, e.g. Cesa-Bianchi and
Lugosi (2012)).

The main contribution of this paper is disproving this conjecture, and showing that the price of
bandit information for online linear optimization can be as large as d rather than

√
d. We do this by

proving that the O(
√
dT ) regret upper bound for the Euclidean ball is surprisingly brittle, and the

attainable regret becomes Ω(d
√
T ) after “trivial” changes of the domain which do not matter at all

in the full-information setting. These changes include (1) Shifting the ball away from the origin, and
(2) Taking a simple convex subset of the Euclidean ball with a “flat” boundary, such as a cylinder
or a capped Euclidean ball1. We also explain how our techniques can be potentially applicable to
other domains. Since the full-information regret in these cases isO(

√
T ), this establishes a price of

bandit information on the order of d. This gap is tight as worst-case over all domains (or all convex
domains), because for any domain, it is possible to getO(d

√
T ) regret (Bubeck et al. (2012); Hazan

et al. (2014)), and the attainable regret in the full-information case is generally at least Ω(
√
T ).

We note that our lower bounds hold even against a stochastic adversary, which chooses loss
vectors i.i.d. from a given distribution. In such a setting, any algorithm attaining O(

√
dαT ) regret

can be used to find an ε-optimal point after O(dα/ε2) rounds (as described later). This allows us to
re-phrase our result in the following manner, which might be conceptually interesting: If the price of
bandit information was

√
d, then to find an ε-optimal point, we would need d times more rounds in

the bandit setting, compared to the full-information setting (e.g. d/ε2 vs. 1/ε2). This is intuitively
very appealing: Each round, we get to see only “1/d as much information” in the bandit setting
(a single scalar compared to a d-dimensional vector), hence we need d times more rounds to get
the same amount of information and return a point of similar accuracy. Unfortunately, our results
show that there are cases where the price of viewing scalars vs. d-dimensional vectors is quadratic
in d (e.g. d2/ε2 vs. 1/ε2). So in some sense, the number of rounds required and the amount of
information per round cannot be traded-off without significant loss.

1. We note that there are (inefficient) algorithmic techniques whose performance is not affected by such domain changes,
e.g. discretizing the domain and running a standard multi-armed bandit algorithm on the discretized set, in which
case the regret depends on the size of the set rather than its geometry. However, the dependence on the dimension d
with such a technique is exponential, hence highly suboptimal to begin with.
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A second contribution of our paper lies in disproving another common intuition: Namely, that
any regret lower bounds with respect to a given domainW automatically extend to a its convex hull
conv(W). For example, this has been implicitly used to argue that the Ω(d

√
T ) regret lower bound

for the boolean hypercube {−1,+1}d in Audibert et al. (2011) extends to the convex hypercube
[−1,+1]d (Bubeck and Cesa-Bianchi (2012); Hazan et al. (2014)). Again, this is generally true for
online linear optimization in the full-information setting, since the optimal points in conv(W) lie in
W , and the player can always simulate playing over conv(W) via randomization overW . However,
in the bandit setting the change in domain also changes the information feedback structure in non-
intuitive ways. For example, if the loss vectors are binary and W is the corners of the simplex
(a.k.a. multi-armed bandits), there is a well-known Ω(

√
dT ) regret lower bound (Auer et al. (2002)).

However, when we convexify the domain and take W to be the simplex, then it is possible to get
O(
√

log(d)T ) regret - same as in the full-information setting! In fact, such a result can be shown to
hold for most continuous domains. We emphasize that these regret upper bounds are achieved only
for discrete losses, and in a manner which is of little practical value. However, they do demonstrate
that one has to be careful when extending bandit optimization results from a finite domain to its
convex hull, and that loss vectors supported on a finite set are not appropriate to prove bandit lower
bounds for continuous domains. In any case, for completeness, we provide minimax optimal regret
bounds for the simplex and the hypercube, using the techniques we develop here. For the hypercube,
this bound is Θ(d

√
T ), and formally establishes that this is the minimax optimal regret for bandit

linear optimization over convex domains.

1.1. Lower Bound Techniques and Main Ideas

In this subsection, we informally sketch the technical ideas used to get our lower bounds. The
various domains we discuss below are sketched in Figure 1. The result on continuous domains and
discrete losses is a bit orthogonal, and described separately in Sec. 5.

As mentioned earlier, our lower bounds are actually proven for the easier setting of stochas-
tic bandit linear optimization, where the adversary is constrained to sample each loss vector xt
i.i.d. from the same distribution. Moreover, some of the bounds also apply to the easier goal of
minimizing error rather than regret, which may be of independent interest: In this case, the player
may choose w1, . . . ,wT arbitrarily, observing 〈x1,w1〉 , . . . , 〈xT ,wT 〉, and then needs to return a
vector ŵ which minimizes the expected error

E [〈x̄, ŵ〉]− min
w∈W

〈x̄,w〉 . (2)

where x̄ = E[x]. This goal is more relevant in a stochastic optimization setting, where we attempt
to optimize a stochastic linear function based on querying its values 〈xt,wt〉 at various points. It is
easy to show that any algorithm, attaining expected regret of R after T rounds, can attain an R/T
error by returning the vector w̄ = 1

T

∑T
t=1 wt. Thus, any lower bound for minimizing error in a

stochastic setting implies the same lower bound on minimizing regret and a possible non-stochastic
setting, times a T factor. For example, a

√
d/T error lower bound implies a

√
dT regret lower

bound.
For the goal of minimizing error in a stochastic setting, it turns out that there is a simple strat-

egy attaining
√
d/T error under appropriate conditions: In each round, we randomly sample from

some hypercube centered around the origin, and use it to create an unbiased estimate of the loss
vector, with variance O(d). Repeating this for T rounds and averaging, we get an estimate x̃ of

3



SHAMIR

Figure 1: Various domains considered in the paper: Origin-centered Euclidean unit ball; shifted
Euclidean unit ball; cylinder; and capped Euclidean ball. For a domain such as the unit
ball, and for minimizing error, we can get a bounded-variance estimate of the expected
loss vector by querying at random from an origin-centered hypercube. However, this is
not possible in the other settings considered here, either because the domain is bounded
away from the origin, or because the player needs to query far and to one side of the
origin to attain small regret.

the expected loss vector x̄, which is unbiased and with variance O(d/T ). We then return the point
arg minw∈W 〈x̃,w〉, leading to an O(

√
d/T ) error bound.

Unfortunately, this method breaks down if we cannot sample from such an origin-centered hy-
percube. In particular, if the variance of 〈w,x〉 for any w in the domain is lower bounded by a
constant (independent of the dimension), then the variance of the estimator becomes O(d2) rather
than O(d). Clearly, this is not true when w can be arbitrarily close to the origin: If w = 0, then
the variance of 〈w,x〉 is always zero. However, it can happen when the domain is bounded away
from the origin. Using this key observation together with canonical information-theoretic tools (i.e.
reduction to a hypothesis testing problem), we can show a Ω(d/

√
T ) error lower bound for a simple

domain bounded away from the origin, such as a shifted Euclidean ball. Due to the relationship
between error and regret, this leads to an Ω(d

√
T ) regret lower bound for such domains.

Another way to force 〈w,x〉 to have constant variance, even if the domain contains the origin,
is when the player must pick points far away from the origin most of the time. This cannot be
enforced when the goal is minimizing error. However, when the goal is minimizing regret, then we
can construct a situation where any point close to the origin leads to a large regret. In that case,
either the player picks points close to the origin, and gets large regret, or picks points far from the
origin, leading to the variance of 〈wt,xt〉 being large. This is a lose-lose situation, and carefully
formalizing it leads to a Ω(d

√
T ) regret lower bound, similar to the shifted Euclidean ball setting.

We formally show this for a cylindrical domain (see figure 1) as well as a hypercube, but the proof
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technique appears applicable to other domains, such as a capped Euclidean ball, or more generally
any domain with a flat surface orthogonal to the origin. In all these cases, the adversary strategy is
to choose an expected loss vector at random from the flat surface, and introduce a constant amount
of stochastic noise in the orthogonal dimension. Since the flat surface is far from the origin, the
player must deal with constant variance if it wishes its regret to be small.

Although our lower bounds are shown for particular domains, we believe that the properties we
identified – distance from origin, variance of the losses, and flatness of parts of the domain boundary
– can play a key role in characterizing the attainable regret for any given domain.

2. Preliminaries

We use bold-faced letters to denote vectors (e.g. x = (x1, . . . , xd)). We let ‖·‖ denote the Euclidean
norm, and ‖·‖p the p-norm. We also define the function ‖·‖∗ : Rd 7→ [0,∞) as

‖x‖∗ = max
w∈W

| 〈w,x〉 |.

WhenW is a symmetric convex set, then ‖·‖∗ is known as the support function ofW (Rockafellar
(1970)), or equivalently, the dual norm to the norm whose unit ball isW , hence the notation. How-
ever, we will use this notation even whenW is not necessarily convex or symmetric. We also define
N (a,Σ) to be the multivariate Gaussian distribution with mean a and covariance matrix Σ, and let
I denote the identity matrix.

As discussed in the introduction, our results focus on bandit linear optimization in a stochastic
setting, where the loss vectors are assumed to be drawn i.i.d. from an unknown distribution D with
mean x̄. In this setting, the expected regret (as defined in Eq. (1)) can be equivalently written as

E

[〈
x̄ ,

T∑
t=1

wt

〉]
− T min

w∈W
〈x̄,w〉 . (3)

Clearly, if any distribution is allowed, then the inner products above can be unboundedly large, and
no interesting regret bound is possible. To prevent this, it is standard in the literature to assume that
〈w,x〉 is essentially bounded. Formally, we assume that D satisfies the following two conditions:

• ‖x̄‖∗ ≤ 1

• Prx∼D (‖x‖∗ > z) ≤ 2 exp(−z2/2) for all z ≥ 1.

We denote any such distribution as a “valid” distribution. The latter condition requires ‖x‖∗ to have
sub-Gaussian tails (or more precisely, tails dominated by a standard Gaussian random variable),
and is a slight relaxation of the standard ‘dual’ setting (e.g. Bubeck et al. (2012); Audibert et al.
(2011)), where it is assumed that ‖x‖∗ ≤ 1 with probability 1. We choose this purely for technical
convenience, since it allows us to use Gaussian distributions for D, and does not materially affect
algorithmic approaches we’re aware of. Moreover, in terms of lower bounds, we lose almost nothing
by this relaxation: Any lower bound for our setting can be transformed into an equivalent lower
bound in the standard dual setting (where ‖x‖∗ ≤ 1 with probability 1), at the cost of a

√
log(T )

factor. See Appendix B for details.
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3. Expected Error

We begin by considering the attainable performance in terms of expected error (Eq. (2)), recalling
that error lower bounds immediately transfer to regret lower bounds.

To motivate our results, let us show that it is easy to obtainO(
√
d/T ) error upper bounds under

a mild condition. To do so, suppose thatW contains the set {−µ, µ}d for some µ > 0, and consider
the following simple player strategy: In each round t, the player draws a vector σ ∈ {−1,+1}d
uniformly at random, computes v = 〈xt, µσ〉 (possible since µσ ∈ W), and computes the estimator
x̃t = 1

µvσ = 〈x,σ〉σ. It is easy to verify that

E[x̃t|xt] = xt , E[‖x̃t‖22 |xt] = d ‖xt‖22 , (4)

so x̃t is an unbiased estimator of xt with variance bounded by O(d). After T rounds, the player
computes x̃ = 1

T

∑T
t=1 x̃t, and returns ŵ = arg minw∈W 〈x̃,w〉.

Theorem 1 Suppose thatW is a subset of the unit Euclidean ball {w : ‖w‖2 ≤ 1}, and contains
{−µ, µ}d for some µ > 0. Then for any distribution over loss vectors x, such that E[‖x‖22] ≤ c2

and with mean x̄, the player strategy described above satisfies

E [〈x̄, ŵ〉]− min
w∈W

〈x̄,w〉 ≤ 2c

√
d

T
.

We note that Bubeck et al. (2012) provides a more sophisticated algorithm with O(
√
dT ) regret,

even against a non-stochastic adversary.
Proof The idea of the proof is that since {x̃t}Tt=1 are unbiased estimate of xt, which are themselves
random variables with mean x̄, then their average x̃ will be a good estimate of x̄, hence minimizing
〈x̃,w〉 will approximately minimize 〈x̄,w〉.

More formally, let w∗ = arg minw∈W 〈x̄,w〉. Also, recall that any w ∈ W satisfies ‖w‖2 ≤ 1,
and therefore 〈x,w〉 − 〈x′,w〉 ≤ ‖x− x′‖2 for all w ∈ W by the Cauchy-Schwartz inequality.
Finally, recall that ŵ = arg minw∈W 〈x̃,w〉. Using these observations, we have

〈x̄, ŵ〉 ≤ 〈x̃, ŵ〉+ ‖x̄− x̃‖ ≤ 〈x̃,w∗〉+ ‖x̄− x̃‖ ≤ 〈x̄,w∗〉+ 2 ‖x̄− x̃‖ ,

and therefore

E [〈x̄, ŵ〉]− min
w∈W

〈x̄,w〉 = E [〈x̄, ŵ〉]− 〈x̄,w∗〉 ≤ 2E [‖x̄− x̃‖] ≤ 2

√
E
[
‖x̄− x̃‖2

]
, (5)

where the last step is by Jensen’s inequality. Recalling the definition of x̃, this equals

2

√√√√√E

( 1

T

T∑
t=1

(x̃t − x̄)

)2
.

According to equation Eq. (4), E[x̃t|xt] = xt, but we also have E[xt] = x̄, and therefore E[x̃t−x̄] =
x̄ − x̄ = 0, so each summand in the equation above is zero-mean. Moreover, they are i.i.d. since
each x̃t is computed based on the independent realization xt. Therefore, the equation above equals

2

√
1

T
E
[
(x̃1 − x̄)2

]
≤ 2

√
1

T
E
[
‖x̃1‖2

]
,
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which by Eq. (4) is at most 2
√

1
T d E[‖x1‖22] ≤ 2c

√
d/T as required.

For example, a special case of the theorem above implies an O(
√
d/T ) error upper bound for

the origin-centered unit Euclidean ball. The key property used was the ability to query at a random
point in {−µ,+µ}d (a scaled origin-centered Boolean hypercube), which allowed computing an
unbiased estimator of each xt with variance O(d).

This observation leads us to guess that when we cannot query from such a set, the learning
problem may be harder. One case in which querying such a set is impossible is whenW is convex
and bounded away from the origin. In a full-information learning setting, shiftingW away from the
origin doesn’t increase the learning complexity in general. Surprisingly, in the bandit setting this
turns out to make a huge difference: Even for the unit Euclidean ball, shifting it so it doesn’t include
the origin is sufficient to make the attainable error jump from

√
d/T to d/

√
T :

Theorem 2 Suppose that d > 1, and letW = {a+w : ‖w‖2 ≤ 1}, where a = (2, 0, . . . , 0) ∈ Rd.
Then for any player strategy returning ŵ ∈ W , there exists a valid distribution over loss vectors
with mean x̄ such that

E[〈x̄,w〉]− min
w∈W

〈x̄,w〉 ≥ cmin

{
1 ,

d− 1√
T

}
,

where c is a positive universal constant.

The formal proof appears in Appendix A.1, and we note that due to the rotational symmetry of our
linear optimization setting, the same lower bound would hold for a Euclidean ball shifted in any
other direction. Although the result is specifically for a shifted Euclidean ball, we conjecture that
the result can be generalized to other domains as well, as long as they are sufficiently large and at a
constant distance from the origin.

Although the notion of a domain not containing the origin may appear unusual at first, it can
actually be necessary to model some common situations. One example is when the domain has a
linear constraint bounding it away from the origin, such as the probability simplex or a convex hull
of points lying in the same quadrant. As another example, suppose our losses actually take the form
〈wt,xt〉 + ξt where ξt is some noise or other term not controlled by the player. This is possible to
model in the bandit setting, by adding a dimension and playing over the domain W × {1}, using
loss vectors of the form (xt,1, xt,2, . . . , xt,d, ξt). But this leads to a domain bounded away from the
origin. In fact, if W is the origin-centered Euclidean ball, then the techniques of Thm. 2 readily
imply a Ω(d/

√
T ) error lower bound for the domainW × {1}.

As discussed earlier, the key idea in proving Thm. 2 is that we can construct a distribution where
the variance of 〈w,x〉 for any w ∈ W is lower bounded by a positive constant, independent of the
norm of w or the dimension. The effect of this is best seen in the estimation procedure described
before Eq. (4): Recall that there we chose a query point wt = µσ where σ ∈ {−1,+1}d, in which
case the conditional second moment of the estimator x̃t = 1

µvσ, where v = 〈xt,wt〉 ,satisfies

E[‖x̃t‖22 |xt] =
1

µ2
E[v2 ‖σ‖22] =

d E[v2]

µ2
. (6)

Since v = 〈xt,wt〉 = µ 〈xt,σ〉, we see that E[v2] scales with µ2, and therefore Eq. (6) is O(d),
independent of µ. In contrast, if E[v2] = E[〈xt,wt〉2] was forced to have constant positive variance,
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then Eq. (6) is at least Ω(d/µ2). Moreover, ifW has bounded norm, then µ ≤ O(1/
√
d), so Eq. (6)

would scale asO(d2) rather thanO(d), eventually leading to an error bound scaling as d/
√
T rather

than
√
d/T .

4. From Error to Regret

Having considered domains bounded away from the origin, it is natural to ask whether this is the
only condition leading to Ω(d

√
T ) regret lower bounds. If the domain does contain the origin, then

because of Thm. 1, it seems unlikely to show such lower bounds by proving error lower bounds.
However, we can exploit the fact that attaining small regret is harder than attaining small error. In
this section, we show how in fact it can be strictly harder: We identify a situation which leads to
Ω(d
√
T ) regret lower bounds, even if the domain contains the origin, and even though better error

upper bounds are possible.
Specifically, the following theorem demonstrates such a lower bound for a domain consisting of

an origin-centered cylinder.

Theorem 3 Suppose that d > 1, and letW = [−1, 1] × {w ∈ Rd−1 : ‖w‖2 ≤ 1}. Then for any
player strategy, there exists a valid distribution over loss vectors with mean x̄ such that

E

[
T∑
t=1

〈x̄,wt〉

]
− min

w∈W

T∑
t=1

〈x̄,w〉 ≥ c(d− 1)
√
T

for any T ≥ d4/16, where c is a positive universal constant.

Note that the bound is a bit weaker than Thm. 2, in that it only holds for sufficiently large T .
However, since this is a lower bound, it is still sufficient for proving that no algorithm for this
setting will attain regret better than O(d

√
T ) in general.

The formal proof appears in Appendix A.2, and relies on the following construction: The adver-
sary chooses a vector σ ∈ {−1,+1}d uniformly at random, and constructs a loss vector distribu-
tion, whose expectation x̄ is

(
−1

4 , µσ1, . . . , µσd
)

(with µ being a small scaling factor, on the order
of
√
d/T if T is sufficiently large), and where the first coordinate has constant Gaussian noise. It

is possible to show that to get small regret, the player essentially needs to identify σ1, . . . , σd. This
would have been possible if the player queried at points wt whose first coordinate is 0. However,
since x̄ has a large negative weight on the first coordinate, then wt,1 must be large to get small
regret. But because of the stochastic noise in the first coordinate, this means that 〈wt,xt〉 will have
large variance. A formal analysis of this leads to a regret lower bound of the form

Ω

 T∑
t=1

E[1− wt,1] + µ
√
dT

1− µ

√√√√1

d

T∑
t=1

E

[
1

w2
t,1 + 1

d

] .

The idea now is that no matter how the first coordinates {wt,1}Tt=1 are chosen by the player, the
regret will be large: If they are significantly smaller than 1, then the first term above will be on the
order of T . But if wt,1 is almost 1, then the square root term will be small, again leading to a large
regret. A careful analysis shows that the regret will always be Ω(d

√
T ).

Although a precise characterization is non-trivial, the proof technique appears to be poten-
tially applicable to any domain with a flat surface, which is sufficiently large to contain the points
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(−a, µσ1, . . . , µσd) for some constant a ∈ (0, 1) and suitable scaling factor µ (possibly after rotat-
ing the domain around the origin). For example, the same proof technique would apply to a capped
Euclidean ball, W = {w : ‖w‖ ≤ 1, w1 ≤ c} for some constant c ∈ (0, 1). The flatness of the
surface seems to be important. To see this, let us understand why the proof breaks down, when in-
stead of a cylinder or a capped ball, our domain is the origin-centered Euclidean unit ball (for which
we know from Bubeck et al. (2012) that we can get O(

√
dT ) regret). First, when T is sufficiently

large compared to d, we choose µ on the order of
√
d/T ) (this is the regime which makes detecting

σ1, . . . , σd information-theoretically hard). In that case, we have x̄ =

(
−a,

√
d
T σ1, . . . ,

√
d
T σd

)
,

and the optimal play is w∗ = − 1
‖x̄‖ x̄ = 1√

a2+ d2

T

(
a,−

√
d
T σ1, . . . ,−

√
d
T σd

)
. However, with an

origin-centered ball, the player doesn’t need to detect σ1, . . . , σd to get small regret: The player can
go “further” along the first coordinate, and just play the fixed point w = (1, 0, . . . , 0) every round.
The total expected regret is then

T (〈x̄,w〉 − 〈x̄,w∗〉) = T

(
x̄1 +

1

‖x̄‖
‖x̄‖2

)
= T (x̄1 + ‖x̄‖)

= T

(
−a+

√
a2 +

d2

T

)
≤ T

(
−a+ a+

1

2a

d2

T

)
=

1

2a
d2 = O(d2),

where we used the fact (immediate by Taylor expansion) that
√
a2 + x ≤ a+ 1

2ax for all x ≥ 0. So,
we see that instead of Ω(d

√
T ) regret as in the case of a cylinder or capped ball, here the player can

achieve a much smaller O(d2) regret (assuming T is sufficiently large). In fact, this O(d2) regret
bound is tight for our construction – carrying through the lower bound derivation as in Thm. 3, but
for the origin-centered ball, yields an Ω(d2) regret lower bound for sufficiently large T .

5. Loss Vectors from a Finite Set

Many of the regret lower bounds shown in the literature for finite domains (such as for the corners
of the simplex and for the boolean hypercube (Auer et al. (2002); Dani et al. (2007); Audibert et al.
(2011))) use loss vectors from a finite set (e.g. where each entry is binary). Based on analogues to
the full information setting, it is often argued that these lower bound constructions also extend to
the (continuous) convex hull of these domains. In this section, we point out that these analogues
can be dangerous and generally do not hold.

In particular, the theorem below demonstrates a possibly surprising fact: If we perform bandit
linear optimization over a continuous domain, and the loss vectors come from a finite set, then
we can actually get the same regret as in the full information case – generally much smaller than
the lower bound one would hope to achieve. This also holds for non-stochastic adversaries. We
hasten to emphasize that the way we achieve this is “cheating” and not very useful in practice,
since it heavily relies on the ability to perform arbitrary-precision computations. Nevertheless, it
demonstrates that one has to be careful when extending bandit optimization results from a finite
domain to its convex hull. Moreover, it shows that loss vectors supported on a finite set are not
suitable to prove bandit lower bounds for continuous domains.

For simplicity, we will prove the result for the simplex and for binary-valued loss vectors, but
from the proof it is easily seen to be extendable to other continuous domains in general (such as the
hypercube [−1,+1]d), as well as the loss vectors coming from any finite set.

9
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Theorem 4 Suppose W = {w :
∑

iwi = 1,∀i wi ≥ 0} is the probability simplex in Rd, and
suppose the loss vectors are from the set {0, 1}d. Then there exist a deterministic player strategy in
the bandit setting, such that for any adversarial strategy for choosing loss vectors x1, . . . ,xT ,

T∑
t=1

〈xt,wt〉 − min
w∈W

T∑
t=1

〈xt,w〉 ≤ O
(√

log(d)T
)

Proof The proof uses the following observation: In the setting described above, it is possible for the
player to determine xt precisely by perturbing its chosen point by an arbitrarily small amount, and
feed it into a deterministic full-information algorithm for this domain, such as hedge (Freund and
Schapire (1997); Cesa-Bianchi and Lugosi (2006)). Such algorithms attain O(

√
log(d)T ) regret,

from which the result follows.
More precisely, suppose that at the beginning of round t, the full-information algorithm deter-

mines that one should play point ŵt. Let p = dlog10(T )e, and define

w′t = clipp(ŵt) + (10−p−1, 10−p−2, . . . , 10−p−d),

where clipp(w) clips every entry of w (in its decimal representation) to p places after the decimal
point. Note that for any x ∈ {0, 1}d, if we get 〈x,w′t〉 =

∑d
i=1 xiw

′
t,i, then we can determine x

precisely: We just need to look at the digits in locations p + 1, p + 2, . . . , p + d after the decimal
point. A small technical issue is that w′t does not lie in the simplexW , so it cannot be chosen by
the player. To fix this, the player picks wt = 1

‖w′
t‖1

w′t, which indeed lies in the simplex. Given the
loss 〈xt,wt〉, we just multiply it by the known quantity ‖w′t‖1 to get 〈xt,w′t〉, from which we can
read off xt and feed it back to the full-information algorithm.

By standard regret guarantees (e.g. Freund and Schapire (1997); Cesa-Bianchi and Lugosi
(2006))2, we therefore get that

T∑
t=1

〈xt, ŵt〉 − min
w∈W

T∑
t=1

〈xt,w〉 ≤ O
(√

log(d)T
)

(7)

To get a regret bound using the actual plays wt, we note that we can lower bound the left hand side
of Eq. (7) by

T∑
t=1

〈xt,wt〉 − min
w∈W

T∑
t=1

〈xt,w〉 −
T∑
t=1

| 〈xt, ŵt −wt〉 |, (8)

and that

| 〈xt, ŵt −wt〉 | ≤ ‖ŵt −wt‖1 =

∥∥∥∥ 1

‖w′t‖1
w′t −wt

∥∥∥∥ ≤ ∥∥w′t −wt

∥∥
1

+

∥∥∥∥w′t − 1

‖w′t‖1
w′t

∥∥∥∥
1

=
∥∥w′t −wt

∥∥
1

+

∣∣∣∣1− 1

‖w′t‖1

∣∣∣∣ ∥∥w′t∥∥1
=
∥∥w′t −wt

∥∥
1

+
∣∣∥∥w′t∥∥1

− 1
∣∣ .

2. Strictly speaking, these algorithms are phrased so as to minimize maxw∈W
∑T

t=1 〈xt,w〉 −
∑T

t=1 〈xt,wt〉, but
they can be easily converted to our notion of regret by feeding them with 1− xt where 1 is the all-ones vector.

10
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By definition of w′t and the fact that wt is on the simplex, it is easy to verify that ‖w′t‖1 ∈[
1− 1

T , 1 + 1
T

]
and that ‖w′t −wt‖1 ≤

1
T , so the above equals at most 2/T , and we can lower

bound Eq. (8) by
T∑
t=1

〈xt, ŵt〉 − min
w∈W

T∑
t=1

〈xt,w〉 − 2

Combining this with Eq. (7), we get that

T∑
t=1

〈xt,wt〉 − min
w∈W

T∑
t=1

〈xt,w〉 ≤ O(
√

log(d)T ) + 2 = O(
√

log(d)T ).

as required.

We note that this result depends on both the domain being continuous and the losses being
discrete, and the regret can be Ω(

√
dT ) if we remove any of these requirements3

In light of this type of result, we are not aware of explicit minimax regret bounds for the simplex
(or unit 1-norm ball) and the hypercube in the literature. For completeness, we provide such bounds
below. Besides relying on continuous-valued rewards, the lower bounds require the techniques of
Thm. 2 and Thm. 3: For the simplex, we provide an error lower bound relying on the fact that the
simplex is bounded away from the origin; whereas for the hypercube, we rely on it having a flat
surface orthogonal to the origin. The constructions we use are slightly different though, due to the
different shapes of the domains. The formall proofs appear in Appendix A.3 and Appendix A.4.

Theorem 5 Suppose that d > 1, and letW be either the simplex {w : ∀i wi ≥ 0 , ‖w‖1 = 1} or
the unit 1-norm ball {w : ‖w‖1 ≤ 1}. Then for any player strategy returning some ŵ ∈ W , there
exists a valid distribution over loss vectors with mean x̄ such that

E[〈x̄,w〉]− min
w∈W

〈x̄,w〉 ≥ cmin

{
1 ,

√
d

T

}
,

where c is a positive universal constant.

This leads to a Ω(
√
dT ) regret lower bound, which matches the O(

√
dT ) upper bound for the

simplex attained with multi-armed bandit algorithms such as EXP3 (Auer et al. (2002)).

Theorem 6 Suppose that d > 1, and letW = [−1, 1]d. Then for any player strategy, there exists
a valid distribution over loss vectors with mean x̄ such that

E

[
T∑
t=1

〈x̄,wt〉

]
− min

w∈W

T∑
t=1

〈x̄,w〉 ≥ c(d− 1)
√
T

for any T ≥ d4/4, where c is a positive universal constant.

This Ω(d
√
T ) regret lower bound matches the O(d

√
T ) upper bound attained in Bubeck et al.

(2012) (using an algorithm which actually plays only on the corners of the hypercube).

3. Auer et al. (2002) show such a lower bound when the domainW is the corners of the simplex, even though the losses
are discrete and binary-valued. Thm. 5 shows such a lower bound using continuous-valued losses, even though the
domain is the continuous probability simplex.

11
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6. Conclusion

In this paper, we studied the attainable regret for bandit linear optimization problems, focusing on
lower bounds, and made several observations:

• We formally proved that the price of bandit information for linear optimization can be as
large as d (rather than

√
d), settling the conjecture made in Dani et al. (2007). In a stochastic

optimization setting, this implies that even though we get “1/d” as much information in the
bandit setting, compared to the full-information setting, we might need d2 (rather than d)
more queries to achieve a similar error.

• In a bandit setting, the dependence of the regret on the domain geometry can be quite different
than in the full-information setting, sometimes in counter-intuitive ways. Essentially, this is
because changing the domain also changes the information feedback structure. In particular,
supposedly “trivial” changes to the domain, such as shifting it away from the origin or in-
tersecting it with a halfspace, can increase the regret from O(

√
dT ) to Ω(d

√
T ). Moreover,

regret lower bounds for a given domainW don’t necessarily extend to its convex hull.

Our results build on the following observation: At least for stochastic adversaries, and domains
with an Euclidean-norm geometry (such as an Euclidean sphere), the question of whether the regret
scales as

√
d or d crucially depends on whether the player can control the variance in the observed

feedback. In particular, our results indicate that when the feedback is inherently noisy, e.g. of the
form 〈xt,wt〉 + ξt, where ξt is independent sub-Gaussian noise, then even for a benign domain
such as an origin-centered Euclidean sphere, the regret is Θ(d

√
T ) (see Thm. 2 and the following

discussion). We conjecture that with such noisy feedback, Θ(d
√
T ) is the attainable regret for any

domain which is “non-degenerate” under the Euclidean norm. However, proving this conjecture,
and understanding how the regret scales for arbitrary domains, is left to future work.
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Appendix A. Proofs

A.1. Proof of Thm. 2

To simplify notation, suppose that the game takes place in Rd+1 for some d > 0. We denote the
first coordinate as coordinate 0, and the other coordinates as 1, 2, . . . , d.

By Yao’s minimax principle, it is sufficient to provide a randomized strategy to choose a loss
vector distribution D, such that for any deterministic player, the expected error is as defined in the
theorem. In particular, we use the following strategy:

• Choose σ ∈ {−1,+1}d uniformly at random.

• Use the distribution Dσ over loss vectors x, defined as follows: (x1, . . . , xd) is fixed to be
µσ (where µ ≤ 1

2
√
d

is a parameter to be chosen later), and x0 has a Gaussian distribution

N
(
0, 1

36

)
.

First, let us verify that any Dσ is a valid distribution. We have

E[‖x̄‖∗] = sup
w∈W

| 〈E[x],w〉 | = sup
w∈W

∣∣∣∣∣0 + µ

d∑
i=1

σiwi

∣∣∣∣∣ = µ
√
d ≤ 1

2
,

and moreover, for any x in the support of Dσ and for any w ∈ W ,

| 〈x,w〉 | ≤ |3x0|+

∣∣∣∣∣
d∑
i=1

xiwi

∣∣∣∣∣ ≤ |3x0|+ µ
d∑
i=1

|wi| ≤ |3 x0|+ µ
√
d ≤ |3 x0|+

1

2
,

13
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by the fact that ‖·‖1 ≤
√
d ‖·‖2 and our assumption on µ. 3x0 is normally distributed with mean

zero and variance 9 ∗ 1
36 = 1/4, from which it is easily verified that Pr (supw | 〈x,w〉 | > z) ≤

2 exp(−z2/2) for all z ≥ 1 as required.
We now start the proof. For any fixed Dσ, recall that x̄ = Ex∼Dσ [x] = (0, µσ1, . . . , µσd), and

define

w∗ =

(
0,− σ1√

d
, . . . ,− σd√

d

)
= − 1

µ
√
d
x̄.

It is easily verified that w∗ is a minimizer of 〈x̄,w〉 overW . Therefore,

E
[
〈x̄, ŵ〉 − min

w∈W
〈x̄,w〉

]
= E[〈x̄, ŵ −w∗〉] = − µ

√
d E[〈w∗, ŵ −w∗〉]

= µ
√
d E[‖w∗‖22 − 〈w

∗, ŵ〉] =
µ
√
d

2
E[‖w∗‖22 + ‖w∗‖22 − 2 〈w∗, ŵ〉].

Since
∑d

i=1 ŵ
2
i ≤ 1 = ‖w∗‖22 and w∗0 = 0, we can lower bound the above by

µ
√
d

2
E

[
d∑
i=1

(w∗)2
i +

d∑
i=1

ŵ2
i − 2

d∑
i=1

w∗i ŵi

]
=

µ
√
d

2
E

[
d∑
i=1

(w∗i − ŵi)
2

]

=
µ
√
d

2

d∑
i=1

E

[(
σi√
d

+ ŵi

)2
]
≥ µ

√
d

2

d∑
i=1

(
1√
d

)2

Pr(σiŵi ≥ 0)

=
µ

2
√
d

d∑
i=1

Pr(σiŵi ≥ 0), (9)

where Pr(·) is the probability with respect to the joint randomness of σ and ŵ. Since each σi is
uniformly distributed on {−1,+1}, we can lower bound each probability term as follows:

Pr(σiŵi ≥ 0) =
1

2
(Pr(ŵi ≥ 0|σi = 1) + Pr(ŵi ≤ 0|σi = −1))

≥ 1

2
(Pr(ŵi > 0|σi = 1) + 1− Pr(ŵi > 0|σi = −1))

=
1

2
(1− (Pr(ŵi > 0|σi = −1)− Pr(ŵi > 0|σi = 1)))

≥ 1

2
(1− |Pr(ŵi > 0|σi = −1)− Pr(ŵi > 0|σi = 1)|) .

Plugging this back to Eq. (9), we get the lower bound

µ

4
√
d

d∑
i=1

(1− |Pr(ŵi > 0|σi = −1)− Pr(ŵi > 0|σi = 1)|)

=
µ
√
d

4

(
1− 1

d

d∑
i=1

|Pr(ŵi > 0|σi = −1)− Pr(ŵi > 0|σi = 1)|

)
.

To continue, recall that we assume the player is deterministic, in which case w = w(v) is a function
of the sequence of losses v = (v1, . . . , vT ) observed by the player over T rounds. Letting p denote

14
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the probability density function over v, and 1A denote the indicator of the event A, we can rewrite
the above as

µ
√
d

4

(
1− 1

d

d∑
i=1

∣∣∣∣∫
v
1wi(v)>0p(v|σi = −1)dv −

∫
v
1wi>0p(v|σi = 1)dv

∣∣∣∣
)

=
µ
√
d

4

(
1− 1

d

d∑
i=1

∣∣∣∣∫
v
1wi(v)>0 (p(v|σi = −1)− p(v|σi = 1)) dv

∣∣∣∣
)

≥ µ
√
d

4

(
1− 1

d

d∑
i=1

∫
v
|p(v|σi = −1)− p(v|σi = 1)| dv

)
. (10)

Each integral represents the total variation distance between the densities p(·|σi = 1) and p(·|σi =
−1). By Pinsker’s inequality, it can be upper bounded as follows:∫

v
|p(v|σi = −1)− p(v|σi = 1)| dv ≤

√
2 Dkl(p(v|σi = −1)||p(v|σi = 1)), (11)

where Dkl(p||q) is the Kullback-Leibler (KL) divergence between p and q. By the chain rule, this
can be upper bounded in turn by√√√√2

T∑
t=1

Dkl(p(vt|σi = −1, v1, . . . , vt−1) || p(vt|σi = 1, v1, . . . , vt−1)). (12)

Since the player is deterministic, any values v1, . . . , vt−1 determine the point wt that the player will
choose on round t. Thus, the distribution of vt = 〈xt,wt〉 depends on the distribution of xt, as
determined by Dσ. By definition of Dσ:

• Under the condition σi = 1, vt = 〈xt,wt〉 has a Gaussian distribution with mean µwt,i +∑
j∈{1...d}\{i}(µσjwt,j), and variance 1

36w
2
t,0 ≥ 1

36 (note that here we crucially use the do-
main assumptions onW , which imply wt,0 ≥ 1).

• Under the condition σi = −1, vt = 〈xt,wt〉 has a Gaussian distribution with mean −µwt,i +∑
j{1...d}\{i}(µσjwt,j), and variance 1

36w
2
t,0 ≥ 1

36 .

By a standard result on the KL divergence of two Gaussian distributions, we therefore have that
Eq. (12) is at most √√√√2

T∑
t=1

E
[
72µ2w2

t,i|σi = −1
]
.

Recalling that this constitutes an upper bound on the left hand side of Eq. (11), we get∫
v
|p(v|σi = −1)− p(v|σi = 1)| dv ≤

√√√√2
T∑
t=1

E
[
72µ2w2

t,i|σi = −1
]
. (13)

To get rid of the conditioning on σi = −1, note that the total variation is symmetric, so again using
Pinsker’s inequality, we can get a variant of Eq. (11) of the form∫

v
|p(v|σi = −1)− p(v|σi = 1)| dv ≤

√
2 Dkl(p(v|σi = 1)||p(v|σi = −1)).
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Using the same derivation as above, this leads to the upper bound

∫
v
|p(v|σi = −1)− p(v|σi = 1)| dv ≤

√√√√2

T∑
t=1

E
[
72µ2w2

t,i|σi = 1
]
. (14)

Combining Eq. (13) and Eq. (14), and using the elementary inequality min{
√
a,
√
b} ≤

√
a+b

2 and
the fact that σi is uniformly distributed on {−1,+1}, we get

∫
v
|p(v|σi = −1)− p(v|σi = 1)| dv ≤ min


√√√√2

T∑
t=1

E
[
72µ2w2

t,i|σi = −1
]
,

√√√√2

T∑
t=1

E
[
72µ2w2

t,i|σi = 1
]

≤

√√√√144µ2

T∑
t=1

1

2

(
E
[
w2
t,i|σi = −1

]
+ E

[
w2
t,i|σi = 1

])

= µ

√√√√144

T∑
t=1

E[w2
t,i] . (15)

Plugging this back into Eq. (10), we get an expected error lower bound of

µ
√
d

4

1− 1

d

d∑
i=1

µ

√√√√144
T∑
t=1

E[w2
t,i]

 ,

which by Jensen’s inequality is at least

µ
√
d

4

1− µ

√√√√144

d

d∑
i=1

T∑
t=1

E[w2
t,i]

 =
µ
√
d

4

1− µ

√√√√144

d

T∑
t=1

E

[
d∑
i=1

w2
t,i

] .

By definition ofW , we have that
∑d

i=1w
2
t,i ≤ 1 always, so we can lower bound this by

µ
√
d

4

(
1− µ

√
144T

d

)
. (16)

Let us now consider two cases:

• If 1√
d
>
√

d
144T , then we choose µ = 1

2

√
d

144T (which ensures the condition µ ≤ 1
2
√
d

), and

Eq. (16) equals µ
√
d

4 ∗
1
2 = d

16
√

144T
.

• If 1√
d
≤
√

d
144T , then we choose µ = 1

2
√
d

, and Eq. (16) is lower bounded by µ
√
d

4 ∗
1
2 = 1

16 .

Therefore, by choosing µ appropriately, we can lower bound Eq. (16) by min
{

1
16 ,

d
16
√

144T

}
≥

0.005 min
{

1, d√
T

}
. Since this lower bound holds for a domain in Rd+1 for any d > 0, we get a

0.005 min
{

1, d−1√
T

}
lower bound for a domain in Rd for any d > 1, as required.
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A.2. Proof of Thm. 3

As in the proof of Thm. 2, to simplify notation, we assume the game takes place in Rd+1 for some
d > 0, so the domain isW = [−1,+1]× {w ∈ Rd : ‖w‖2 ≤ 1}. We denote the first coordinate as
coordinate 0, and the other coordinates as 1, 2, . . . , d.

The proof uses a somewhat different loss vector distribution than that of Thm. 2, designed to
force the algorithm to choose points far from and to one side of the origin to ensure small regret.

By Yao’s minimax principle, it is sufficient to provide a randomized strategy to choose a loss
vector distribution D, such that for any deterministic player, the expected error is as defined in the
theorem. In particular, we use the following strategy:

• Choose σ ∈ {−1,+1}d uniformly at random.

• Use the distribution Dσ over loss vectors x, defined as follows: (x1, . . . , xd) has a Gaussian
distribution N

(
µσ, 1

16dI
)

(where µ ≤ 1
4
√
d

is a parameter to be chosen later), and x0 is

chosen independently according to a Gaussian distribution N
(
−1

4 ,
1
16

)
. Note that this is

different than the construction in the proof of Thm. 2, and the distribution of x0 is not zero-
mean. The idea is that wt,0 will have to be close to 1 most of the time to get low regret, hence
the points queried are far from and to one side of the origin.

First, let us verify that any Dσ is a valid distribution. We have

E[‖x̄‖∗] = sup
w∈W

| 〈E[x],w〉 | = sup
w∈W

∣∣∣∣∣14 + µ

d∑
i=1

σiwi

∣∣∣∣∣ =
1

4
+ µ
√
d ≤ 1

4
+

1

4
< 1.

Moreover, for any x in the support of Dσ and for any w ∈ W , by the Cauchy-Schwartz inequality,

| 〈x,w〉 | ≤ |x0|+

∣∣∣∣∣
d∑
i=1

xiwi

∣∣∣∣∣ ≤ |x0|+

√√√√ d∑
i=1

x2
i

√√√√ d∑
i=1

w2
i ≤ |x0|+

√√√√ d∑
i=1

x2
i .

x0 is normally distributed with mean −1/4 and variance 1/16, and each xi is independently nor-
mally distributed with mean at most 1/4

√
d and variance 1/16d, from which it can be verified using

Gaussian tail bounds that

Pr

(
sup
w
| 〈x,w〉 | > z

)
≤ Pr

|x0|+

√√√√ d∑
i=1

x2
i > z

 ≤ 2 exp(−z2/2)

for all z ≥ 1 as required.
We now start the proof. Define the scalar and d-dimensional vectors

ŵ0 =
1

T

T∑
t=1

wt,0 , ŵ =
1

T

T∑
t=1

(wt,1, wt,2, . . . , wt,d) , w∗ = − 1√
d
σ.

For any fixedDσ, recall that x̄ = Ex∼Dσ [x] =
(
−1

4 , µσ1, . . . , µσd
)

= −
(

1
4 , µ
√
dw∗1, . . . , µ

√
dw∗d

)
.

It is therefore easily verified that (1, w∗1, . . . , w
∗
d) is a minimizer of 〈x̄,w〉 over W . Recalling the
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formulation of regret in Eq. (3), we can write it as

T E

[〈
x̄,

1

T

T∑
t=1

wt

〉
− min

w∈W
〈x̄,w〉

]
= T E

[
1

4
(1− ŵ0)−

〈
µ
√
dw∗, ŵ

〉
+
〈
µ
√
dw∗,w∗

〉]
= T E

[
1

4
(1− ŵ0) + µ

√
d 〈w∗,w∗ − ŵ〉

]
= T E

[
1

4
(1− ŵ0) + µ

√
d
(
‖w∗‖22 − 〈w

∗, ŵ〉
)]

=
T

4
E [1− ŵ0] +

µ
√
dT

2
E[‖w∗‖22 + ‖w∗‖22 − 2 〈w∗, ŵ〉]. (17)

By definition of the domain, each (wt,1, . . . , wt,d) has norm at most 1, and therefore ŵ, which is
their average, also has norm at most 1. Therefore,

∑d
i=1 ŵ

2
i ≤ 1 = ‖w∗‖22, so we can lower bound

the second expectation above by

E

[
d∑
i=1

(w∗i )
2 +

d∑
i=1

ŵ2
i − 2

d∑
i=1

w∗i ŵi

]
= E

[
d∑
i=1

(w∗i − ŵi)
2

]
=

d∑
i=1

E

[(
σi√
d

+ ŵi

)2
]

≥
d∑
i=1

(
1√
d

)2

Pr(σiŵi ≥ 0) =
1

d

d∑
i=1

Pr(σiŵi ≥ 0),

where Pr(·) is the probability with respect to the joint randomness of σ and ŵ. Plugging this back
into Eq. (17), we get a regret lower bound of the form

T

4
E [1− ŵ0] +

µT

2
√
d

d∑
i=1

Pr(σiŵi ≥ 0).

These probabilities can now be lower bounded as in the proof of Thm. 2 (see the derivation following
Eq. (9)), which imply that

T

4
E [1− ŵ0] +

µT

2
√
d

d∑
i=1

Pr(σiŵi ≥ 0)

≥ T

4
E [1− ŵ0] +

µ
√
dT

4

(
1− 1

d

d∑
i=1

∫
v
|p(v|σi = −1)− p(v|σi = 1)|dv

)
, (18)

where v = (v1, . . . , vT ) are the sequence of losses observed by the player over the T rounds, and
p is the probability density function over v. As in the proof of Thm. 2, we can now use Pinsker’s
inequality and the chain rule to upper the integral as follows:

∫
v
|p(v|σi = −1)−p(v|σi = 1)|dv ≤

√√√√2

T∑
t=1

Dkl (p(vt|σi = 1, v1 . . . vt−1)||p(vt|σi = −1, v1 . . . vt−1)),

(19)
whereDkl is the KL divergence. Since the player is deterministic, any values v1, . . . , vt−1 determine
the point wt that the player will choose on round t. Thus, the distribution of vt = 〈xt,wt〉 depends
on the distribution of xt, as determined by Dσ. By definition of Dσ:

18
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• Under the condition σi = 1, vt = 〈xt,wt〉 has a Gaussian distribution with mean
−1

4wt,0 + µwt,i +
∑

j∈{1...d}\{i}(µσjwt,j), and variance 1
16w

2
t,0 +

∑d
i=1

1
16dw

2
t,i.

• Under the condition σi = −1, vt = 〈xt,wt〉 has a Gaussian distribution with mean
−1

4wt,0 − µwt,i +
∑

j{1...d}\{i}(µσjwt,j), and variance 1
16w

2
t,0 +

∑d
i=1

1
16dw

2
t,i.

By a standard result on the KL divergence of two Gaussian distributions, we therefore have that
Eq. (19) is at most √√√√2

T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

∣∣∣∣∣σi = 1

]
. (20)

As in the proof of Thm. 2, we can also upper bound Eq. (19) using the reverse order of probabilities:

∫
v
|p(v|σi = −1)−p(v|σi = 1)|dv ≤

√√√√2
T∑
t=1

Dkl (p(vt|σi = −1, v1 . . . vt−1)||p(vt|σi = 1, v1 . . . vt−1)),

which leads to Eq. (19) being upper bounded by√√√√2

T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

∣∣∣∣∣σi = −1

]
. (21)

Combining Eq. (20) and Eq. (21) and using the elementary inequality min{
√
a,
√
b} ≤

√
a+b

2 and
the fact that σi is uniformly distributed on {−1,+1}, we get∫

v
|p(v|σi = −1)− p(v|σi = 1)| dv

≤ min


√√√√2

T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

∣∣∣∣∣σi = −1

]
,

√√√√2

T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

∣∣∣∣∣σi = 1

]
≤

√√√√64µ2

T∑
t=1

1

2

(
E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

∣∣∣∣∣σi = −1

]
+ E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

∣∣∣∣∣σi = 1

])

= 8µ

√√√√ T∑
t=1

E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

]
. (22)

Plugging this back into Eq. (18), we get an expected error lower bound of

T

4
E [1− ŵ0] +

µ
√
dT

4

1− 1

d

d∑
i=1

8µ

√√√√ T∑
t=1

E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

] ,
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which by Jensen’s inequality is at least

T

4
E [1− ŵ0] +

µ
√
dT

4

1− 8µ

√√√√1

d

d∑
i=1

T∑
t=1

E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

]
=

T

4
E [1− ŵ0] +

µ
√
dT

4

1− 8µ

√√√√1

d

T∑
t=1

E

[ ∑d
i=1w

2
t,i

w2
t,0 +

∑d
i=1

1
dw

2
t,i

]

=
T

4
E [1− ŵ0] +

µ
√
dT

4

1− 8µ

√√√√√√1

d

T∑
t=1

E

 1
w2

t,0∑d
i=1 w

2
t,i

+ 1
d


 .

By definition of W , we have that
∑d

i=1w
2
t,i ≤ 1 always. Using this and recalling that ŵ0 =

1
T

∑T
t=1wt,0, we can lower bound the above by

1

4

T∑
t=1

E [1− wt,0] +
µ
√
dT

4

1− 8µ

√√√√1

d

T∑
t=1

E

[
1

w2
t,0 + 1

d

] . (23)

The trick now is to argue that not matter what are the values of wt,0, this lower bound will be large:
Either wt,0 will tend to be bounded away from 1, and then Eq. (23) will be large due to the first
term; or that wt,0 will tend to be very close to 1, but then Eq. (23) will be large due to the second
term. To make this precise, we use the following technical lemma:

Lemma 7 For any integer d ≥ 1, and for any w ∈ [−1, 1], it holds that 1
w2+ 1

d

≤ d(1− |w|) + 1.

Proof Since both sides of the inequality are the same for w and −w, we can assume without loss
of generality, that w ∈ [0, 1], and prove that 1

w2+ 1
d

≤ d(1− w) + 1 over this domain.

By algebraic manipulations, this inequality is equivalent to the assertion that (d+1)w2−dw3−
w ≥ −1

d , or equivalently,

w(1− w)(dw − 1) ≥ −1

d
.

Considering the domain of w, the left hand side is non-positive only when w ∈ [0, 1/d], because of
the third term, but in that regime (dw − 1) ∈ [−1, 0] and (1− w) ∈ [0, 1], and therefore

w(1− w)(dw − 1) ≥ w ∗ 1 ∗ (−1) = −w ≥ −1

d

as required.
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Applying this inequality, we can lower bound Eq. (23) by

1

4

T∑
t=1

E [1− |wt,0|] +
µ
√
dT

4

1− 8µ

√√√√1

d

T∑
t=1

E [d(1− |wt,0|) + 1)]


=

1

4

T∑
t=1

E [1− |wt,0|] +
µ
√
dT

4

1− 8µ

√√√√T

d
+

T∑
t=1

E [1− |wt,0|]


≥ min

z∈[0,T ]

(
z

4
+
µ
√
dT

4

(
1− 8µ

√
T

d
+ z

))
,

Recalling that µ is a free parameter, let us choose µ = 1
16

√
d
T (which satisfies the assumption

µ ≤ 1
4
√
d

, since we assume T ≥ d4/16). We therefore get

1

4
min
z∈[0,T ]

(
z +

1

16
d
√
T

(
1− 1

2

√
1 +

d

T
z

))
. (24)

Note that this expression is convex with respect to z, and by differentiating, has an extremal point
at

z = 2−12d3 − T

d
.

Since we assume T ≥ d4/16, this point is non-positive, and therefore the minimum in Eq. (24) is
attained at z = 0, where it equals

1

64
d
√
T

(
1− 1

2

)
=

1

128
d
√
T .

Since this lower bound holds for a domain in Rd+1 for any d > 0, we get a 1
128(d − 1)

√
T lower

bound for a domain in Rd for any d > 1, as required.

A.3. Proof of Thm. 5

By Yao’s minimax principle, it is sufficient to provide a randomized strategy to choose a loss vector
distributionD, such that for any deterministic player, the expected error is as defined in the theorem.
In particular, we use the following strategy:

• Choose J ∈ {1, . . . , d} uniformly at random.

• Use the distribution DJ over loss vectors x, defined as N (−µeJ , 1
4I) (where µ ≤ 1

2 is a
parameter to be chosen later).

First, let us verify that any DJ is a valid distribution. We have

E[‖x̄‖∗] = sup
w∈W

| 〈E[x],w〉 | = sup
w∈W

|µwj | ≤ µ ≤
1

2
,
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and moreover, for any x in the support of Dσ and for any w ∈ W , 〈x,w〉 is Gaussian with mean
µwj ∈

[
−1

2 ,
1
2

]
and variance 1

4

∑d
i=1w

2
i ≤ 1

4

∑d
i=1 |wi| ≤

1
4 , from which it is easily verified that

Pr (supw | 〈x,w〉 | > z) ≤ 2 exp(−z2/2) for all z ≥ 1 as required.
We now start the proof. For any fixed Dσ, recall that x̄ = −µej , and define w∗ = ej . It is

easily verified that w∗ is a minimizer of 〈x̄,w〉 overW . Also, let Ej denote expectation assuming
that J = j, and recall that J is chosen uniformly at random from {1, . . . , d}. Therefore,

E
[
〈x̄, ŵ〉 − min

w∈W
〈x̄,w〉

]
=

1

d

d∑
j=1

Ej [µ− µE[ŵj ] = µ− µ

d

d∑
j=1

Ej [ŵj ].

Define the reference distribution D0 = N (0, 1
2I) over loss vectors, which has zero-mean, and let

E0 denote expectation assuming the loss vectors are chosen from that distribution. Then we can
lower bound the above by

µ− µ

d

d∑
j=1

(E0[ŵj ] + |E0[ŵj ]− Ej [ŵj ]|) ≥ µ− µ

d

E0

 d∑
j=1

|ŵj |

+

d∑
j=1

|E0[ŵj ]− Ej [ŵj ]|


≥
(

1− 1

d

)
µ− µ

d

d∑
j=1

|E0[ŵj ]− Ej [ŵj ]| , (25)

where in the last inequality we used the fact that w has 1-norm at most 1. Now, recall that we
assume that the player is deterministic, hence ŵ = ŵ(v) is a deterministic function of the sequence
of loss observations v = (v1, . . . , vT ) made by the player over T rounds. Letting p0(v) and pj(v)
denote the density functions with respect toD0,Dj respectively, we can upper bound the expectation
differences in Eq. (25) as follows:

d∑
j=1

|E0[ŵj ]− Ej [ŵj ]| =
d∑
j=1

∣∣∣∣∫
v
ŵj(v)(p0(v)− pj(v))dv

∣∣∣∣
≤

d∑
j=1

∫
v
|ŵj(v)| |p0(v)− pj(v)| dv

≤
d∑
j=1

∫
v
|p0(v)− pj(v)| dv.

By Pinsker’s inequality, and the chain rule, this can be upper bounded by

d∑
j=1

√√√√2
T∑
t=1

Dkl (p0(vt|v1 . . . vt−1)||pj(vt|v1 . . . vt−1)), (26)

where Dkl(p||q) is the Kullback-Leibler (KL) divergence between p and q. Since the player is
deterministic, any values v1, . . . , vt−1 determine the point wt that the player will choose on round
t. Thus, the distribution of vt = 〈xt,wt〉 depends on the distribution of xt:

• Under pj (corresponding toDj), vt = 〈xt,wt〉 has a Gaussian distribution with mean−µwt,j
and variance 1

4

∑d
i=1w

2
t,i = 1

4 ‖wt‖2.
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• Under p0 (corresponding to D0), vt = 〈xt,wt〉 has a Gaussian distribution with mean 0 and
variance 1

4 ‖wt‖2.

By a standard result on the KL divergence of two Gaussian distributions, we therefore have that
Eq. (26) is at most

d∑
j=1

√√√√2
T∑
t=1

E0

[
2µ2w2

t,j

‖wt‖2

]
.

By Jensen’s inequality, this is at most

d
1

d

d∑
j=1

√√√√2
T∑
t=1

E0

[
2µ2w2

t,j

‖wt‖2

]
≤ d

√√√√2

d

d∑
j=1

T∑
t=1

E0

[
2µ2w2

t,j

‖wt‖2

]

= d

√√√√2

d

T∑
t=1

E0

[
2
∑d

j=1 µ
2w2

t,j

‖wt‖2

]
= d

√√√√2

d

T∑
t=1

(2µ2) = 2µ
√
dT .

Plugging this back into Eq. (25), we get an error lower bound of(
1− 1

d

)
µ− 2µ2

√
T

d
= µ

(
1− 1

d
− µ

√
T

d

)
≥ µ

(
1

2
− µ

√
T

d

)
, (27)

where we used the fact that d > 1. Let us now consider two cases:

• If T ≥ d
4 , then we choose µ = 1

4

√
d
T (which ensures the condition µ ≤ 1

2 ), and Eq. (27)

equals 1
4

√
d
T

(
1
2 −

1
4

)
= 1

16

√
d
T .

• If T < d
4 , then we choose µ = 1

2 , and Eq. (27) is lower bounded by 1
2

(
1
2 −

1
2

√
1
4

)
= 1

8 .

Therefore, by choosing µ appropriately, we can lower bound Eq. (16) by min

{
1
8 ,

1
16

√
d
T

}
≥

1
16 min

{
1,
√

d
T

}
as required.

A.4. Proof of Thm. 6

As in the proof of Thm. 3, to simplify notation, we assume the game takes place in Rd+1 for some
d > 0, so the domain isW = [−1,+1] × [−1,+1]d. We denote the first coordinate as coordinate
0, and the other coordinates as 1, 2, . . . , d.

The proof uses a similar loss vector distribution as that of Thm. 3, but with a different scaling
to ensure a valid distribution.

By Yao’s minimax principle, it is sufficient to provide a randomized strategy to choose a loss
vector distribution D, such that for any deterministic player, the expected error is as defined in the
theorem. In particular, we use the following strategy:

• Choose σ ∈ {−1,+1}d uniformly at random.
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• Use the distribution Dσ over loss vectors x, defined as follows: (x1, . . . , xd) has a Gaussian
distributionN

(
µσ, 1

16d2
I
)

(where µ ≤ 1
4d is a parameter to be chosen later), and x0 is chosen

independently according to a Gaussian distribution N
(
−1

4 ,
1
16

)
.

First, let us verify that any Dσ is a valid distribution. We have

E[‖x̄‖∗] = sup
w∈W

| 〈E[x],w〉 | = sup
w∈W

∣∣∣∣∣14 + µ

d∑
i=1

σiwi

∣∣∣∣∣ =
1

4
+ µd ≤ 1

4
+

1

4
< 1.

Moreover, for any x in the support of Dσ and for any w ∈ W , by Hölder’s inequality,

| 〈x,w〉 | ≤ |x0|+
d∑
i=1

|xi|.

x0 is normally distributed with mean −1/4 and variance 1/16, and each xi is independently nor-
mally distributed with mean at most 1/4d and variance 1/16d2, from which it can be verified using
Gaussian tail bounds that

Pr

(
sup
w
| 〈x,w〉 | > z

)
≤ Pr

(
|x0|+

d∑
i=1

|xi| > z

)
≤ 2 exp(−z2/2)

for all z ≥ 1 as required.
We now start the proof. Define the scalar and d-dimensional vectors

ŵ0 =
1

T

T∑
t=1

wt,0 , ŵ =
1

T

T∑
t=1

(wt,1, wt,2, . . . , wt,d) , w∗ = −σ.

For any fixed Dσ, recall that x̄ = Ex∼Dσ [x] =
(
−1

4 , µσ1, . . . , µσd
)
. It is therefore easily verified

that (1, σ1, . . . , σd) is a minimizer of 〈x̄,w〉 overW . Recalling the formulation of regret in Eq. (3),
we can write it as

T E

[〈
x̄,

1

T

T∑
t=1

wt

〉
− min

w∈W
〈x̄,w〉

]
= T E

[
1

4
(1− ŵ0) + µd− µ

d∑
i=1

(−σi)ŵi

]

=
T

4
E[1− ŵ0] + µT

(
d−

d∑
i=1

E [(−σi)ŵi]

)
(28)

Recalling that each σi is uniformly distributed on {−1,+1}, the sum of expectations can be upper
bounded as follows:

d∑
i=1

E [(−σi)ŵi] =
1

2

d∑
i=1

(E[ŵi|σi = −1] + E[−ŵi|σi = 1])

=
1

2

d∑
i=1

(E[ŵi|σi = −1]− E[ŵi|σi = 1]) .
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Since the player’s strategy is assumed to be deterministic, then ŵi = ŵi(v) is a deterministic
function of the sequence of losses v = (v1, . . . , vT ) observed by the player over the T rounds.
Letting p(·) denote the probability density function of v, we can rewrite the above as

1

2

d∑
i=1

∫
v
ŵi(v)(p(v|σi = −1)− p(v|σi = 1))dv ≤ 1

2

d∑
i=1

∫
v
|ŵi(v)||(p(v|σi = −1)− p(v|σi = 1))|dv

≤ 1

2

d∑
i=1

∫
v
|(p(v|σi = −1)− p(v|σi = 1))|dv, (29)

where we used the fact that ŵi ∈ [−1,+1] by the domain assumptions. We can now use Pinsker’s
inequality and the chain rule to upper the integral as follows:

∫
v
|p(v|σi = −1)−p(v|σi = 1)|dv ≤

√√√√2
T∑
t=1

Dkl (p(vt|σi = 1, v1 . . . vt−1)||p(vt|σi = −1, v1 . . . vt−1)),

(30)
whereDkl is the KL divergence. Since the player is deterministic, any values v1, . . . , vt−1 determine
the point wt that the player will choose on round t. Thus, the distribution of vt = 〈xt,wt〉 depends
on the distribution of xt, as determined by Dσ. By definition of Dσ:

• Under the condition σi = 1, vt = 〈xt,wt〉 has a Gaussian distribution with mean
−1

4wt,0 + µwt,i +
∑

j∈{1...d}\{i}(µσjwt,j), and variance 1
16w

2
t,0 +

∑d
i=1

1
16d2

w2
t,i.

• Under the condition σi = −1, vt = 〈xt,wt〉 has a Gaussian distribution with mean
−1

4wt,0 − µwt,i +
∑

j{1...d}\{i}(µσjwt,j), and variance 1
16w

2
t,0 +

∑d
i=1

1
16d2

w2
t,i.

By a standard result on the KL divergence of two Gaussian distributions, we therefore have that
Eq. (30) is at most √√√√2

T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

∣∣∣∣∣σi = 1

]
. (31)

Applying Pinsker’s inequality on the reverse order of probabilities in Eq. (30), we can also upper
Eq. (30) by

∫
v
|p(v|σi = −1)−p(v|σi = 1)|dv ≤

√√√√2
T∑
t=1

Dkl (p(vt|σi = −1, v1 . . . vt−1)||p(vt|σi = 1, v1 . . . vt−1)),

which leads to Eq. (30) being upper bounded by√√√√2
T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

∣∣∣∣∣σi = −1

]
. (32)
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Combining Eq. (31) and Eq. (32) and using the elementary inequality min{
√
a,
√
b} ≤

√
a+b

2 and
the fact that σi is uniformly distributed on {−1,+1}, we get∫
v
|p(v|σi = −1)− p(v|σi = 1)| dv

≤ min


√√√√2

T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

∣∣∣∣∣σi = −1

]
,

√√√√2
T∑
t=1

E

[
32µ2w2

t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

∣∣∣∣∣σi = 1

]
≤

√√√√64µ2

T∑
t=1

1

2

(
E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

∣∣∣∣∣σi = −1

]
+ E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

∣∣∣∣∣σi = 1

])

= 8µ

√√√√ T∑
t=1

E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

]
.

Plugging this back into Eq. (29), and that in turn into Eq. (28), we get an expected error lower bound
of

T

4
E [1− ŵ0] + µT

d− 4µ
d∑
i=1

√√√√ T∑
t=1

E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

] ,

which by Jensen’s inequality is at least

T

4
E [1− ŵ0] + µT

d− 4µd

√√√√1

d

d∑
i=1

T∑
t=1

E

[
w2
t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

]
=

T

4
E [1− ŵ0] + µTd

1− 4µ

√√√√1

d

T∑
t=1

E

[ ∑d
i=1w

2
t,i

w2
t,0 +

∑d
i=1

1
d2
w2
t,i

]

=
T

4
E [1− ŵ0] + µTd

1− 4µ

√√√√√√1

d

T∑
t=1

E

 1
w2

t,0∑d
i=1 w

2
t,i

+ 1
d2


 .

By definition of W , we have that
∑d

i=1w
2
t,i ≤

∑d
i=1 |wt,i| ≤ d always. Using this and recalling

that ŵ0 = 1
T

∑T
t=1wt,0, we can lower bound the above by

1

4

T∑
t=1

E [1− wt,0] + µTd

1− 4µ

√√√√ T∑
t=1

E

[
1

w2
t,0 + 1

d

] .
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Using Lemma 7 from the proof of Thm. 3, this expression can be lower bounded by

1

4

T∑
t=1

E [1− |wt,0|] + µTd

1− 4µ

√√√√ T∑
t=1

E [d(1− |wt,0|) + 1)]


=

1

4

T∑
t=1

E [1− |wt,0|] + µTd

1− 4µ

√√√√T + d

T∑
t=1

E [1− |wt,0|]


≥ min

z∈[0,T ]

(z
4

+ µTd
(

1− 4µ
√
T + dz

))
,

Recalling that µ is a free parameter, let us choose µ = 1
8

√
1
T (which satisfies the assumption

µ ≤ 1
4d , since we assume T ≥ d4/4). We therefore get

min
z∈[0,T ]

(
z

4
+

1

8
d
√
T

(
1− 1

2

√
1 +

d

T
z

))
. (33)

Note that this expression is convex with respect to z, and by differentiating, has an extremal point
at

z =
1

64
d3 − T

d
.

Since we assume T ≥ d4/4, this point is non-positive, and therefore the minimum in Eq. (33) is
attained at z = 0, where it equals

1

8
d
√
T

(
1− 1

2

)
=

1

16
d
√
T .

Since this lower bound holds for a domain in Rd+1 for any d > 0, we get a 1
16(d − 1)

√
T lower

bound for a domain in Rd for any d > 1, as required.

Appendix B. From Sub-Gaussian to Bounded Distributions

As discussed in Sec. 2, our results use sub-Gaussian distributions rather than the more standard
bounded distribution assumption. In this appendix, we explain why this is really without any loss
of generality, and that lower bounds for the sub-Gaussian setting can be readily converted to the
bounded setting, at the cost of a

√
log(T ) factor.

In particular, suppose there is a sub-Gaussian distribution D over the cost vectors, for which
any player’s strategy incurs expected error/regret at least R. The trick is to consider a “shrinked”
distribution, which simply re-scales all cost vectors by Θ(1/

√
log(T )). Then the regret will be

Ω(R/
√

log(T )), and because the distribution is sub-Gaussian, then with very high probability all
the T cost vectors x1, . . . ,xT satisfy ‖xt‖∗ ≤ 1. This means that even if we modify the distribution
to force it to be bounded, the expected error regret will still be Ω(R/

√
log(T )). We note that a

similar technique was used implicitly in Dekel et al. (2014).
A more formal result can be stated as follows:
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Theorem 8 Suppose that there exists a distributionD satisfying ‖Ex∼D[x]‖∗ = 1 and Prx∼D(‖x‖∗ >
z) ≤ 2 exp(−z2/2) for all z ≥ 1, such that for any player’s strategy, the expected error/regret is
at least R. Assuming T > 1, there exists a distribution D′ satisfying Prx∼D′(‖x‖∗ ≤ 1) = 1,

for which the expected error/regret of any player is at least c
(

R√
log(T )

− 1
T 4

)
for some universal

constant c.

Since the regret R is virtually always at least Ω(1/T ), this means that we get the same error/regret
up to constant and

√
log(T ) factors. The 1/T 4 term can be replaced by 1/T s for arbitrarily large s,

at the cost of affecting the c constant.
Proof [Proof Sketch] Let p be a parameter to be determined later. Given the distribution D, we
algorithmically define D′ and an auxiliary distribution D̂ as follows:

• D̂ samples x according to D and returns 1

p
√

log(T )
x. Let x̄D̂ = ED̂[x].

• D′ samples x according to D̂, and returns x if ‖x‖∗ ≤
1
2 , and otherwise returns ED̂

[
x
∣∣‖x‖∗ ≥ 1

2

]
.

Let x̄D′ = ED′ [x].

It is easily verified that x̄D̂ = x̄D′ . Moreover, if p is large enough, then D′ always returns a
vector such that ‖x‖∗ ≤ 1, and thus satisfies the lemma’s requirement. In that case, we also have∥∥x̄D̂∥∥∗ = ‖x̄D′‖∗ ≤ 1.

It remains to show the error/regret lower bound. We sketch the proof for the expected error
- the proof for the expected regret is identical by replacing ŵ by 1

T

∑T
t=1 wt. By the lemma’s

assumptions, we know that

ED
[
〈x̄D, ŵ〉 − min

w∈W
〈x̄D,w〉

]
≥ R,

where ED signifies expectation with respect to drawing cost vectors from D, and x̄D = ED[x].
Since D̂ simply scales the vectors drawn from D by a fixed factor 1

p
√

log(T )
, we have

ED̂

[〈
x̄D̂, ŵ

〉
− min

w∈W

〈
x̄D̂,w

〉]
≥ R

p
√

log(T )
.

Now, letA be the event that for all cost vectors x1, . . . ,xT , we have ‖xt‖∗ ≤
1
2 . By the assumptions

on D, D̂ and a union bound, PrD̂(¬A) ≤ 2T 1−p2/8 for all sufficiently large p. From the displayed
equation above, it follows that

R

p
√

log(T )
≤ ED̂

[〈
x̄D̂, ŵ

〉
− min

w∈W

〈
x̄D̂,w

〉]
= PrD̂(A)ED̂

[〈
x̄D̂, ŵ

〉
− min

w∈W

〈
x̄D̂,w

〉∣∣∣∣A]+ PrD̂(¬A)ED̂

[〈
x̄D̂, ŵ

〉
− min

w∈W

〈
x̄D̂,w

〉∣∣∣∣¬A]
≤ ED̂

[〈
x̄D̂, ŵ

〉
− min

w∈W

〈
x̄D̂,w

〉∣∣∣∣A]+ 2T 1−p2/8 ∗ 2 max
w∈W

|
〈
x̄D̂,w

〉
|

≤ ED̂

[〈
x̄D̂, ŵ

〉
− min

w∈W

〈
x̄D̂,w

〉∣∣∣∣A]+ 4T 1−p2/8,
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where we used the assumption that maxw∈W |
〈
w, x̄D̂

〉
| =

∥∥x̄D̂∥∥∗ ≤ 1. Switching sides and using
the assumption that x̄D̂ = x̄D′ , we get that

ED̂

[
〈x̄D′ , ŵ〉 − min

w∈W
〈x̄D′ ,w〉

∣∣∣∣A] ≥ R

p
√

log(T )
− 4T 1−p2/8.

But conditioned on A, the distribution of x1, . . . ,xT is the same under D̂ and D′, and therefore

ED′

[
〈x̄D′ , ŵ〉 − min

w∈W
〈x̄D′ ,w〉

∣∣∣∣A′] ≥ R

p
√

log(T )
− 4T 1−p2/8,

where A′ is the event that all cost vectors x1, . . . ,xT were drawn based on D̂ without modification.
Since the error term is non-negative, this implies that

ED′

[
〈x̄D′ , ŵ〉 − min

w∈W
〈x̄D′ ,w〉

]
≥ PrD′(A′)ED′

[
〈x̄D′ , ŵ〉 − min

w∈W
〈x̄D′ ,w〉

∣∣∣∣A′]
≥ PrD′(A′)

(
R

p
√

log(T )
− 4T 1−p2/8

)
.

Finally, we have that PrD′(A′) = PrD̂(A) ≥ 1− 2T 1−p2/8, so we get

ED′

[
〈x̄D′ , ŵ〉 − min

w∈W
〈x̄D′ ,w〉

]
≥
(

1− 2T 1−p2/8
)( R

p
√

log(T )
− 4T 1−p2/8

)
.

Picking p sufficiently large, the result follows.
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