
JMLR: Workshop and Conference Proceedings vol 40:1–12, 2015

An Almost Optimal PAC Algorithm

Hans Ulrich Simon HANS.SIMON@RUB.DE

Horst Görtz Institute for IT Security and Faculty of Mathematics, Ruhr-University Bochum, Germany

Abstract
The best currently known general lower and upper bounds on the number of labeled examples
needed for learning a concept class in the PAC framework (the realizable case) do not perfectly
match: they leave a gap of order log(1/ε) (resp. a gap which is logarithmic in another one of the
relevant parameters). It is an unresolved question whether there exists an “optimal PAC algorithm”
which establishes a general upper bound with precisely the same order of magnitude as the gen-
eral lower bound. According to a result of Auer and Ortner (2007), there is no way for showing
that arbitrary consistent algorithms are optimal because they can provably differ from optimality
by factor log(1/ε). In contrast to this result, we show that every consistent algorithm L (even a
provably suboptimal one) induces a family (LK)K≥1 of PAC algorithms (with 2K − 1 calls of
L as a subroutine) which come very close to optimality: the number of labeled examples needed
by LK exceeds the general lower bound only by factor `K(1/ε) where `K denotes (a truncated
version of) the K-times iterated logarithm. Moreover, LK is applicable to any concept class C of
finite VC-dimension and it can be implemented efficiently whenever the consistency problem for
C is feasible. We show furthermore that, for every consistent algorithm L, L2 is an optimal PAC
algorithm for precisely the same concept classes which were used by Auer and Ortner (2007) for
showing the existence of suboptimal consistent algorithms. This can be seen as an indication that
LK may have an even better performance than it is suggested by our worstcase analysis.
Keywords: PAC-learning, estimation error, sample size, optimal PAC algorithm, majority vote

1. Introduction

More than thirty years after the introduction of the PAC-learning framework (the realizable case)
by Valiant (1984), it is still not completely known how many labeled examples are needed for
learning successfully in this model (i.e., for returning a hypothesis that, with a probability of at least
1− δ, is correct up to an error of at most ε). The following lower and upper bounds in terms of ε, δ
and the VC-dimension d of the underlying concept class are known:

• Ehrenfeucht et al. (1989) have shown that every PAC algorithm needs at least
Ω
(
1
ε

(
d+ log

(
1
δ

)))
labeled examples.

• Blumer et al. (1989) have shown that every consistent algorithm needs no more than
O
(
1
ε

(
d log

(
1
ε

)
+ log

(
1
δ

)))
labeled examples. As shown by Auer and Ortner (2007), this

upper bound is actually tight for some consistent algorithms.

These bounds coincide (in their order of magnitude) except for the factor log(1/ε) that occurs
in the upper bound only. Warmuth (2004) raised the question whether there exists an “optimal
PAC algorithm” which does not need more than O

(
1
ε

(
d+ log

(
1
δ

)))
labeled examples (the same

order of magnitude as in the general lower bound). He conjectured that the so-called “1-inclusion

c© 2015 H.U. Simon.

SIMON

graph algorithm” of Haussler et al. (1994) fits this purpose. While this conjecture is still open, the
following progress has been made:

• Hanneke (2009) has shown that the additional factor log(1/ε) in the upper bound can be
replaced by the logarithm of the so-called disagreement coefficient associated with C. Note
that a constant disagreement coefficient would blur the distinction between the upper and the
lower bound.

• Building on the work by Hanneke (2009) but using an alternative definition1 of the disagree-
ment coefficient, Darnstädt (2014) proved that the closure algorithm (which always returns the
smallest consistent hypothesis from C) is an optimal PAC algorithm for intersection-closed
classes.2 In view of Warmuth’s conjecture, it is interesting to note that the 1-inclusion graph
algorithm, when applied to intersection-closed classes, collapses to the closure algorithm.

In this paper, we present a family (LK)K≥1 of PAC algorithms which are almost optimal in the
following precise sense. For z > 0, let log(1)(z) = log(z) and log(K)(z) = log(log(K−1)(z)), i.e.,
log(K) is the K-times iterated logarithm. Let `K(z) = max{2, log(K)(z)} be a truncated version
of log(K) whose values cannot drop below 2. Then LK applied to a concept class of VC-dimension
d requires only O

(
1
ε

(
d`K

(
1
ε

)
+ log

(
1
δ

)))
labeled examples for PAC-learning C. Compared to

the general lower bound, this leaves a gap of size `K(1/ε) only. Noting that 1080 is considered
as an upper bound on the number of atoms in the universe and noting that log(4)(1080) < 1.6 (so
that `4(1080) = 2), it becomes evident that log(K) and `K are functions which go to infinity at an
extremely slow rate (and this already holds for quite moderate values of K). While LK is always
optimal up to factor `K(1/ε), it is occasionally even better: we show that L2 is an optimal PAC
algorithm for the same concept classes which were used by Auer and Ortner (2007) for showing the
existence of suboptimal consistent algorithms.

The technique that we will use for analyzing LK is related to a technique used by Hanneke
(2009) for analyzing consistent algorithms. Hanneke brought the disagreement coefficient into play
by decomposing a given sequence S of labeled examples into subsequences S1, S2, . . . and by ana-
lyzing the hypotheses from C which are consistent with Sk (the k-th subsequence) not against the
(unconditioned) domain distribution P but against P conditioned to hitting the so-called disagree-
ment region induced by S1∪ . . .∪Sk−1. The reader familiar with Hanneke’s work may detect some
similarities to it in our approach but we would also like to stress the following differences:

• Our algorithm LK actually performs the decomposition of S into 2K − 1 subsequences and
creates one individual hypothesis hk from C for every individual subsequence Sk (while in
Hanneke’s work the decomposition of S happens in the analysis only and has no influence to
what the algorithm does).

• Instead of returning a single hypothesis from C that is consistent with S (as Hanneke does),
we return the majority vote over the individual hypotheses h1, . . . , h2K−1.

• When analyzing the hypotheses from C which are consistent with Sk, we condition P not on
hitting a disagreement region (as Hanneke does) but on hitting the common error region of
some of the hypotheses from {h1, . . . , hk−1}.

1. originally suggested by Darnstädt et al. (2014)
2. For a proper subclass of intersection-closed classes, this had been shown before by Auer and Ortner (2007).

2

AN ALMOST OPTIMAL PAC ALGORITHM

The remainder of the paper is organized as follows. Section 2 provides the reader with the
relevant formal definitions, notations and facts. In Section 3, we state and prove the main results. In
Section 4, we show that L2 is optimal for a concept class for which L1 fails to be optimal by factor
log(1/ε). In the final Section 5, we discuss some algorithmic modifications of the family (LK)K≥1
and some efficiency issues. Moreover, we raise some open questions.

2. Definitions, Notations and Facts

Throughout this paper, log (resp. ln) denotes the logarithm to base 2 (resp. base e). We briefly note
that the iterated logarithm and its truncated version (as defined in the introduction) are related as
follows:

log(k)(z) = log(log(k−1)(z)) ≤ log(`k−1(z)) ≤ `k(z) . (1)

Let Z be a random variable that is binomially distributed with parameters p,m. According to one
of the bounds by Chernoff (1952), we have that

Pr

[
Z <

1

2
mp

]
≤ e−mp/8 . (2)

We assume the reader to be familiar with the PAC-learning model in the realizable case but call
briefly into mind some of the central definitions and thereby fix some notation.

Let X be a set and let C,H be families of functions from X to {0, 1}. The elements of
X (resp. of X × {0, 1}) are called examples (resp. labeled examples). A sequence S ∈ (X ×
{0, 1})∗ of labeled examples is called a sample. For x ∈ Xm and f ∈ C, we define Sf (x) =
[(x1, f(x1)), . . . , (xm, f(xm))]. The elements of C (resp. H) are called concepts (resp. hypothe-
ses). Let P be a probability measure on X and let f ∈ C. The error of a hypothesis h w.r.t. P and
f is defined as follows:

erP,f (h) = P ({x ∈ X : h(x) 6= f(x)}) .

Let L : (X × {0, 1})∗ → H be a function that maps a sample S to a hypothesis L(S) ∈ H . We
say that L is a PAC function for the concept class C if there exists a function m(ε, δ) such that the
following holds. For each concept f ∈ C, for each probability measure P on X , for each choice of
0 < ε, δ < 1 and for all m ≥ m(ε, δ), we have that

Pm({x ∈ Xm : erP,f (L(Sf (x))) ≤ ε}) ≥ 1− δ . (3)

An algorithm that computes a PAC function is simply called a PAC algorithm. In the context of
Condition (3), f is called the target concept, ε is called the accuracy parameter, and δ is called the
confidence parameter. The sample complexity function mL(ε, δ) of L is defined as follows. For
each 0 < ε, δ < 1, mL(ε, δ) is the smallest number such that (3) holds for all choices of f ∈ C
and P provided that m ≥ mL(ε, δ). The estimation error εL(m, δ) of L is defined analogously: for
each m ≥ 1 and each δ ∈ (0, 1), εL(m, δ) is the smallest real in the interval (0, 1) such that (3)
holds for all choices of f ∈ C and P provided that ε ≥ εL(m, δ). A hypothesis h ∈ H is said to be
consistent with S = [(x1, b1), . . . , (xm, bm)] ∈ (X × {0, 1})m if h(xi) = bi for i = 1, . . . ,m. The
set of all hypotheses in H that are consistent with S is called the version space for S in H and is
denoted as VH(S). We say that L : (X × {0, 1})∗ → C is a consistent function if, for every f ∈ C
and every x ∈ X∗, we have that L(Sf (x)) ∈ VC(Sf (x)). An algorithm that computes a consistent
function is said to be a consistent algorithm. For finite concept classes C, the following is known:

3

SIMON

Theorem 1 (Blumer et al. (1987)) Let C be a finite concept class over X . Then the following
holds for every f ∈ C, every probability measure P on X and every choice of m ≥ 1, 0 < ε, δ < 1.
With a probability of at least 1− δ (taken over x ∼ Pm), every h ∈ VC(Sf (x)) satisfies

erf,P (h) ≤ 1

m
ln

(
|C|
δ

)
.

Thus, every consistent function L : (X × {0, 1})∗ → C is a PAC function for C whose estimation
error and sample complexity function are bounded from above as follows:

εL(m, δ) ≤ 1

m
ln

(
|C|
δ

)
and mL(ε, δ) ≤ 1

ε
ln

(
|C|
δ

)
.

A sequence x ∈ Xm is said to be shattered by C if, for every b ∈ {0, 1}m, we have that
VC([(x1, b1), . . . , (xm, bm)]) 6= ∅. The VC-dimension of C is defined as the largest m such that
Xm contains a sequence which is shattered by C (resp. as ∞ if shattered sequences can become
arbitrarily long).

Theorem 2 (Blumer et al. (1989)) Let C be a concept class over X and let d denote its VC-
dimension. Then the following holds for every f ∈ C, every probability measure P on X and
every choice of m ≥ d, 0 < ε, δ < 1. With a probability of at least 1 − δ (taken over x ∼ Pm),
every h ∈ VC(Sf (x)) satisfies erf,P (h) ≤ ε′ub(m, d, δ) where

ε′ub(m, d, δ) =
2

m

(
d log

(
2em

d

)
+ log

(
2

δ

))
.

Thus, every consistent function L : (X × {0, 1})∗ → C is a PAC function for C whose estimation
error satisfies εL(m, δ) ≤ ε′ub(m, d, δ). Moreover, εL(m, δ) ≤ ε′ub(m, d, δ) implies that

mL(ε, δ) ≤ max

{
8d

ε
log

(
13

ε

)
,
4

ε
log

(
2

δ

)}
.

In this paper, it will be technically more convenient to use the following bound instead of ε′ub:

εub(m, d, δ) =
4

m
·max

{
d log

(
2em

d

)
, log

(
2

δ

)}
. (4)

Note that ε′ub(m, d, δ) ≤ εub(m, d, δ) ≤ 2ε′ub(m, d, δ). for each choice of (m, d, δ), i.e., the upper
bound εub is (slightly) weaker than ε′ub.

3. Almost Optimality of the Majority Vote

Let C be a concept class over domain X and let L : (X × {0, 1})∗ → C be a consistent function.
For each K ≥ 1, we define the function LK algorithmically as follows:

1. Given a sample S ∈ (X×{0, 1})(2K−1)m, decompose S into 2K−1 subsamples S1, . . . , S2K−1
of size m, respectively, so that S = (S1, . . . , S2K−1).

2. For k = 1, . . . , 2K − 1, let hk = L(S1 ∪ . . . ∪ Sk).

4

AN ALMOST OPTIMAL PAC ALGORITHM

3. Let LK(S) be the majority vote over h1, . . . , h2K−1, i.e., LK(S) assigns the label 1 to x ∈ X
iff at least K of the hypotheses h1, . . . , h2K−1 make the same assignment.

In this description of LK , we assumed that the sample size, |S|, is a multiple of 2K − 1. This
assumption can of course be removed by splitting a sample of any size into 2K − 1 subsamples of
almost equal size. But in the sequel, we maintain the assumption because it will allow for an easier
exposition of the central arguments. Here comes the main result of this section:

Theorem 3 Let C be a concept class of VC-dimension d over domain X . Let L : (X ×{0, 1})∗ →
C be any consistent function. Then, for every constant K ≥ 1, LK is a PAC function for C whose
estimation error is bounded from above as follows:3

εLK
(m, δ) = O

(
1

m

(
d`K

(m
d

)
+ log

(
1

δ

)))
.

Moreover, this implies that the sample complexity function of LK is bounded from above as follows:

mLK
(ε, δ) = O

(
1

ε

(
d`K

(
1

ε

)
+ log

(
1

δ

)))
.

While the boundO
(
1
ε

(
d log

(
1
ε

)
+ log

(
1
δ

)))
onmL differs from optimality by factor log(1/ε),

the above bound on mLK
differs from optimality only by factor `K(1/ε). Note that L1 = L. In

other words: for K = 1, the function LK collapses to the consistent function L. In view of the
results of Auer and Ortner (2007) that we already mentioned in the introduction, this implies that
the above upper bound on mL1(ε, δ) is tight for some choices of L.

The remainder of this section is devoted to the analysis of the function LK . We start with
Lemma 4 which provides an upper bound on the members of a recursively defined sequence (εk)k≥1.
When the lemma is applied later within the proof of Theorem 5, εk will be the total probability mass
of a common error region of a fixed selection of k hypotheses (chosen from h1, . . . , h2K−1), and this
will help us to upper-bound the estimation error of LK . The proof of Lemma 4 is somewhat tedious
but instructive in so far as it demonstrates how the iterated logarithm comes into play. However, the
reader not willing to dip into the technical details of the proof may simply skip it without loss of
continuity.

Lemma 4 Let (εk)k≥1 be a sequence of functions in m, d, δ that satisfies the recursion

ε1 = εub(m, d, δ) and εk = εk−1 ·min

{
1, εub

(
1

2
εk−1m, d, δ

)}
for k ≥ 2 .

Let (ck)k≥1 be the sequence that is recursively given by

c1 = 0 , c2 = log(4e) and ck = log(8e) + log(ck−1) for k ≥ 3 .

Let a1 = 4 and ak = 8 for k ≥ 2, and let finally

ε
(k)
ub (m, d, δ) =

ak
m
·max

{
ckd+ d`k

(
2em

d

)
, log

(
2

δ

)}
. (5)

3. The Big-O notation hides only universal constants or constant factors depending on K.

5

SIMON

Then (ck)k≥1 is a strictly increasing sequence that converges to the unique number c > 3 which
satisfies c = log(8e) + log(c).4 Moreover, for all m, d ≥ 1, all 0 < δ < 1 and for all k ≥ 1, we
have that εk ≤ ε

(k)
ub (m, d, δ).

Proof The assertion on the sequence (ck)k≥1 is obvious. A comparison of (5) and (4) in combi-
nation with log(z) ≤ `1(z) shows that εub(m, d, δ) ≤ ε

(1)
ub (m, d, δ). Thus ε1 ≤ ε

(1)
ub (m, d, δ), as

desired. We may therefore assume inductively that

εk−1 ≤ ε
(k−1)
ub (m, d, δ) =

ak−1
m
·max

{
ck−1d+ d`k−1

(
2em

d

)
, log

(
2

δ

)}
.

If the maximum equals log(2/δ), then εk−1 ≤ ε
(k−1)
ub (m, d, δ) =

ak−1

m log(2/δ), and this upper
bound also applies to εk ≤ εk−1. Thus, let us assume that the maximum equals the other term so
that

εk−1 ≤
ak−1d

m
·
(
ck−1 + `k−1

(
2em

d

))
. (6)

The recursive definition of εk in the lemma and an application of (4) with 1
2εk−1m at the place of m

yields the following:

εk ≤ εk−1 · εub
(

1

2
εk−1m, d, δ

)
=

8

m
·max

{
d log

(eεk−1m
d

)
, log

(
2

δ

)}
.

Again we will be done if the maximum equals log(2/δ). We may therefore assume that

εk ≤
8d

m
· log

(eεk−1m
d

)
. (7)

Recall that c1 = 0 and a1 = 4. An application of (6) for k = 2 yields

eε1m

d
≤ 4e · `1

(
2em

d

)
.

We may continue with the calculation (7) and conclude that

ε2 ≤
8d

m
· log

(
4e · `1

(
2em

d

))
(1)

≤ 8d

m
·
(

log(4e) + `2

(
2em

d

))
.

Since c2 = log(4e), we may conclude that ε2 ≤ ε
(2)
ub (m, d, δ). Recall that ak = 8 for k ≥ 2 and

note that ck > 2 for k ≥ 2. An application of (6) for k ≥ 3 yields

eεk−1m

d
≤ 8e ·

(
ck−1 + `k−1

(
2em

d

))
≤ 8e · ck−1 · `k−1

(
2em

d

)
where the latter inequality holds because ck−1, `k−1(2em/d) ≥ 2 (and is based on the fact that
a + b ≤ ab provided that a, b ≥ 2). Again we may continue with the calculation (7) and conclude
that

εk ≤
8d

m
· log

(
8e · ck−1 · `k−1

(
2em

d

))
(1)

≤ 8d

m
·
(

log(8e) + log(ck−1) + `k

(
2em

d

))
.

4. A numerical computation shows that c is smaller than (and approximately equal to) 7.35.

6

AN ALMOST OPTIMAL PAC ALGORITHM

Since log(8e) + log(ck−1) = ck for k ≥ 3, we may conclude that εk ≤ ε
(k)
ub (m, d, δ), as desired.

We are now prepared for the proof of Theorem 3 (our main result). We will actually prove the
following stronger result, which does not hide the constant factors depending on K:

Theorem 5 Let C be a concept class over X and let d denote its VC-dimension. Let L : (X ×
{0, 1})∗ → C be any consistent function. Then, for every K ≥ 2, LK is a PAC function for C
whose estimation error satisfies

εLK

(
(2K − 1)m,

(
2K − 1

K

)
(2K − 1)δ

)
≤
(

2K − 1

K

)
ε
(K)
ub (m, d, δ) . (8)

Proof Let S ∈ (X × {0, 1})(2K−1)m denote the sample whose instances are drawn at random
according to P (2K−1)m and labeled according to the target concept f ∈ C. Let S1, . . . , S2K−1
denote the corresponding subsamples of sizem, respectively. Let h = LK(S), i.e., h is the majority
vote over the hypotheses h1, . . . , h2K−1 where hk = L(S1 ∪ . . . ∪ Sk) for k = 1, . . . , 2K − 1. Let
E = {x ∈ X : h(x) 6= f(x)}. For j = 1, . . . , 2K − 1, let Ej = {x ∈ X : hj(x) 6= f(x)}.
For every J ⊆ {1, . . . , 2K − 1}, let EJ = ∩j∈JEj . Let M denote the family of subsets of
{1, . . . , 2K − 1} that have cardinality K. With these notations, we clearly obtain

E =
⋃
J∈M

EJ =
⋃
J∈M

⋂
j∈J

Ej .

From the union bound, we get

P (E) ≤
∑
J∈M

P (EJ) ≤
(

2K − 1

K

)
max
J∈M

P (EJ) .

Our goal is to show the following for each individual set J ∈ M : with a probability of at least
(2K − 1)δ (taken over the random sample S), we have that P (EJ) ≤ ε

(K)
ub (m, d, δ). If this goal

can be achieved, the following conclusion will be obtained immediately: with a probability of at
least 1 −

(
2K−1
K

)
(2K − 1)δ, we have that P (E) ≤

(
2K−1
K

)
· ε(K)
ub (m, d, δ). Since this confirms

the bound (8), all that remains to be done is showing that the above assertion on an individual set
J ∈M is true. To this end, let J = {j(1), . . . , j(K)} with 1 ≤ j(1) < . . . < j(K) ≤ 2K − 1 be a
fixed, but otherwise arbitrary, set in M . For sake of brevity, we set

E′k =

k⋂
l=1

Ej(l) , εk = P (E′k) and S′k = {(x, b) ∈ Sj(k) : x ∈ E′k−1}

for k = 1, . . . ,K with the convention that ε0 = 1 and E′0 = X so that S′1 = Sj(1). Note that,
with this notation, E′K = EJ . Obviously, E′k′ ⊆ E′k for k′ ≥ k. Specifically, EJ = E′K ⊆ E′k for
k = 1, . . . ,K. Thus,

∀k = 1, . . . ,K : P (EJ) ≤ P (E′k) = εk . (9)

From the theorem on compound probabilities, we obtain

εk = P (Ej(k)|E′k−1) · εk−1 =

k∏
l=1

P (Ej(l)|E′l−1) (10)

7

SIMON

for k = 1, . . . ,K. Specifically,

P (EJ) = εK =

K∏
k=1

P (Ej(k)|E′k−1) . (11)

The equation (11) suggests to evaluate the hypothesis hj(k) against the conditional probability
P (·|E′k−1). Since we have defined S′k as the subsample of Sj(k) whose instances fall into E′k−1,
it follows that S′k is a sample whose instances are independently drawn at random according to
P (·|E′k−1). For this reason, we call mk = |S′k| the effective sample size at stage k. Note that, given
E′k−1, mk is binomially distributed with parameters εk−1,m. Moreover, m1 = |S′1 ∩ X| = m,
i.e. the effective sample size at stage 1 equals m. The following events, with k ranging from 2 to
K, bear the danger of making P (EJ) large:

B1 ⇔ ∃g ∈ VC(S′1) : P [g(x) 6= f(x)] > εub(m, d, δ) .

B′k ⇔
(
εk−1 ≥

8 ln(1/δ)

m

)
∧
(
mk <

1

2
εk−1m

)
.

Bk ⇔
(
mk ≥

1

2
εk−1m

)
∧
(
∃g ∈ VC(S′k) : P [g(x) 6= f(x)|x ∈ E′k−1] > εub

(
1

2
εk−1m, d, δ

))
.

We make the following observations concerning the probabilities of Bk and B′k (taken over the
random sample S):

• The probability of B1 is bounded by δ according to Theorem 2.

• The probability of B′k is bounded by δ according to the Chernoff bound (2) with mk in the
role of Z and εk−1 in the role of p.

• The probability of Bk is bounded by δ according to Theorem 2 with P (·|E′k−1) in the role
of P .

We may conclude that the probability of the eventB = ∪Kk=1Bk∪∪Kk=2B
′
k is bounded by (2K−1)δ.

The following claim is the final piece of puzzle in our proof:

Claim: If the event B does not occur, then P (EJ) ≤ ε(K)
ub (m, d, δ).

Assume that B does not occur. If εk−1 < 8 ln(1/δ)
m for some k ∈ {2, . . . ,K}, then P (EJ) <

8 ln(1/δ)
m according to (9), and we are done. Thus we may safely assume that εk−1 ≥ 8 ln(1/δ)

m
for k = 2, . . . ,K. Since, by assumption, none of the events B′k occurs, we may conclude that
mk ≥ 1

2εk−1m for k = 2, . . . ,K. Since none of the events Bk occurs, we may furthermore
conclude that, for k = 2, . . . ,K, the following holds:

∀g ∈ VC(S′k) : P (g(x) 6= f(x)|x ∈ E′k−1) ≤ εub
(

1

2
εk−1m, δ

)
.

Moreover,
∀g ∈ VC(S1) : P (g(x) 6= f(x)) ≤ εub(m, d, δ) .

8

AN ALMOST OPTIMAL PAC ALGORITHM

Since hj(k) is consistent with S1∪. . .∪Sj(k), we clearly have hj(k) ∈ VC(S′k) resp. hj(1) ∈ VC(S1).5

Thus,

P (Ej(k)|E′k−1) ≤ εub
(

1

2
εk−1m, d, δ

)
(12)

holds for k = 2, . . . ,K. Moreover, ε1 = P (Ej(1)) ≤ εub(m, d, δ). We arrive at the following
recursion on εk = P (E′k):

ε1 ≤ εub(m, d, δ) and εk
(10),(12)

≤ εk−1 · εub
(

1

2
εk−1m, d, δ

)
.

Thus the sequence (εk)k=1,...,K satisfies the assumptions in Lemma 4. Since P (EJ) = εK , the
claim is now immediate from this lemma.

The following upper bounds on εLK
(m, δ) and on mLK

(m, δ) are obtained from (8) and from
the fact that (

2K − 1

K

)
= O

(
22K√
K

)
by a straightforward calculation:

εLK
(m, δ) = O

(
22K
√
K

m

(
d`K

(m
d

)
+K + log

(
1

δ

)))
. (13)

mLK
(m, δ) = O

(
22K
√
K

ε

(
d`K

(
1

ε

)
+K + log

(
1

δ

)))
. (14)

Theorem 3 results from these bounds simply by hiding the constant factors depending on K.

4. Reaching Optimality by Going with the Majority

We start with a result by Auer and Ortner (2007) which shows that consistent algorithms (and
therefore LK with K = 1) can fail to be optimal by factor log(1/ε):

Theorem 6 (Auer and Ortner (2007)) Let X be an infinite domain and, for every d ≥ 1, let Cd
be the class of concepts over X that assign the label 1 to at most d elements of X (a class which is
known to have VC-dimension d). Let L : (X × {0, 1})∗ → Cd be a consistent function that returns
a largest consistent concept. Then mL(ε, 1/2) = Ω

(
d
ε log

(
1
ε

))
.

Proof We present a slight simplification6 of the original proof. Let P uniformly center its proba-
bility mass on d/ε arbitrarily chosen instances of X . Let f be the target concept that assigns 0 to all
instances. Then L returns a hypothesis of error at most ε iff the random sample S contains at least
n− d distinct examples. Let Z be the random variable that counts the number of random examples
(= trials) which are required in order to get n−d distinct ones. We can decompose the total number
of trials into n − d phases where phase i ends immediately after we have seen i distinct examples.

5. Note that the consistency of hj(k) is with S1∪ . . .∪Sj(k) is actually more than we need here: consistency with Sj(k)

would suffice.
6. We eploit a connection to the so-called Coupon-Collector problem.

9

SIMON

Let Zi be the number of trials in phase i. Then Z =
∑n−d

i=1 Zi and Zi is geometrically distributed
with parameter pi = (n− i+ 1)/n so thatE[Zi] = 1/pi and Var[Zi] = (1− pi)/p2i . It follows that

E[Z] = n

n−d∑
i=1

1

n− i+ 1
= n(Hn −Hd)

where Hn denotes the n-th Harmonic number. Similarly,

Var[Z] = n
n−d∑
i=1

i− 1

(n− i+ 1)2
= n

n∑
i=d+1

n− i
i2

< n2
n∑

i=d+1

1

i2
<
n2

d
.

Let m = mL(ε, 1/2). It follows that Pr[Z ≤ m] ≥ 1/2. On the other hand, we infer from the
Chebychev inequality that

Pr[Z ≤ E[Z]−
√

2/dn] ≤ dVar[Z]

2n2
<

1

2
.

Making use of ln(n) < Hn < 1 + ln(n) and n = d/ε, it follows that

m > E[Z]−
√

2

d
n > n(Hn−Hd)−

√
2d

ε
> n

(
ln
(n
d

)
− 1
)
−
√

2d

ε
=
d

ε

(
ln

(
1

ε

)
− 1

)
−
√

2d

ε
,

which concludes the proof.

However, increasing K from 1 to 2 makes LK optimal for the same class as in the preceding
theorem:

Theorem 7 Let C be the same concept class as in Theorem 6. Let L : (X × {0, 1})∗ → Cd be
any consistent function. Then the estimation error and the sample complexity function of L2 are
bounded from above as follows:

εL2(m, δ) ≤ 18

m

(
2d+ ln

(
9

δ

))
and mL2(ε, δ) ≤ 18

ε

(
2d+ ln

(
9

δ

))
. (15)

Proof The proof of Theorem 7 basically proceeds as the proof of Theorem 5. Note however that
the error sets Ek (for k = 1, 2, 3) can contain at most 2d elements because both, the target concept
and the hypothesis hk assign the label 1 to at most d instances of X . As in the proof of Theorem 5,
the main challenge is to control the error terms εk = P (E′k) where here k ranges only from 1 to 2.
Since the conditional probability measure P (·|E′1) centers its probability mass on E′1 = Ej(1), a set
with at most 2d elements, we may apply Theorem 1 instead of Theorem 2 when it comes to bound
the estimation error of hj(2) with respect to P (·|E′1). Note that Cd restricted to E′1 contains less
than 22d elements so that the term ln(|Cd|/δ) within Theorem 1 is upper-bounded by 2d+ ln(1/δ).
The “bad events” B1, B

′
2 are defined as in the proof of Theorem 5. However, with an application of

Theorem 1 in mind, the event B2 can now be defined as follows:

B2 ⇔
(
m2 ≥

1

2
ε1m

)
∧
(
∃g ∈ VC(S′2) : P [g(x) 6= f(x)|x ∈ E′1] >

1

ε1m/2

(
2d+ ln

(
1

δ

)))
.

10

AN ALMOST OPTIMAL PAC ALGORITHM

According to Theorem 1, the probability of B2 is bounded by δ. This little modification affects the
remainder of the proof only in so far as the error terms ε1, ε2 are now given by ε1 ≤ εub(m, d, δ)
and

ε2 ≤ ε1 ·
1

ε1m/2

(
2d+ ln

(
1

δ

))
=

2

m

(
2d+ ln

(
1

δ

))
.

Analogous to our reasoning in the proof of Theorem 5 (but here for the special case K = 2 so
that P (EJ) = ε2), we may draw the following conclusion: with a probability of at least 1 −(
2K−1
K

)
(2K − 1)δ = 1 − 9δ (taken over the random selection of the sample), the error probability

of the majority vote is bounded by
(
2K−1
K

)
2
m

(
2d+ ln

(
1
δ

))
= 6

m

(
2d+ ln

(
1
δ

))
. In other words,

εL2(3m, 9δ) ≤ 6

m

(
2d+ ln

(
1

δ

))
.

From this, (15) is obtained by a straightforward calculation.

5. Final Remarks

We managed to reduce the gap between the general upper bound and the general lower bound on the
sample size in the PAC-learning framework (the realizable case) from log(1/ε) to `K(1/ε) where
the constant K can be chosen as large as we like. Evidently, LK comes very close to Warmuth’s
concept of an “optimal PAC algorithm” (even for moderate values of K). We now close the paper
by discussing some algorithmic modifications of the family (LK)K≥1 and some efficiency issues,
and by briefly raising some open questions.

Algorithmic modifications. LetL′K denote the modification ofLK where, for k = 1, . . . , 2K−1,
we set hk = L(Sk) (as opposed to hk = L(S1 ∪ . . . ∪ Sk) which was the setting of algorithm LK).
Then Theorem 5 and the bounds (13), (14) remain valid when we substitute L′K for LK . The reason
is that our analysis did not require hk to be consistent with S1 ∪ . . . ∪ Sk. Actually the consistency
with Sk is enough. (Compare with the corresponding footnote within the proof of Theorem 5).
Let log∗(m) be the smallest numberK such that `K(m) < 1. An alternative to the family (LK)K≥1
of algorithms (with one algorithm for each fixed value of K) is obviously the following algorithm
L∗ which adjusts the choice of K to the size m of the given sample S: set K equal to log∗(m) and
run LK on S. With this choice of K, the bounds (13) and (14) are still valid.

Efficiency issues. Let C = (Cd)d≥1 be a parametrized concept class where d is polynomially
related to the VC-dimension of Cd. It is well known that C is efficiently properly PAC-learnable iff
the consistency problem for C — given d and given a sample S, find a hypothesis h ∈ Cd that is
consistent with S (if possible) — is feasible (Pitt and Valiant, 1988). A nice feature of the algorithms
LK is that they do not need more than the mere feasibility of the consistency problem for running
efficiently on C. As for the 1-inclusion graph algorithm, the situation is less comfortable because
the size of the 1-inclusion graph grows exponentially with the VC-dimension.

The following questions are left open in this paper:

• Is LK for K ≥ 2 even better than it is suggested by our worstcase analysis? Are there
(matching) lower bounds?

11

SIMON

• Can we combine the hypothesis (hk)k=1,...,2K−1 in a more clever way than just returning the
majority vote? Is the experience found in the boosting literature (Schapire and Freund, 2012)
helpful for this purpose?

• How does LK compare experimentally to consistent algorithms?

References

Peter Auer and Ronald Ortner. A new PAC bound for intersection-closed concept classes. Machine
Learning, 66(2–3):151–163, 2007.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s razor.
Information Processing Letters, 24:377–380, 1987.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the Association on Computing Machinery, 36
(4):929–965, 1989.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Statist., 23:493–507, 1952.

Malte Darnstädt. The optimal PAC bound for intersection-closed concept classes. Information
Processing Letters, 115(4):458–461, 2014.

Malte Darnstädt, Balázs Szörényi, and Hans U. Simon. Supervised learning and co-training. Theo-
retical Computer Science, 519:68–87, 2014.

Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A general lower bound
on the number of examples needed for learning. Information and Computation, 82(3):247–261,
1989.

Steve Hanneke. Theoretical Foundations of Active Learning. PhD thesis, Carnegie Mellon Univer-
sity, 2009.

David Haussler, Nick Littlestone, and Manfred K. Warmuth. Predicting {0, 1} functions on ran-
domly drawn points. Information and Computation, 115(2):284–293, 1994.

Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. Journal
of the Association on Computing Machinery, 35(4):965–984, 1988.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT Press, 2012.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Manfred Warmuth. The optimal PAC algorithm. In Proceedings of the 17th Annual Conference on
Learning Theory, pages 641–642, 2004.

12

	Introduction
	Definitions, Notations and Facts
	Almost Optimality of the Majority Vote
	Reaching Optimality by Going with the Majority
	Final Remarks

