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Abstract
We establish a minimax lower bound of Ω

(
kd
Bε

)
on the sample size needed to estimate parameters

in a k-sparse linear regression of dimension d under memory restrictions to B bits, where ε is the
`2 parameter error. When the covariance of the regressors is the identity matrix, we also provide an
algorithm that uses Õ(B + k) bits and requires Õ( kd

Bε2 ) observations to achieve error ε. Our lower
bound holds in a more general communication-bounded setting, where instead of a memory bound,
at most B bits of information are allowed to be (adaptively) communicated about each sample.

1. Introduction

The growth in size and scope of datasets underscores a need for techniques that balance between
multiple practical desiderata in statistical inference and learning, as classical tools are insufficient
for providing such tradeoffs. In this work, we build on a nascent theory of resource-constrained
learning—one in which researchers have investigated privacy (Kasiviswanathan et al., 2011; Duchi
et al., 2013), communication and memory (Zhang et al., 2013; Garg et al., 2014; Shamir, 2014),
and computational constraints (Berthet and Rigollet, 2013)—and study bounds on the performance
of regression estimators under memory and communication constraints. In particular, we provide
minimax upper and lower bounds that exhibit a tradeoff between accuracy and available resources
for a broad class of regression problems, which have to this point been difficult to characterize.

To situate our work, we briefly review existing results on statistical learning with resource con-
straints. There is a considerable literature on computation and learning, beginning with Valiant’s
work (1984) on probably approximately correct (PAC) learning, which separates concept learning
in poynomial versus non-polynomial settings. More recent work shows (under natural complexity-
theoretic assumptions) that restriction to polynomial-time procedures increases sample complexity
for several problems, including sparse principal components analysis (Berthet and Rigollet, 2013)
classification problems (Daniely et al., 2013, 2014), and, pertinent to this work, sparse linear re-
gression (Zhang et al., 2014; Natarajan, 1995). Showing fine-grained tradeoffs in this setting has
been challenging, however. Researchers have given more explicit guarantees in other resource-
constrained learning problems; Duchi et al. (2013) study estimation under a privacy constraint that
the statistician should never be able to infer more than a small amount about any individual in a sam-
ple. For several tasks, including mean estimation and regression, they establish matching upper and
lower bounds exhibiting a tradeoff between privacy and statistical accuracy. In the communication-
limited setting, Zhang et al. (2013) study problems where data are stored on multiple machines, and
the goal is to minimize communication between machines and a centralized fusion center. In the
full version of that paper (Duchi et al., 2014), they show that mean-squared error for d-dimensional
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mean estimation has lower-bound Ω( d2

Bmn log(m)) for m machines, each with n observations, and B
bits of communication per machine. In concurrent work, Garg et al. (2014) provide identical results.

Perhaps most related to our work, Shamir (2014) considers communication constraints in the on-
line learning setting, where at mostB bits of information about an example can be transmitted to the
algorithm before it moves on to the next example. In this case, any memory-bounded algorithm is
communication-bounded, and so communication lower bounds imply memory lower bounds (Alon
et al., 1999). For d-dimensional 1-sparse (i.e. only a single non-zero component) mean estimation
problems, Shamir (2014) shows that Ω(d/B) observations are necessary for parameter recovery,
while without memory constraints, a sample of size O(log d) is sufficient. He also shows that for
certain principal component analyses, a sample of size Ω

(
d4/B

)
is necessary for estimation, while

(without constraints) O(d2 log3(d)) observations suffice.

1.1. Outline of results

In this work, we also focus on the online setting. We work in a regression model, in which we
wish to estimate an unknown d-dimensional parameter vector w∗ ∈ Rd, and we observe an i.i.d.
sequence (X(i), Y (i)) ∈ Rd × R such that

Y (i) = 〈w∗, X(i)〉+ ε(i), (1)

where ε(i) is mean-zero noise independent of X(i) with Var(ε(i)) ≤ σ2. We focus on the case that
w∗ is k-sparse, meaning that it has at most k non-zero entries, that is, ‖w∗‖0 ≤ k.

We consider resource-constrained procedures that may store information about the ith observa-
tion in a Bi-bit vector Z(i) ∈ {0, 1}Bi . After n observations, the procedure outputs an estimate ŵ
of w∗. We have two types of resource constraints:

Communication constraints Z(i) is a measurable function of X(i), Y (i), and the history Z(1:i−1),
and the estimate ŵ is a measurable function of Z(1:n) = (Z(1), . . . , Z(n)).

Memory constraints Z(i) is a measurable function ofX(i), Y (i), andZ(i−1), and ŵ is a measurable
function of only Z(n).

Note that the communication constraints do not allow for arbitrary communication, but rather only
“one-pass” communication protocols in which all information is communicated from left to right.

Any memory-constrained procedure is also communication-constrained, so we prove our lower
bounds in the weaker (less restrictive) communication-constrained setting, later providing an al-
gorithm for the memory-constrained setting (which then carries through to the communication-
constrained setting). Our two main results (Theorems 2 and 3) are that, for a variety of regression
problems with observation noise σ, the mean-squared error satisfies (subject to certain assumptions
on the covariates X and noise ε)

Ω(1) · σ2 min

{
kd

Bn
, 1

}
≤ inf

ŵ
sup
w∗∈W

E
[
‖ŵ − w∗‖22

]
≤ Õ(1) · σ2 max

{√
kd

Bn
,
kd

Bn

}
, (2)

where the infimum is over all communication/memory-constrained procedures using B bits per
iteration, and the supremum is over a set W of k-sparse vectors to be defined later. The lower
bound (2) shows that any B-bit communication-constrained procedure achieving squared error ε
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requires Ω(σ
2

ε
kd
B ) observations. In the absence of resource constraints, standard results on sparse

regression (e.g. Wainwright, 2009) show that Θ(1
εk log d) observations suffice; moreover, algo-

rithms which require only Õ(d) memory can essentially match this bound (Agarwal et al., 2012;
Steinhardt et al., 2014). Thus, for any communication budget B ≤ dα with α < 1, we lose expo-
nentially in the dimension. The upper bound also has sharp dependence on B and d, though worse
dependence on accuracy and variance: it shows that Õ(σ

4

ε2
kd
B ) observations suffice.

1.2. Summary of techniques

Before continuing, we summarize the techniques used to prove the bounds (2). The high-level
structure of the lower bound follows that of Arias-Castro et al. (2013), who show lower bounds for
sparse regression with an adaptive design matrix. They adapt Assouad’s method (1983) to reduce
the analysis to bounding the mutual information between a single observation and the parameter
vector w∗. In our case, even this is challenging; rather than choosing a design matrix, the procedure
chooses an arbitrary B-bit message. We control such procedures using two ideas. First, we focus
on the fully sparse (k = 1) case, showing a quantitative data processing inequality, based off of
techniques developed by Duchi et al. (2013), Zhang et al. (2013), and Shamir (2014). By analyzing
certain carefully constructed likelihood ratio bounds, we show, roughly, that if the pair (X,Y ) ∈
Rd × R provides information I∗ about the parameter w∗, then any B-bit message Z based on
(X,Y ) provides information at most BI∗/d about w∗; see Section 2 for these results. After this
data processing bound for k = 1, in Section 3 we develop a direct sum theorem, based on the ideas
of Garg et al. (2014) and a common tool in the communication complexity literature, which shows
that finding a k-sparse vector w∗ is as hard as finding k independent 1-sparse vectors.

While our lower bound builds off of several prior results, the regression setting introduces a
subtle and challenging technical issue: both the direct sum technique and prior quantitative data
processing inequalities in communication settings rely strongly on the assumption that each obser-
vation consists of d independent random variables. As Y necessarily depends onX in the model (1),
we have strong coupling of our observations. To address this, we develop a technique that allows us
to treat Y as “part of the communication”; instead of Z communicating information aboutX and Y ,
now Y and Z communicate information about X . The effective number of bits of communication
increases by (an analogue of) the entropy of Y .

For the upper bound (2), in Section 4 we show how to implement `1-regularized dual averag-
ing (Xiao, 2010) using a count sketch data structure (Charikar et al., 2002), which space-efficiently
counts elements in a data stream. We use the count sketch structure to maintain a coarse estimate
of model parameters, while also exactly storing a small active set of at most k coordinates. These
combined estimates allow us to implement dual averaging when the `1-regularization is sufficiently
large; the necessary amount of `1-regularization is inversely proportional to the amount of memory
needed by the count sketch structure, leading to a tradeoff between memory and statistical efficiency.

Notation We perpetrate several abuses. Superscripts index iterations and subscripts dimensions,
so X(i)

j denotes the coordinate j of the ith X vector. We let Dkl (P || Q) denote the KL-divergence
between P and Q, and use upper case to denote unbound variables and lower case to denote fixed
conditioning variables, e.g., Dkl (P (X | z) || Q(X | z)) denotes the KL divergence of the distribu-
tions of X under P and Q conditional on Z = z, and I(X;Z) is the mutual information between
X and Z. We use standard big-Oh notation, where Õ(·) and Ω̃(·) denote bounds holding up to
polylogarithmic factors. We let [n] = {1, . . . , n}.

3



STEINHARDT DUCHI

2. Lower bound when k = 1

We begin our analysis in a restricted and simpler setting than the full one we consider in the sequel,
providing a lower bound for estimation in the regression model (1) when w∗ is 1-sparse. Our lower
bound holds even in the presence of certain types of side information, which is important for our
later analysis.

We begin with a formal description of the setting. Let r > 0 and let W be uniformly random in
the set {−r, 0, r}d, where we constrain ‖W‖0 = 1, i.e. only a single coordinate of W is non-zero.
At iteration i, the procedure observes the triple (X(i), ξ(i), Y (i)) ∈ {−1, 1}d × Ξ × R. Here X(i)

is an i.i.d. sequence of vectors uniform on {−1, 1}d, ξ(i) is side information independent of X(1:n)

and Z(1:i−1) (which is necessary to consider for our direct sum argument later), and we observe

Y (i) = W>X(i) + ξ(i) + ε(i), (3)

where ε(i) are i.i.d. mean-zero Laplace distributed with Var(ε) = σ2. Additionally, we let P0 be
a “null” distribution in which we set Y (i) = ξ(i) + rs(i) + ε(i), where s(i) ∈ {−1, 1} is an i.i.d.
sequence of Rademacher variables; note that P0 is constructed to have the same marginal over Y (i)

as the true distribution. We present our lower bound in terms of average communication, defined as

B̃0
def
=

1

n

n∑
i=1

IP0(X(i);Y (i), Z(i) | Z(1:i−1)), (4)

where IP0 denotes mutual information under P0. With this setup in place, we have:

Theorem 1 Let δ = 2
√

2r/σ. Under the setting above, for any estimator Ŵ (Z(1), . . . , Z(n)) of
the random vector W , we have

E
[
‖Ŵ −W‖22

]
≥ r2

2

1

2
−

√
eδ(eδ − 1)2B̃0n

d

 .

To interpret Theorem 1, we study B̃0 under the assumption that the procedure simply observes pairs
(X(i), Y (i)) from the regression model (1), that is, ξ(i) ≡ 0, and we may store/communicate only B
bits. By the chain rule for information and the fact that conditioning reduces entropy, we then have

IP0(X(i);Y (i), Z(i) | Z(1:i−1)) = IP0(X(i);Y (i) | Z(1:i−1)) + IP0(X(i);Z(i) | Y (i), Z(1:i−1))

(i)
= IP0(X(i);Z(i) | Y (i), Z(1:i−1)) ≤ HP0(Z(i)) ≤ B,

where (i) uses the fact that X(i) and Y (i) are independent under P0. Now consider the signal-to-
noise ratio δ = 2

√
2r/σ, which we may vary by scaling the radius r. Noting that eδ(eδ−1)2 ≤ 2δ2

for δ ≤ 1/3, Theorem 1 implies the lower bound

E
[
‖Ŵ −W‖22

]
≥ sup

0≤δ≤1/3

σ2δ2

16

(
1

2
−
√

2δ2Bn

d

)
≥ σ2

64
min

{
1

32

d

Bn
,
1

9

}
,

where we have chosen δ = min{1/3,
√
d/(32Bn)}. Thus, to achieve mean-squared error smaller

than σ2, we require n & d/B observations. This contrasts with the unbounded memory case, where
n scales only logarithmically in the dimension d if we use the Lasso algorithm (Wainwright, 2009).
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2.1. Proof of Theorem 1

We prove the theorem using an extension of Assouad’s method, which transforms the minimax
lower bounding problem into one of multiple hypothesis tests (Assouad, 1983; Arias-Castro et al.,
2013; Shamir, 2014). We extend a few results of Arias-Castro et al. and Shamir to apply in our
slightly more complex setting.

We introduce a bit of additional notation before continuing. Let J ∈ {±1,±2, . . . ,±d} be
a random index (and sign) corresponding to the vector W , so that J = j means that Wj = r and
J = −j means thatWj = −r. LetP+j , P−j denote the joint distribution of all variables conditioned
on J = +j,−j respectively, and let P0 be the null distribution as defined earlier. Throughout, we
use lower-case p to denote the density of P with respect to a fixed base measure.

Overview. We prove Theorem 1 in three steps. First, we show that the minimax estimation
error ‖Ŵ − W‖22 can be lower-bounded in terms of the recovery error P[Ĵ 6= J ] (Lemma 1).
Next, we show that recovering J is difficult unless Z(1:n) contains substantial information about J
(Lemma 2). Finally, we reach the crux of our argument, which is to establish a strong data pro-
cessing inequality (Lemma 4 and equation (9)), which shows that, for the Markov chain W →
(X,Y ) → Z, the mutual information I(W ;Z) degrades by a factor of d/B from the information
I(X,Y ;Z); this shows that classical minimax bounds increase by a factor of d/B in our setting.

Estimation to testing to information. We begin by bounding squared error by testing error:

Lemma 1 For any estimator Ŵ , there is an estimator Ĵ such that

E
[
‖Ŵ −W‖22

]
≥ r2

2
P
[
Ĵ 6= J

]
. (5)

We next state a lower bound on the probability of error in a hypothesis test.

Lemma 2 Let J ∼ Uniform({±1, . . . ,±d}) and K±j
def
= Dkl

(
P0(Z(1:n)) || P±j(Z(1:n))

)
. Then

for any estimator Ĵ(Z(1:n))

P(Ĵ(Z(1:n)) 6= J) ≥
(

1− 1

2d

)
−

√√√√ 1

4d

d∑
j=1

(K−j +K+j). (6)

The proofs of Lemmas 1 and 2 are in Sec. A.1 and A.2, respectively. We next provide upper bounds
on K±j from Lemma 2, focusing on the +j term as the −j term is symmetric. By the chain rule,

Dkl

(
P0(Z(1:n)) || P+j(Z

(1:n))
)

=
n∑
i=1

∫
Dkl

(
P0(Z(i) | z(1:i−1)) || P+j(Z

(i) | z(1:i−1))
)
dP0(z(1:i−1)).

For notational simplicity, introduce the shorthand Z = Z(i) and ẑ = z(1:i−1); we will focus on
bounding Dkl (P0(Z | ẑ) || P+j(Z | ẑ)) for a fixed i and ẑ = z(1:i−1).

A strong data-processing inequality. We now relate the divergence between P0(Z) and P+j(Z)
to that for the distributions of (X,Y ) (i.e., the divergence if there were no memory or communica-
tion constraints). As in Theorem 1, let δ = 2

√
2r/σ be the signal to noise ratio. Note that

p(x, ξ, y | ẑ) = p(x, ξ | ẑ)p(y | x, ξ, ẑ) = p(x, ξ)p(y | x, ξ, ẑ)

5
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for p = p0, p±j , as the pair (x, ξ) is independent of the index J and the past (stored) data ẑ. Thus

| log p+j(x, ξ, y | ẑ)− log p0(x, ξ, y | ẑ)| = | log p+j(y | x, ξ, ẑ)− log p0(y | x, ξ, ẑ)| ≤ δ, (7)

as the distribution of p+j(y|x, ξ, ẑ, s) is a mean shift of at most 2r relative to p0(y|x, ξ, s), and both
distributions are Laplace(σ/

√
2) about their mean (recall that s is the Rademacher variable in the

definition of p0; marginalizing it out as in (7) can only bring the densities closer). Leveraging (7),
we obtain the following lemma, which bounds the KL-divergence in terms of the χ2-divergence.

Lemma 3 For any index j and past ẑ,

Dkl (P0(Z | ẑ) || P+j(Z | ẑ)) ≤
∫ |p+j(z | ẑ)− p0(z | ẑ)|2

p+j(z | ẑ)
dµ(z) ≤ eδ

∫ |p+j(z | ẑ)− p0(z | ẑ)|2

p0(z | ẑ)
dµ(z).

Proof The first inequality is the standard bound of KL-divergence in terms of χ2-divergence (cf.
Tsybakov, 2009, Lemma 2.7). The second follows from inequality (7), as

p+j(z | ẑ) =

∫
p+j(z | ξ, x, y, ẑ)dP+j(x, ξ, y | ẑ) =

∫
p0(z | ξ, x, y, ẑ)dP+j(x, ξ, y | ẑ)

≥ e−δ
∫
p0(z | ξ, x, y, ẑ)dP0(x, ξ, y | ẑ) = e−δp0(z | ẑ),

which gives the desired result.

Picking up from Lemma 3, we analyze |p+j(z | ẑ)− p0(z | ẑ)| in Lemma 4, which is the key tech-
nical lemma in this section (all results so far, while non-trivial, are standard results in the literature).

Lemma 4 (Information contraction) For any ẑ and z, we have

|p+j(z | ẑ)− p0(z | ẑ)| ≤ (eδ − 1)p0(z | ẑ)
∫ √

2Dkl (P0(Xj | y, z, ẑ) || P0(Xj | y, ẑ))dP0(y | z, ẑ).

Lemma 4 is proved in Sec. A.3. The intuition behind the proof is that, since p+j(y|ẑ) = p0(y|ẑ),
the only way for z to distinguish between 0 and +j is by storing information about xj (information
about x¬j is useless since it doesn’t affect the distribution over y). The amount of information about
xj is measured by the KL divergence term in the bound; the eδ−1 term appears because even when
x¬j is known, the distributions over y differ by a factor of at most eδ.

Proving Theorem 1. Combining Lemmas 3 and 4, we bound Dkl (P0(Z | ẑ) || P+j(Z | ẑ)) in
terms of an averaged KL-divergence as follows; we have

Dkl (P0(Z | ẑ) || P+j(Z | ẑ))
(i)

≤ eδ
∫ |p+j(z | ẑ)− p0(z | ẑ)|2

p0(z | ẑ)
dµ(z)

(ii)

≤ eδ(eδ − 1)2

∫ (∫ √
2Dkl (P0(Xj | y, z, ẑ) || P0(Xj | y, ẑ))dP0(y | z, ẑ)

)2

dP0(z | ẑ)

(iii)

≤ 2eδ(eδ − 1)2

∫
Dkl (P0(Xj | y, z, ẑ) || P0(Xj | y, ẑ)) dP0(y, z | ẑ)

= 2eδ(eδ − 1)2IP0(Xj ;Z | Y, Ẑ = ẑ),
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where the final equality is the definition of conditional mutual information. Step (i) follows from
Lemma 3, step (ii) by the strong information contraction of Lemma 4, and step (iii) as a consequence
of Jensen. By noting that I(A;B | C) + I(A;C) = I(A;B,C) for any random variables A,B,C,
the final information quantity is bounded by I(Xj ;Z, Y | Ẑ = ẑ), whence we obtain

Dkl (P0(Z | ẑ) || P+j(Z | ẑ)) ≤ 2eδ(eδ − 1)2IP0(Xj ;Z, Y | Ẑ = ẑ). (8)

By construction, the Xj are independent (even given Ẑ), yielding the joint information bound

1

2d

d∑
j=1

∫
Dkl (P0(Z | ẑ) || P+j(Z | ẑ)) dP0(ẑ) ≤ eδ(eδ − 1)2

d

d∑
j=1

∫
IP0(Xj ;Z, Y | Ẑ = ẑ)dP0(ẑ)

=
eδ(eδ − 1)2

d

d∑
j=1

Ip0(Xj ;Z, Y | Ẑ)

≤ eδ(eδ − 1)2

d
Ip0(X;Z, Y | Ẑ). (9)

Returning to the full divergence in inequality (6), we sum over indices i = 1, . . . , n to obtain

1

4d

d∑
j=1

Dkl

(
P0(Z(1:n)) || P−j(Z(1:n))

)
+Dkl

(
P0(Z(1:n)) || P+j(Z

(1:n))
)

≤ eδ(eδ − 1)2

d

n∑
i=1

IP0(X(i);Z(i), Y (i) | Z(1:i−1)) =
eδ(eδ − 1)2B̃0n

d
.

Hence, by Lemma 2, P[Ĵ 6= J ] ≥ 1
2 −

√
eδ(eδ−1)2B̃0n

d . Applying Lemma 1, we have

E
[
‖Ŵ −W‖22

]
≥ r2

2

1

2
−

√
eδ(eδ − 1)2B̃0n

d

 ,

which proves Theorem 1.

3. Lower bound for general k

Theorem 1 provides a lower bound on the memory-constrained minimax risk when k = 1. We
can extend to general k using a so-called “direct-sum” approach (e.g. Braverman, 2012; Garg et al.,
2014). To do so, we define a distribution that is a bit different from the standard model (1).

Let W ∗ ∈ {−r/
√
k, 0, r/

√
k}d be a d-dimensional vector, whose d coordinates we split into

k contiguous blocks, each of size at least
⌊
d
k

⌋
. Within a block, with probability 1

2 all coordinates
are zero, and otherwise we choose a single coordinate uniformly at random (within the block) to
have value ±r/

√
k. We denote this distribution by P ∗. As before, we let each X(i) ∈ {−1, 1}d

be a random sign vector. We now define the noise process. Let ε(i)l = 0 for all i if W ∗l 6= 0,
choose ε(i)l i.i.d. and uniformly from {±r/

√
k} if W ∗l = 0, and set ε(i) = ε

(i)
0 +

∑k
l=1 ε

(i)
l , where

ε
(i)
0 ∼ Laplace(σ/

√
2). At iteration i, then, we observe

Y (i) = W ∗>X(i) + ε(i). (10)

7



STEINHARDT DUCHI

The key idea that allows us to extend our techniques from the previous section to obtain a lower
bound for general k ∈ N (as opposed to k = 1) is that we can decompose Y as

Y (i) =
[
W ∗l
>X

(i)
l + ε

(i)
l

]
+
[
W ∗¬l

>X
(i)
¬l +

∑
l′ 6=l

ε
(i)
l′

]
+ ε

(i)
0 .

We can then reduce to the case when k = 1 by letting W = W ∗l , the lth block, ξ(i) = W ∗¬l
>X

(i)
¬l +∑

l′ 6=l ε
(i)
l′ , and ε(i) = ε

(i)
0 . Of course, our procedure is not allowed to know W ∗¬l or ε¬l, but any

lower bound in which a procedure observes these is only stronger than one in which the procedure
does not. By showing that estimation of the lth block is still challenging in this model, we obtain
our direct sum result, that is, that estimating each of the k blocks is difficult in a memory-restricted
setting. Thus, Theorem 1 gives us:

Proposition 1 Let dl ≥ b dkc be the size of the lth block, let

B̃l
def
=

1

n

n∑
i=1

IP ∗(X
(i)
l ;Z(i), Y (i) | Z(1:i−1),W ∗l ,W

∗
¬l), (11)

and let ν = 2
√

2r/σ. Then for any communication-constrained estimator Ŵl of W ∗l ,

E
[
‖Ŵl −W ∗l ‖22

]
≥ r2

4k

(
1

2
−

√
2B̃ln

dl
eν/
√
k(eν/

√
k − 1)2

)
. (12)

Proof The key is to relate P ∗ to the distributions considered in Section 2, for which we already have
results. While this may seem extraneous, using P ∗ is crucial for allowing our bounds to tensorize
in Theorem 2.

First focusing on the setting k = 1 as in Theorem 1, let P0 be the “null” distribution defined
in the beginning of Section 2, and let P̂ be the joint distribution of W,Z,X, Y when W is drawn
uniformly from the 1-sparse vectors in {−r, 0, r}d. Letting P = 1

2(P0 +P̂ ), we have for any i ∈ [n]

IP (· | Z(1:i−1),W ) =
1

2
IP (· | Z(1:i−1),W = 0) +

1

2
IP (· | Z(1:i−1),W,W 6= 0)

=
1

2
IP0(· | Z(1:i−1)) +

1

2
I
P̂

(· | Z(1:i−1),W ) ≥ 1

2
IP0(· | Z(1:i−1)).

Thus, in the setting of Theorem 1, if we define

B̃
def
=

1

n

n∑
i=1

IP (X(i);Y (i), Z(i) | Z(1:i−1),W ),

we have B̃0 ≤ 2B̃. Moreover, we have P ≥ 1
2 P̂ , and so we obtain that EP [‖Ŵ −W‖22] ≥

1
2EP̂ [‖Ŵ −W‖22], where the second expectation is the risk bounded in Theorem 1. Coupled with
the definition of B̃, this implies that for k = 1, we have

EP
[
‖Ŵ −W‖22

]
≥ 1

2

r2

2

(
1

2
−

√
eδ(eδ − 1)2B̃0n

d

)
≥ r2

4

(
1

2
−

√
2eδ(eδ − 1)2B̃n

d

)
. (13)

8
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Now we show how to give a similar result, focusing on the k > 1 case, for a single block l under
the distribution P ∗. Indeed, we have that P ∗(· | W ∗¬l) = 1

2P
∗(· | W ∗l ,W ∗l 6= 0,W ∗¬l) + 1

2P
∗(· |

W ∗¬l,W
∗
l = 0). Let B̃∗l = 1

n

∑n
i=1 IP ∗(X

(i)
l ;Z(i), Y (i) | Z(1:i−1),W ∗l ,W

∗
¬l = w∗¬l) be the average

mutual information conditioned on the realization W ∗¬l = w∗¬l. Then the lower bound (13), coupled
with the discussion preceding this proposition, implies

EP ∗
[
‖Ŵl −W ∗l ‖22 |W ∗¬l = w∗¬l

]
≥ r2

4k

(
1

2
−

√
2eδ(eδ − 1)2B̃∗l n

dl

)
, (14)

where we have used δ = ν/
√
k. We must remove the conditioning in (14). To that end, note that∫ √

B̃∗l dP
∗(w∗¬l) ≤

(∫
B̃∗l dP

∗(w∗¬l)
) 1

2
= B̃

1
2
l by Jensen. Integrating (14) completes the proof.

Extending this proposition, we arrive at our final lower bound, which holds for any k.

Theorem 2 Let ν = 2
√

2r/σ and assume that ν ≤
√
k/3. Assume that Z(i) consists of Bi ≥ 1

bits, and define B = 1
n

∑n
i=1Bi. For any communication-constrained estimator Ŵ of W ∗,

E
[
‖Ŵ −W ∗‖22

]
≥ r2

4

(
1

2
−

√
9Bnν2 + 4nν2 log(1 + ν2)

2k2 bd/kc

)
.

To prove Theorem 2, we sum (12) over l from 1 to k; the main work is to show that
∑k

l=1 B̃l from
Proposition 1 is at most slightly larger than the bit constraint B. The intuition is that Y (i), being a
single scalar, only adds a small amount of information on top of Z(i). The full proof is in Sec. A.4.

We end with a few remarks on the implications of Theorem 2 for asymptotic rates of conver-
gence. Fixing the variance parameter σ and number of observations n, we choose the size parameter
r to optimize ν. To satisfy the assumptions of the theorem, we must have r2 ≤ σ2k/72. Choosing
r2 = σ2

8 min
{
k2bd/kc
36Bn , k9 , e

9
4
B − 1

}
, we are guaranteed that 4 log(1 + ν2) ≤ 9B, and also that

9Bnν2+4nν2 log(1+ν2)
2k2bd/kc ≤ 1

8 + 1
8 = 1

4 , whence Theorem 2 implies the lower bound

E
[
‖Ŵ −W ∗‖22

]
≥ σ2

128
min

{
k2 bd/kc

36Bn
,
k

9
, e

9
4
B − 1

}
& σ2 min

(
kd

Bn
, 1

)
.

That is, we require at least an average of B = Ω(d/ log(d)) bits of communication (or memory) per
round of our procedure to achieve the optimal (unconstrained) estimation rate of Θ

(
σ2k log(d)/n

)
.

4. An algorithm and upper bound

We now provide an algorithm for the setting when the memory budget satisfies B ≥ Ω(1) ·
max{k log d, k log n}. It is no loss of generality to assume that the budget is at least this high,
as otherwise we cannot even represent the optimal vector w∗ ∈ Rd to high accuracy. Before giv-
ing the procedure, we enumerate the (admittedly somewhat restrictive) assumptions under which it
operates. As before, all proofs are in the supplement.

Assumption A The vectors X(i) and noise variables ε(i) are independent and are drawn i.i.d.
Additionally, they satisfy E[X] = 0, E[ε] = 0, and Cov(X) = Id×d, and X satisfies ‖X‖∞ ≤ ρ
with probability 1. Moreover, ε is σ-sub-exponential, meaning that E[|ε|k] ≤ (k!)σk for all k.

9
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In addition, we assume without further mention—as in Theorems 1 and 2—that w∗ is k-sparse,
meaning ‖w∗‖0 ≤ k, and that we know a bound r such that ‖w∗‖2 ≤ r. In the construction
we gave in the lower bound, we assumed ρ = 1 and r = νσ = O(min{1,

√
kd/Bn}σ). The

strongest of our assumptions is that Cov(X) = Id×d; letting U = suppw∗, we can weaken this to
E[XUX

>
¬U ] = 0 and Cov(XU ) � γI for some γ > 0, but we omit this for simplicity in exposition.

Further weakenings of this assumption in online settings appear possible but challenging (Agarwal
et al., 2012; Steinhardt et al., 2014).

We now describe a memory-bounded procedure for performing an analogue of regularized dual
averaging (RDA; Xiao (2010)). In RDA, one receives a sequence fi of loss functions, maintaining
a vector θ(i) of gradient sums, and at iteration i, performs the following two-step update:

w(i) = arg min
w∈W

{
〈θ(i), w〉+ ψ(w)

}
and θ(i+1) = θ(i) + g(i), where g(i) ∈ ∂fi(w(i)). (15)

The set W is a closed convex constraint set, and the function ψ is a strongly-convex regularizing
function; Xiao (2010) establishes convergence of this procedure for several functions ψ.

We apply a variant of RDA (15) to the sequence of losses fi(w) = 1
2

(
y(i) − w>x(i)

)2
. Our

procedure separates the coordinates into two sets; most coordinates are in the first set, stored in
a compressed representation admitting approximate recovery. The accuracy of this representa-
tion is too low for accurate optimization but is high enough to determine which coordinates are
in supp(w∗). We then track these (few) important coordinates more accurately. For compression
we use a count sketch (CS) data structure (Charikar et al., 2002), which has two parameters: an ac-
curacy ε, and a failure probability δ. The CS stores an approximation x̂ to a vector x by maintaining
a low-dimensional projection Ax of x and supports two operations:
• Update(v), which replaces x with x+ v.
• Query(), which returns an approximation x̂ to x.

Let C(ε, δ) denote the CS data structure with parameters ε and δ. It satisfies the following:

Proposition 2 (Gilbert and Indyk (2010), Theorem 2) Let 0 < ε, δ < 1 and k ≤ 1
ε . The data

structure C(ε, δ) can perform Update(v) and Query() in O(d log n
δ ) time and stores O( log(n/δ)

ε )
real numbers. If x̂ is the output of Query(), then ‖x̂− x‖2∞ ≤ ε‖x− xtop k‖22 holds uniformly over
the course of all n updates with probability 1 − δ, where xtop k denotes x with only its k largest
entries (in absolute value) kept non-zero.

Based on this proposition, we implement a version of `1-regularized regularized dual averaging,
which we present in Algorithm 1. We show subsequently that this procedure (with high probability)
correctly implements dual averaging, so we can leverage known convergence guarantees to give an
upper bound on the minimax rate of convergence for memory-bounded procedures.

Letting w̃(i) be the parameter vector in iteration i, the algorithm tracks three quantities: first, a
count-sketch approximation θ̃(i)

coarse to θ(i) def
=
∑

i′<i ∂fi′(w̃
(i′)), which requiresO(1

ε log n
δ ) memory

(we specify ε presently); second, a set Ũ of “active” coordinates; and third, an approximation θ̃(i)
fine

to θ(i) supported on Ũ . We also track a running average ŵ of w̃(1:i), which we use at the end as a
parameter estimate; this requires at most |Ũ | numbers. In the algorithm, we use the soft-thresholding
and projection operators, given by

Tc(x)
def
= [sign(xj) [|xj | − c]+]dj=1 and Pr(x)

def
=

{
x if ‖x‖2 ≤ r
rx/ ‖x‖2 otherwise.

10
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Algorithm 1 Low-memory `1-RDA for regression

Algorithm parameters: c, ∆, R, ε, δ. Initialize C(ε, δ), ŵ ← 0, Ũ ← ∅
for i = 1 to n do
w̃(i) ← −Pr(ηTc√n(θ̃

(i)
fine)) and ŵ ← 1

i w̃
(i) + i−1

i ŵ

Predict ỹ(i) = (w̃(i))>x(i) and compute gradient g(i) = (y(i) − ỹ(i))x(i)

Call Update(g(i)) and set θ̃(i+1)
coarse ← Query()

for j ∈ Ũ do
θ̃

(i+1)
fine,j ← θ̃

(i)
fine,j + g

(i)
j

end for
for j 6∈ Ũ do

if |θ̃(i+1)
coarse,j | ≥ (c− 2∆)

√
n then

Add j to Ũ and set θ̃(i+1)
fine,j ← θ̃

(i+1)
coarse,j

else
θ̃

(i+1)
fine,j ← 0

end if
end for

end for
return ŵ

We remark that in Algorithm 1, we need track only ŵ, θ̃(i)
fine, and the count sketch data structure,

so the memory usage (in real numbers) is bounded by ‖ŵ‖0 + ‖θ̃(i)
fine‖0, plus the size of the count

sketch structure. We will see later that the size of this structure is roughly inversely proportional to
the degree of `1-regularization. Our main result concerns the convergence of Algorithm 1.

Theorem 3 Let Assumption A and the model (1) hold. With appropriate setting of the constants
c,∆, r, ε (specified in the proof), for budget B ∈ [k, d], Algorithm 1 uses at most Õ(B) bits and
achieves risk

E
[
‖ŵ − w∗‖22

]
= Õ

(
max

{
rρσ

√
kd

Bn
, r2ρ2 kd

Bn

})
.

To compare Theorem 3 with our lower bounds, assume that kd
Bn ≤ 1 and set ρ = 1 and r = νσ;

this matches the setting of our lower bounds in Theorems 1 and 2. Then rρσ = νσ2 =
√

kd
bnσ

2, and

we have Ω
(
σ2 kd

Bn

)
≤ infŵ E

[
‖ŵ − w∗‖22

]
≤ Õ

(
σ2 kd

Bn

)
. In particular, at least for some non-trivial

regimes, our upper and lower bounds match to polylogarithmic factors. This does not imply that
our algorithm is optimal: if the radius r is fixed as n grows, we expect the optimal error to decay
as 1

n rather than the 1√
n

rate in Theorem 3. One reason to believe the optimal rate is 1
n is that it

is attainable when k = 1: simply split the coordinates into batches of size Õ(B) and process the
batches one at a time; since supp(w∗) has size 1, it is always fully contained in one of the batches.

Analysis of Algorithm 1 Define sj to be the iteration where j is added to Ũ (or∞ if this never
happens). Also let ibad be the first iteration where ‖θ̃(i)

coarse − θ(i)‖∞ > ∆
√
n, and define

aj =

{
θ̃

(sj)
coarse,j − θ

(sj)
j : sj < ibad,

0 : sj ≥ ibad.

11
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The vector a tracks the “offset” between θ̃fine and θ, while being clipped to ensure that ‖a‖∞ ≤
∆
√
n. Our key result is that Algorithm 1 implements an instantiation of RDA:

Lemma 5 Let (θ
(i)
, w(i)) be the sequence of iterates produced by RDA (15) with regularizer

ψ(w) =
1

2η
‖w‖22 + c

√
n‖w‖1 + a>w,

where supp(w) is constrained to lie in U and have `2-norm at most r. Suppose that for some G,

G ≥ 1√
n

n
max
i=1

max
j 6∈U
|θ(i)
j |, ∆ ≥

√
ε(d− k)G, and c ≥ 2∆ + G.

Also assume ε ≤ 1
k . Then, with probability 1− δ, w = w̃.

Let Reg def
=
∑n

i=1 fi(w
(i)) − fi(w∗) denote the regret of the RDA procedure in Lemma 5, and let

E
def
=
∑n

i=1 fi(w
∗) =

∑n
i=1(ε(i))2 be the empirical loss of w∗. A mostly standard analysis yields:

Lemma 6 Assume ε ≤ 1
k . Also suppose that

n
max
i=1

max
j 6∈U
|θ(i)
j | ≤ 2ρ

√
(Reg + E) log(2d/δ). (16)

Then, letting V def
= 2

(
1 + 3

√
ε(d− k)

)√
log(2d/δ) for short-hand, the regret Reg satisfies

Reg ≤ 2Rρ
√
k
(

2
√

2 + V
)√

E + kR2ρ2
(
4 + 4V 2

)
(17)

for appropriately chosen c and ∆, which moreover satisfy conditions of Lemma 5.

Lemma 6 is useful because 1
nE [Reg] can be shown to upper-bound E

[
‖ŵ − w∗‖22

]
. To wrap up,

we need to deal with a few details. First, we need to show that (16) holds with high probability:

Lemma 7 With probability 1− δ, |θ(i)
j | ≤ 2ρ

√
(Reg + E) log(2d/δ) for all i ≤ n and j 6∈ U .

Second, we need a high probability bound on E; we prove the following Lemma in Section A.10.

Lemma 8 Let p ≥ 1. There are constants Kp satisfying Kp ≤ 6p for p ≥ 5 and Kp/p → 2 as
p→∞ such that for any t ≥ 0,

P

[
n∑
i=1

(ε(i))2 ≥ σ2n+ 4Kpσ
2t

]
≤

(
3
√
n+ 2n1/pp2

t

)p
.

Substituting p = max{5, log 1
δ}, we have, for a constant C ≤ 72e and with probability 1− δ,

2E =
n∑
i=1

(
ε(i)
)2
≤ nσ2 + Cσ2 log

1

δ

[√
n+ n1/5 log2 1

δ

]
. (18)

Combining Lemmas 7 and 8 with Lemma 6, we then have the following with probability 1− 3δ:

Reg ≤
√

2Rρσ
√
k
(

2
√

2 + V
)√

n+ C log(1/δ)[
√
n+ n1/5 log2(1/δ)] + kR2ρ2

(
4 + 4V 2

)
.

12



MEMORY-BOUNDED SPARSE REGRESSION

To interpret this, remember that V = 2
(

1 + 3
√
ε(d− k)

)√
log(2d/δ) and that the count-sketch

structure stores O (log(n/δ)/ε) bits; also, we need ε ≤ 1
k for Proposition 2 to hold. As long as

B ≥ k, we can take ε = O (1/B) (using Õ(B) bits) and have V = Õ(
√
d/B). The entire first term

above is thus Õ
(
Rρσ

√
dkn
B

)
, while the second is Õ

(
R2ρ2 dk

B

)
. This essentially yields Theorem 3;

the full proof is in Section A.5.

From real numbers to bits. In the above, we analyzed a procedure that stores Õ(B) real numbers.
In fact, each number only requires Õ(1) bits of precision for the algorithm to run correctly. A
detailed argument for this is given in Section B.
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Appendix A. Deferred proofs

A.1. Proof of Lemma 1

Given an estimator Ŵ , define an estimator Ĵ by letting |Ĵ | be the index of the largest coordinate
of |Ŵ | and letting sign(Ĵ) be the sign of that coordinate (ties can be broken arbitrarily). We claim
that ‖Ŵ − W‖22 ≥ r2

2 I[Ĵ 6= J ]. If |Ĵ | = |J |, then either sign(J) = sign(Ĵ), in which case
I[Ĵ 6= J ] = 0, or else sign(J) 6= sign(Ĵ), in which case ‖Ŵ −W‖22 ≥ W 2

|J | = r2. In either case,
the result holds.

Therefore, we turn out attention to the case that that |Ĵ | 6= |J |. Then

‖Ŵ −W‖22 ≥ (Ŵ|Ĵ | −W|Ĵ |)
2 + (Ŵ|J | −W|J |)2

≥ Ŵ 2
|Ĵ | + (|Ŵ|J || − r)2

(i)

≥ Ŵ 2
|J | + (|Ŵ|J || − r)2

≥ r2

2
,

where (i) is because Ĵ indexes the largest coordinate of Ŵ by construction. So, the claimed inequal-
ity holds, and the desired result follows by taking expectations.

A.2. Proof of Lemma 2

We note that

P[Ĵ 6=J ] = 1− P[Ĵ = J ]

= 1− 1

2d

d∑
j=1

P+j(Ĵ = +j) + P−j(Ĵ = −j)

(i)
=

(
1− 1

2d

)
− 1

2d

d∑
j=1

(
P+j(Ĵ = +j)−P0(Ĵ = +j)

)
+
(
P−j(Ĵ = −j)−P0(Ĵ = −j)

)

≥
(

1− 1

2d

)
− 1

2d

d∑
j=1

|P+j(Ĵ = +j)− P0(Ĵ = +j)|+|P−j(Ĵ = −j)− P0(Ĵ = −j)|

(ii)

≥
(

1− 1

2d

)
− 1

2d

d∑
j=1

‖P+j − P0‖TV + ‖P−j − P0‖TV

(iii)

≥
(

1− 1

2d

)
−

√√√√ 1

2d

d∑
j=1

‖P+j − P0‖2TV + ‖P−j − P0‖2TV

(iv)

≥
(

1− 1

2d

)
−

√√√√ 1

4d

d∑
j=1

Dkl (P0 || P+J) +Dkl (P0 || P−j),

as was to be shown. Here (i) uses the fact that
∑d

j=1 P0(Ĵ = +j) + P0(Ĵ = −j) = 1, (ii) uses the
variational form of TV distance, (iii) is Cauchy-Schwarz, and (iv) is Pinsker’s inequality.
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A.3. Proof of Lemma 4

We first make three observations, each of which relies on the specific structure of our problem.
First, we have

p+j(z | xj , y, ẑ) = p0(z | xj , y, ẑ) (19a)

since in both casesX¬j are i.i.d. random sign vectors, Z(i) is (X(i), ξ(i), Y (i), Z(1:i−1))-measurable,
and ξ(i) is independent of X . Secondly, we have

p+j(y | ẑ) = p0(y | ẑ) (19b)

by construction of p0. Finally, we have the inequality

|p+j(xj , y | ẑ)−p0(xj , y | ẑ)| =
∣∣∣∣p+j(xj , y | ẑ)
p0(xj , y | ẑ)

− 1

∣∣∣∣ p0(xj , y | ẑ) ≤ (eδ−1)p0(xj , y | ẑ), (19c)

as the ratio between the quantities—as noted by inequality (7)—is bounded by eδ. Therefore, ex-
panding the distance between p+j(z) and p0(z), we have

|p+j(z | ẑ)− p0(z | ẑ)| =
∣∣∣∣∫ p+j(z | xj , y, ẑ)dP+j(xj , y | ẑ)− p0(z | xj , y, ẑ)dP0(xj , y | ẑ))

∣∣∣∣
(i)
=

∣∣∣∣∫ p0(z | xj , y, ẑ)(dP+j(xj , y | ẑ)− dP0(xj , y | ẑ))
∣∣∣∣

(ii)
=

∣∣∣∣∫ (p0(z | xj , y, ẑ)− p0(z | y, ẑ))(dP+j(xj , y | ẑ)− dP0(xj , y | ẑ))
∣∣∣∣ ,

(20)

where step (i) follows from the independence equality (19a) and step (ii) because p0(z | y, ẑ) is
constant with respect to xj and p+j(y | ẑ) = p0(y | ẑ) by (19b). Next, by inequality (19c) we have
that

|dP+j(xj , y | ẑ)− dP0(xj , y | ẑ))| ≤ (eδ − 1)dP0(xj , y | ẑ), (21)

whence we have the further upper bound

|p+j(z | ẑ)− p0(z | ẑ)|
(i)

≤ (eδ − 1)

∫
|p0(z | xj , y, ẑ)− p0(z | y, ẑ)|dP0(xj , y | ẑ)

(ii)
= (eδ − 1)

∫ ∣∣∣∣dP0(xj , y | z, ẑ)p0(z | ẑ)
dP0(xj , y | ẑ)

− dP0(y | z, ẑ)p0(z | ẑ)
dP0(y | ẑ)

∣∣∣∣ dP0(xj , y | ẑ)

= (eδ − 1)p0(z | ẑ)
∫ ∣∣∣∣dP0(xj , y | z, ẑ)− dP0(xj , y | ẑ)

dP0(y | z, ẑ)
dP0(y | ẑ)

∣∣∣∣
= (eδ − 1)p0(z | ẑ)

∫
|dP0(xj | y, z, ẑ)− dP0(xj | y, ẑ)| dP0(y | z, ẑ)

(iii)

≤ (eδ − 1)p0(z | ẑ)
∫ √

2Dkl (P0(Xj | y, z, ẑ) || P0(Xj | y, ẑ))dP0(y | z, ẑ),

where (i) is by (20) and (21), (ii) is by Bayes’ rule, and (iii) is by Pinsker’s inequality.
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A.4. Proof of Theorem 2

First, we observe that eν/
√
k(eν/

√
k − 1)2 ≤ 2ν2/k for ν ≤

√
k/3, so we may replace the lower

bound in Proposition 1 with

E
[
‖Ŵl −W ∗l ‖22

]
≥ r2

4k

(
1

2
−

√
4B̃lnν2

kdl

)
. (22)

Now, by inequality (22) and Jensen’s inequality, we have

EP ∗
[
‖Ŵ −W ∗‖22

]
=

k∑
l=1

EP ∗
[
‖Ŵl −W ∗l ‖22

]
≥ r2

4k

l∑
k=1

(
1

2
−

√
4nν2

k bd/kc

√
B̃l

)

≥ r2

4

(
1

2
−

√
4nν2

k3 bd/kc

k∑
l=1

√
B̃l

)

≥ r2

4

1

2
−

√
4nν2

k2 bd/kc

√√√√ k∑
l=1

B̃l

 .

We would thus like to bound
∑k

l=1 B̃l.
Next note that by the independence of the X(i)

l and the chain rule for mutual information, we
have that
k∑
l=1

IP ∗(X
(i)
l ;Z(i), Y (i) |Z(1:i−1),W ∗) ≤ IP ∗(X(i);Z(i), Y (i) | Z(1:i−1),W ∗)

= IP ∗(X
(i);Y (i) | Z(1:i−1),W ∗) + IP ∗(X

(i);Z(i) | Y (i), Z(1:i−1),W ∗).
(23)

We can upper bound the final term in expression (23) by H(Z(i)) ≤ Bi. In addition, the first term
on the right hand side of (23) satisfies

IP ∗(X
(i);Y (i) | Z(1:i−1),W ∗) = h(Y (i) | Z(1:i−1),W ∗)− h(Y (i) | X(i), Z(1:i−1),W ∗)

≤ 1

2
log(2πeVar(Y (i)))− h(Laplace(σ/

√
2)),

where h denotes differential entropy and we have used that the normal distribution maximizes en-
tropy for a given variance. Using that h(Laplace(σ/

√
2)) = 1 + log(

√
2σ), inequality (23) thus

implies

IP ∗(X
(i);Z(i), Y (i) | Z(1:i−1),W ∗) ≤ Bi +

1

2
log(2πeVar[Y (i)])− 1− log(

√
2σ)

= Bi +
1

2
log(2πe(σ2 +R2))− 1

2
log(2e2σ2)

= Bi +
1

2
log

π
(
σ2 +R2

)
eσ2

≤ 9

8
Bi +

1

2
log
(
1 + ν2

)
.

In the last step we use 1
2 log(π/e) ≤ 1

8 ≤
1
8Bi and R2/σ2 ≤ 8R2/σ2 = ν2. Using the defini-

tion (11) of B̃l and the preceding bound, we obtain that
∑k

l=1 B̃l ≤ (9/8)B + 1
2 log

(
1 + ν2

)
.

Using
∑k

l=1 B̃l ≤ (9/8)B + 1
2 log(1 + ν2) gives the result.
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A.5. Proof of Theorem 3

To prove Theorem 3, we first state the following more precise theorem, whose proof is given in
Sec. A.6:

Theorem A Let ε ≤ 1
k . With probability 1− 3δ, we have

Reg ≤
√

2Rρσ
√
k
(

2
√

2 + V
)√

n+ C log(1/δ)[
√
n+ n1/5 log2(1/δ)] + kR2ρ2

(
4 + 4V 2

)
.

(24)
In particular, let:

δ =
k2R2ρ2

12σ2n2d

ŵ
def
=

1

n

(
w̃(1) + · · ·+ w̃(n)

)
.

Then we have the minimax bound:

E
[
‖ŵ − w∗‖22

]
≤ 2

n

(√
2Rρσ

√
k
(

2
√

2 + V
)√

n+ C log(1/δ)[
√
n+ n1/5 log2(1/δ)] + kR2ρ2

(
6 + 4V 2

))
.

Based on this theorem, we have

E
[
‖ŵ − w∗‖22

]
≤ Õ(Rρσ(1 + V )

√
k/n+R2ρ2(1 + V 2)k/n).

Also, by Proposition 2, the count sketch structure stores Õ(1/ε) numbers; in addition, only O(k)
numbers are needed to store ŵ and θ̃fine. Thus as long as b ≥ Ω̃(k) (so that ε ≤ 1

k ), we have

ε ≤ Õ(1/b). Next recall that V def
= 2

(
1 + 3

√
ε(d− k)

)√
log(2d/δ) = Õ(1 +

√
d/b). We

assume that b ≤ d, so we therefore have

E
[
‖ŵ − w∗‖22

]
≤ Õ

(
Rρσ

√
kd/bn+R2ρ2kd/bn

)
= Õ

(
max

(
Rρσ

√
kd

bn
,R2ρ2kd

bn

))
,

as was to be shown.

A.6. Proof of Theorem A

The count-sketch guarantee (Proposition 2), as well as Lemmas 7 and 8, each hold with probability
1−δ, so with probability 1−3δ all 3 results will hold, in which case Lemma 6 establishes the stated
regret bound by plugging in the bound on E from Lemma 8 to (17).

To prove the bound on E
[
‖ŵ − w∗‖22

]
, first note that

E
[
fi(w̃

(i))
]

=
1

2

(
ε(i) + (w̃(i) − w∗)>x(i)

)2

=
1

2

(
E
[(
ε(i)
)2
]

+ ‖w̃(i) − w∗‖22
)
,

18
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where the second equality follows because Cov[X(i)] = I .
Also note that, by convexity, ‖ŵ − w∗‖22 ≤ 1

n

∑n
i=1 ‖w̃(i) − w∗‖22. Therefore, any bound on

E
[∑n

i=1 fi(w̃
(i))
]

implies a bound on E[‖ŵ − w∗‖22]; in particular,

E[‖ŵ − w∗‖22] ≤ 2

n
E

[
n∑
i=1

fi(w̃
(i))−

(
ε(i)
)2
]
.

The main difficulty is that we have a bound that holds with high probability, and we need to make
it hold in expectation. To accomplish this, we simply need to show that

∑
i fi is not too large even

when the high probability bound fails.
To do this, first note that we have the bound

fi(w̃
(i)) =

1

2

(
ε(i) + (w̃(i) − w∗)>x(i)

)2

(i)

≤ 1 + δ0

2

(
ε(i)
)2

+
1

2

(
1 +

1

δ0

)(
(w̃(i) − w∗)>x(i)

)2

(ii)

≤ 1 + δ0

2

(
ε(i)
)2

+ 2

(
1 +

1

δ0

)
R2ρ2d,

where (i) is by Young’s inequality and (ii) is by Cauchy-Schwarz and the fact that ‖w̃(i) − w∗‖2 ≤
2R. Thus, we have the bound

n∑
i=1

fi(w̃
(i)) ≤ 2n

(
1 +

1

δ0

)
R2ρ2d+

1 + δ0

2

n∑
i=1

(
ε(i)
)2
.

We also straightforwardly have the bound

n∑
i=1

fi(w̃
(i)) ≤ Reg +

1

2

n∑
i=1

(
ε(i)
)2
.

Combining these yields

n∑
i=1

fi(w̃
(i)) ≤ min

(
Reg, 2n

(
1 +

1

δ0

)
R2ρ2d

)
+

1 + δ0

2

n∑
i=1

(
ε(i)
)2
. (25)

Let σ0
def
= E

[(
ε(i)
)2]

and let Reg0 denote the right-hand-side of (24). Then, taking expectations of
(25) and using the fact that Reg ≤ Reg0 with probability 1− 3δ, we have

1

2

(
σ2

0 + E
[
‖ŵ − w∗‖22

])
≤ (1− 3δ)

n
Reg0 + 6δ

(
1 +

1

δ0

)
R2ρ2d+

1 + δ0

2
σ2

0,
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which implies that

E
[
‖ŵ − w∗‖22

]
≤ 2(1− 3δ)

n
Reg0 + 12δ

(
1 +

1

δ0

)
R2ρ2d+ δ0σ

2
0

≤ 2

n
Reg0 + 24

δ

δ0
R2ρ2d+ δ0σ

2
0

=
2

n

(
√

2Rρσ
√
k
(

2
√

2 + V
)√

n+ C log(1/δ)[
√
n+ n1/5 log2(1/δ)]

+ kR2ρ2
(
4 + 4V 2

))
+ 24

δ

δ0
R2ρ2d+ δ0σ

2
0.

Note also that σ0 ≤
√

2σ. Setting δ0 = kR2ρ2

σ2n
and δ = kδ0

12nd = k2R2ρ2

12σ2n2d
, we obtain the desired

bound.

A.7. Proof of Lemma 5

We proceed by contradiction. Let i be the minimal index where w(i) 6= w̃(i), and let j be a particular
coordinate where the relation fails. Note that, by minimality of i, we have θ(i) = θ

(i)
. We split into

cases based on how i relates to sj .
Case 1: i < sj . By construction, we have w̃(i)

j = 0 for i < sj . Therefore, we must have

w
(i)
j 6= 0. In particular, this implies that |θ(i)

j | + |aj | > c
√
n. But ‖a‖∞ ≤ ∆

√
n by construction,

so we must have |θ(i)
j | > (c − ∆)

√
n. Since θ

(i)
j = θ

(i)
j and ‖θ̃(i)

coarse − θ(i)‖∞ ≤ ∆
√
n, we have

|θ̃(i)
coarse,j | > (c− 2∆)

√
n; thus i ≥ sj , which is a contradiction.

Case 2: i ≥ sj . Note that

w̃
(i)
j = −SR(ηTc

√
n(θ̃

(i)
fine,j))

= −SR(ηTc
√
n(θ

(i)
j + (θ̃

(sj)
coarse,j − θ

(sj)
j )))

= −SR(ηTc
√
n(θ

(i)
j + (θ̃

(sj)
coarse,j − θ

(sj)
j ))),

while w(i)
j = −SR(ηTc

√
n(θ

(i)
j + aj)). Therefore, w̃(i)

j 6= w
(i)
j implies that aj 6= θ̃

(sj)
coarse,j − θ

(sj)
j ,

which means that sj ≥ ibad. Hence, i ≥ ibad as well. This implies that there is an iteration
where ‖θ̃(ibad)

coarse − θ(ibad)‖∞ > ∆
√
n, such that the RDA algorithm and Algorithm 1 make the same

predictions for all i′ < ibad. We will focus the rest of the proof on showing this is impossible.
Since RDA and Algorithm 1 make the same predictions for i′ < ibad, we in particular have

θ(ibad) = θ
(ibad)

. Now, using the count sketch guarantee, we have

‖θ̃(ibad)
coarse − θ(ibad)‖2∞ ≤ ε‖θ(ibad) − θ(ibad)

top k ‖
2
2 = ε‖θ(ibad) − θ(ibad)

top k ‖22.

But since U has size k, we have the bound

‖θ(ibad) − θ(ibad)
top k ‖22 ≤

∑
j 6∈U
|θ(ibad)
j |2 ≤ G2n(d− k).
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Putting these together, we have

‖θ̃(ibad)
coarse − θ(ibad)‖2∞ ≤ ε(d− k)G2n ≤ ∆2n,

which contradicts the assumption that ‖θ̃(ibad)
coarse − θ(ibad)‖∞ > ∆

√
n.

Since both cases lead to a contradiction, Algorithm 1 and the RDA procedure must match.
Moreover, the condition c ≥ 2∆ + G ensures that no coordinate outside of U is added to the active
set Ũ , which completes the proof.

A.8. Proof of Lemma 6

By the general regret bound for mirror descent (Theorem 2.151 of Shalev-Shwartz (2011)),

Reg =

n∑
i=1

fi(w)− fi(w∗) ≤
1

2η
‖w∗‖22 + c

√
n‖w∗‖1 + a>w∗ +

η

2

n∑
i=1

‖z(i)
U ‖

2
2

≤ 1

2η
R2 + (c

√
n+ ‖a‖∞)‖w∗‖1 +

η

2

n∑
i=1

‖x(i)
U

√
2fi(w(i))‖22

≤ 1

2η
R2 + (c+ ∆)

√
nkR+ kηρ2

n∑
i=1

f(w(i))

≤ 1

2η
R2 + (c+ ∆)

√
nkR+ kηρ2 (E + Reg) .

Now note that, by the condition of the proposition, we can take G = ρ

√
2(Reg+E) log(2d/δ)

n ; hence

setting ∆ = ρ

√
2ε(d−k)(Reg+E) log(2d/δ)

n , c = ρ

√
2(Reg+E) log(2d/δ)

n

(
1 + 2

√
ε(d− k)

)
will satisfy

the conditions of Lemma 5. Recalling the definition of V above, we thus have the bound

Reg ≤ 1

2η
R2 +

√
kRρV

√
Reg + E + kηρ2(Reg + E).

Re-arranging, we have:(
1− kηρ2

)
Reg ≤ R2

2η
+
√
kRρV

√
Reg + E + kηρ2E.

Now set η = min
(

R
ρ
√

2kE
, 1

2kρ2

)
; note that the second term in the min allows us to divide through

by 1− kηρ2 while only losing a factor of 2. We then have

Reg ≤ 2Rρ
√
k
(√

2E + V
√
Reg + E

)
+ 2kR2ρ2,

where the first term is the bound when η = R/ρ
√

2kE and the second term upper-bounds R2

η in the
case that η = 1/2kρ2. Solving the quadratic,2 we have

Reg ≤ 2Rρ
√
k
(

2
√

2 + V
)√

E + kR2ρ2
(
4 + 4V 2

)
,

which completes the proof.

1. Note that Shalev-Shwartz (2011) refers to the procedure as online mirror descent rather than regularized dual averag-
ing, but it is actually the same procedure.

2. More precisely, we use the fact that if x ≤ a+
√
bx+ c for a, b, c ≥ 0, then x ≤ 2a+ b+

√
c.
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A.9. Proof of Lemma 7

Note that

θ
(i+1)
j − θ(i)

j = z
(i)
j

= (y(i) − (w̃(i))>x(i))x
(i)
j

= ((w∗ − w̃(i))>x(i) + ε(i))x
(i)
j .

Since supp(w∗− w̃(i)) ⊆ U and j 6∈ U , this is a zero-mean random variable (since Cov[X(i)] = I),
and so θ

(i)
j is a martingale difference sequence. Moreover, lettingFi be the sigma-algebra generated

by the first i− 1 samples, we have that

E
[
exp

(
λ
(
θ

(i+1)
j − θ(i)

j

)
− ρ2λ2fi(w

(i))
)
| Fi

]
= E

[
exp

(
λx

(i)
j

(
y(i) − (w(i))>x(i)

)
− ρ2λ2fi(w

(i))
)
| Fi

]
= E

[
exp

(
λx

(i)
j

(
y(i) − (w(i))>x(i)

))
| Fi

]
(i)

≤ E
[
exp

(
1

2
λ2ρ2

(
y(i) − (w(i))>x(i)

)2
− ρ2λ2fi(w

(i))

)
| Fi

]
= 1.

Here (i) is obtained by marginalizing over x(i)
j , using the fact that x(i)

j is independent of both y(i)

and (w(i))>x(i) (since supp(w∗) ⊆ U and supp(w(i)) ⊆ U ), together with the fact that |x(i)
j | ≤ ρ

and hence is sub-Gaussian.
Consequently, for any λ, Yi = exp

(
λθ

(i+1)
j − ρ2λ2

∑i
k=1 fk(w

(k))
)

is a supermartingale. For
any t, define the stopping criterion Yi ≥ t. Then, by Doob’s optional stopping theorem (Corollary
5.11 of Breiman (1992)) applied to this stopped process, together with Markov’s inequality, we have
P [maxni=1 Yi ≥ t] ≤ 1

t .
Bounding

∑i
k=1 fk by

∑n
k=1 fk and inverting, for any fixed j and λ, with probability 1− δ, we

have
n

max
i=1

θ
(i)
j ≤ λρ2

n∑
i=1

fi(w
(i)) +

1

λ
log(1/δ).

Union-bounding over j = 1, . . . , d and ±θj changes the log(·) term to log(2d/δ), yielding the
high-probability-bound

n
max
i=1
‖θ(i)‖∞ ≤ λρ2

n∑
i=1

fi(w
(i)) +

1

λ
log(2d/δ).

Using the equality
∑n

i=1 fi(w
(i)) = E+Reg and choosing the optimal value of λ yields the desired

result.

Remark 1 Note that λ is set adaptively based on E + Reg, which depends on the randomness in
θ

(1:n)
and thus could be problematic. However, later in our argument we end up with an upper

bound on E + Reg that depends only on the problem parameters; if we set λ based on this upper
bound, our proofs still go through, and we eliminate the dependence of λ on θ.
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A.10. Proof of Lemma 8

We prove the inequality using standard symmetrization inequalities. First, we use the Høffmann-
Jorgensen inequality (e.g. de la Peña and Giné, 1999, Theorem 1.2.3)), which states that given
symmetric random variables Ui and Sn =

∑n
i=1 Ui and some t0 is such that P [|Sn| ≥ t0] ≤ 1/8,

then for any p > 0,

E

[∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
p]1/p

≤ Kp

(
t0 + E

[
max
i≤n
|Ui|p

]1/p
)
, where Kp ≤ 2

1+ 4
p exp

(
p+ 1

p
log(p+ 1)

)
.

(26)
Notably, for any p ≥ 5 we have Kp ≤ 6p, for any p ≥ 1 we have Kp ≤ 128p, and Kp/p → 2 as
p→∞.

Now, recall that ε(i) is sub-exponential, meaning that there is some σ such that E
[
|ε(i)|p

]1/p ≤
σp for all p ≥ 1. Letting ri ∈ {±1} be i.i.d. Rademacher variables and Vi = (ε(i))2 be shorthand,
an immediate symmetrization inequality (e.g. de la Peña and Giné, 1999, Lemma 1.2.6) gives that

P

[
n∑
i=1

Vi ≥ σ2n+ t

]
≤ P

[
n∑
i=1

Vi ≥
n∑
i=1

E [Vi] + t

]
≤ t−pE

[∣∣∣∣∣
n∑
i=1

(Vi − E [Vi])

∣∣∣∣∣
p]

≤ 2pt−pE

[∣∣∣∣∣
n∑
i=1

riVi

∣∣∣∣∣
p]
.

Now we apply the Høffmann-Jorgensen inequality (26) to Ui = riVi, which are symmetric and
satisfy

P

[∣∣∣∣∣
n∑
i=1

riVi

∣∣∣∣∣ ≥ t0
]
≤ 1

t20
E

∣∣∣∣∣
n∑
i=1

riVi

∣∣∣∣∣
2
 =

1

t20
E

[
n∑
i=1

V 2
i

]
≤ 4nσ4

t20
,

so that taking t0 = 6σ2√n and applying inequality (26) yields

E

[∣∣∣∣∣
n∑
i=1

riVi

∣∣∣∣∣
p]
≤ Kp

p

(
6σ2√n+ E

[
max
i≤n

V p
i

]1/p
)p

.

Moreover, we have that

E
[
max
i≤n

V p
i

]
≤

n∑
i=1

E [V p
i ] ≤ nE

[
ε(i)

2p
]
≤ nσ2p(2p)2p.

In particular, we have

P

[
n∑
i=1

Vi ≥ σ2n+ 4Kpσ
2t

]
≤
(

2

4Kpσ2t

)p
Kp
pσ

2p
(

3
√
n+ 2n1/pp2

)p
=

(
3
√
n+ 2n1/pp2

t

)p
.

(27)
Taking p = log 1

δ and t = e ·
(

3
√
n+ 2nlog−1 1

δ log2 1
δ

)
gives the desired result.
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Appendix B. From real numbers to bits

In Section 4, we analyzed a procedure that stored Õ(B) real numbers. We now argue that each
number only needs to be stored to polynomial precision, and so requires only Õ(1) bits. Algo-
rithm 1 stores the quantities Ũ , ŵ, θ̃fine, and the count sketch structure (θ̃coarse). The set Ũ requires
O(k log d) bits. To handle θ̃coarse and θ̃fine, we randomly (and unbiasedly) round each g(i)

j to the
nearest multiple of 1

M for some large integer M ; for instance, a value of 4.1
M will be rounded to 4

M

with probability 0.9 and to 5
M with probability 0.1. Since this yields an unbiased estimate of g(i)

j , the
RDA procedure will still work, with the overall regret bound increasing only slightly (essentially,
by kn

M2 in expectation).

If M ′ def
=
⌈
maxi∈[n],j∈[d] |g

(i)
j |
⌉

, then the number of bits needed to represent each coordinate

of θ̃fine (as well as each number in the count sketch structure) is O(log(nMM ′)). But |g(i)
j | =

|x(i)
j |
√

2fi(w̃(i))| ≤ ρ
√

2(E + Reg), which is polynomial in n, so M ′ is polynomial in n. In addi-
tion, for M growing polynomially in n, the increase of kn

M2 in the regret bound becomes negligibly
small. Hence, we can take nMM ′ to be polynomial in n, thus requiring Õ(1) bits per coordinate to
represent θ̃coarse and θ̃fine. Finally, to handle ŵ, we deterministically round to the nearest multiple
of 1

M . Since ŵ does not affect any choices in the algorithm, the accumulated error per coordinate
after n steps is at most n

M , which is again negligible for large M . Since each coordinate of ŵ is at
most R, we can store them each with Õ(1) bits, as well.
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