Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery

Thomas Steinke*
TSTEINKE@SEAS.HARVARD.EDU
Harvard University
Jonathan Ullman ${ }^{\dagger}$
JULLMAN@CS.COLUMBIA.EDU
Columbia University

Abstract

We show an essentially tight bound on the number of adaptively chosen statistical queries that a computationally efficient algorithm can answer accurately given n samples from an unknown distribution. A statistical query asks for the expectation of a predicate over the underlying distribution, and an answer to a statistical query is accurate if it is "close" to the correct expectation over the distribution. This question was recently studied by Dwork et al. (2015), who showed how to answer $\tilde{\Omega}\left(n^{2}\right)$ queries efficiently, and also by Hardt and Ullman (2014), who showed that answering $\tilde{O}\left(n^{3}\right)$ queries is hard. We close the gap between the two bounds and show that, under a standard hardness assumption, there is no computationally efficient algorithm that, given n samples from an unknown distribution, can give valid answers to $O\left(n^{2}\right)$ adaptively chosen statistical queries. An implication of our results is that computationally efficient algorithms for answering arbitrary, adaptively chosen statistical queries may as well be differentially private.

We obtain our results using a new connection between the problem of answering adaptively chosen statistical queries and a combinatorial object called an interactive fingerprinting code Fiat and Tassa (2001). In order to optimize our hardness result, we give a new Fourier-analytic approach to analyzing fingerprinting codes that is simpler, more flexible, and yields better parameters than previous constructions.

Keywords: Statistical Query Model, Differential Privacy, Computational Complexity

1. Introduction

Empirical research commonly involves asking multiple "queries" on a finite sample drawn from some population(e.g., summary statistics, hypothesis tests, or learning algorithms). The outcome of a query is deemed significant if it is unlikely to have occurred by chance alone, and a "false discovery" occurs if the analyst incorrectly declares an observation significant. For decades statisticians have been devising methods for preventing false discovery, such as the "Bonferroni correction" Bonferroni (1936); Dunn (1961) and the widely used and highly influential method of Benjamini and Hochberg (1995) for controlling the "false discovery rate."

Nevertheless, false discovery persists across all empirical sciences, and both popular and scientific articles report on an increasing number of invalid research findings. Typically false discovery is attributed to misuse of statistics. However, another possible explanation is that methods for preventing false discovery do not address the fact that data analysis is inherently adaptive-the choice

[^0]of queries depends on previous interactions with the data. The issue of adaptivity was recently investigated in a striking paper by Dwork, Feldman, Hardt, Pitassi, Reingold, and Roth Dwork et al. (2015) and also by Hardt and Ullman (2014).

These two papers formalized the problem of adaptive data analysis in Kearns' statistical-query (SQ) model Kearns (1993). In the SQ model, there is an algorithm called the oracle that is given n samples from an unknown distribution \mathcal{D} over some finite universe $\mathcal{X}=\{0,1\}^{d}$, where the parameter d is the dimensionality of the distribution. The oracle must answer statistical queries about \mathcal{D}. A statistical query q is specified by a predicate $p: \mathcal{X} \rightarrow\{0,1\}$ and the answer to a statistical query is

$$
q(\mathcal{D})=\underset{x \sim \mathcal{D}}{\mathbb{E}}[p(x)] .
$$

The oracle's answer a to a query q is accurate if $|a-q(\mathcal{D})| \leq \alpha$ with high probability (for suitably small α). Importantly, the goal of the oracle is to provide answers that "generalize" to the underlying distribution, rather than answers that are specific to the sample. The latter is easy to achieve by outputting the empirical average of the query predicate on the sample.

The analyst makes a sequence of queries $q^{1}, q^{2}, \ldots, q^{k}$ to the oracle, which responds with answers $a^{1}, a^{2}, \ldots, a^{k}$. In the adaptive setting, the query q^{i} may depend on the previous queries and answers $q^{1}, a^{1}, \ldots, q^{i-1}, a^{i-1}$ arbitrarily. We say the oracle is accurate given n samples for k adaptively chosen queries if, when given n samples from an arbitrary distribution \mathcal{D}, the oracle accurately responds to any adaptive analyst that makes at most k queries with high probability. A computationally efficient oracle answers each query in time polynomial in n and $d .{ }^{1}$

When the queries are specified non adaptively (i.e. independent of previous answers), then the empirical average of each query on the sample is accurate with high probability as long as $k \leq 2^{o(n)}$. However, the situation turns out to be very different when the queries are asked adaptively. Using a connection to differential privacy Dwork et al. (2006), Dwork et al. (2015) showed that there is a computationally efficient oracle that accurately answers $\tilde{\Omega}\left(n^{2}\right)$ many adaptively chosen queries. They also showed that there is an exponential-time oracle that can answer exponentially in n many queries, and left it open whether this guarantee could be achieved by an efficient oracle. Unfortunately, Hardt and Ullman (2014), building on hardness results for differential privacy Ullman (2013); Bun et al. (2014) showed that, assuming the existence of one-way functions, there is no computationally efficient algorithm that answers $\tilde{O}\left(n^{3}\right)$ queries. Given the importance of preventing false discovery in adaptive data analysis, we would like to know if there is an efficient algorithm that answers as many as n^{3} queries.

Unfortunately, we show that this is not the case, and prove the following nearly optimal hardness result for preventing false discovery.

Theorem 1 (Informal) Assuming the existence of one-way functions, there is no computationally efficient oracle that given n samples is accurate on $O\left(n^{2}\right)$ arbitrary adaptively chosen queries.

Conceptually, our result gives further evidence that there may be an inherent computational barrier to preventing false discovery in interactive data analysis. It also shows that in the worst case, an efficient oracle for answering adaptively chosen statistical queries may as well be differentially private. That is, the oracle used in Dwork et al. (2015) to answer $\tilde{\Omega}\left(n^{2}\right)$ queries gives the strong

1. We assume that the analyst only asks queries that can be evaluated on the sample in polynomial time.
guarantee of differential privacy for the sample, and no efficient oracle regardless of privacy can answer significantly more arbitrary, adaptively chosen queries. We believe it is an intriguing question to see whether this sort of equivalence holds in more restricted settings.

As in Hardt and Ullman (2014), our hardness result applies whenever the dimensionality d of the data grows with the sample size faster than logarithmically so that 2^{d} is no longer polynomial in $n .{ }^{2}$ This requirement is rather mild, and is also necessary. If $n \gg 2^{d}$ then the empirical distribution of the n samples will be close to the underlying distribution in statistical distance, so every statistical query can be answered accurately given the sample. Thus, the dimensionality of the data has a major effect on the hardness of the problem. Hardt and Ullman (2014) also showed that if the dimensionality is much larger than n, then we cannot even hope for a computationally unbounded oracle that provides accuracy on adaptive queries. We obtain a nearly optimal version of that result.

Theorem 2 (Informal) There is no oracle (even a computationally unbounded one) that given n samples in dimension $d=O\left(n^{2}\right)$ is accurate on $O\left(n^{2}\right)$ arbitrary adaptively chosen queries.

Our result builds on the techniques of Hardt and Ullman (2014), who rely on a combinatorial object called a fingerprinting code Boneh and Shaw (1998); Tardos (2008) to prove their hardness result. Fingerprinting codes are the key tool underlying hardness results for differential privacy Ullman (2013); Bun et al. (2014), but extra work is required to adapt this technique to prove hardness of false discovery. In this work, we identify a variant called an interactive fingerprinting code Fiat and Tassa (2001), which abstracts the technique in Hardt and Ullman (2014) and gives a more direct way of proving hardness results for adaptive data analysis. A slightly weaker version of our results can be obtained using the nice recent construction of interactive fingerprinting codes due to Laarhoven et al. (2013) as a black box. However, we give a new analysis of (a close variant of) their code, which is simpler and achieves stronger parameters.

Thus, we can summarize the contributions of this work as follows.

1. We identify interactive fingerprinting codes as the key combinatorial object underlying the hardness of preventing false discovery in adaptive environments, analogous to the way in which (non interactive) fingerprinting codes are the key combinatorial object underlying the hardness of differential privacy.
2. We use this connection to prove nearly optimal hardness results for preventing false discovery in interactive data analysis.
3. We give a new Fourier-analytic method for analyzing both interactive and non-interactive fingerprinting codes that we believe is more intuitive, more flexible, and also leads to even stronger hardness results. In particular, using our analysis we are able to prove that these codes are optimally robust ${ }^{3}$ Bun et al. (2014), which can be used to strengthen the hardness results in Ullman (2013); Bun et al. (2014); Steinke and Ullman (2015). Given the importance of fingerprinting codes to adaptive data analysis and privacy, we believe this new analysis will find further applications.
4. This is under the stronger, but still standard, assumption that exponentially-hard one-way functions exist.
5. In this context, optimal robustness means that all of our hardness results apply even when the oracle answers only a $1 / 2+\Omega(1)$ fraction of the queries accurately.

1.1. Techniques

The structure of our proof is rather simple, and closely follows the framework in Hardt and Ullman (2014). We will design a challenge distribution \mathcal{D} and a computationally efficient adaptive analyst \mathcal{A} who knows \mathcal{D}. If any computationally efficient oracle \mathcal{O} is given n samples $S=\left\{x_{1}, \ldots, x_{n}\right\}$ drawn from \mathcal{D}, then our analyst \mathcal{A} can use the answers of \mathcal{O} to reconstruct the set S. Using this information, the adversary can construct a query on which S is not representative of \mathcal{D}.

Our adversary \mathcal{A} and the distribution \mathcal{D}, like that of Hardt and Ullman (2014), is built from a combinatorial object with a computational "wrapper." The computational wrapper uses queries that cryptographically "hide" information from the oracle \mathcal{O}. In our work he combinatorial object will be an interactive fingerprinting code (IFPC). An IFPC is a generalization of a (standard) fingerprinting code, which was originally introduced by Boneh and Shaw (1998) as a way to watermark digital content.

An interactive fingerprinting code \mathcal{F} is an efficient interactive algorithm that defeats any adversary \mathcal{P} in the following game (with high probability). The adversary \mathcal{P} picks $S \subset[N]$ unknown to \mathcal{F}. The goal of \mathcal{F} is to identify S by making ℓ interactive queries to \mathcal{P}. \mathcal{F} specifies each query by a vector $c \in\{ \pm 1\}^{N}$. In response, the adversary \mathcal{P} must simply output $a \in\{ \pm 1\}$ such that $a=c_{i}$ for some $i \in[N]$. However, the adversary \mathcal{P} is restricted to only see c_{i} for $i \in S$. At any time, \mathcal{F} may accuse some $i \in[N]$. If $i \in S$ is accused, then i is removed from S (i.e. $S \leftarrow S \backslash\{i\}$), thereby further restricting \mathcal{P}. If $i \notin S$ is accused, then this is referred to as a false accusation. To win, the interactive fingerprinting code \mathcal{F} must accuse all of S, without making "too many" false accusations.

In contrast Hardt and Ullman (2014) use only standard fingerprinting codes. The difference between interactive and non interactives fingerprinting codes is that a non interactive fingerprinting code must give all ℓ queries to \mathcal{P} at once, but is (necessarily) only required to identify one $i \in S$. The suboptimal parameters achieved by Hardt and Ullman (2014), as well as some of the additional technical work, are there result of having to boost non interactive fingerprinting codes to recover all of S. Using this new perspective of interactive fingerprinting codes, the technique of Hardt and Ullman (2014) can be seen as a construction of an interactive fingerprinting code with length $\ell=\tilde{O}\left(N^{3}\right)$ by concatenating N independent copies of Tardos' non interactive fingerprinting code of length $\ell=\tilde{O}\left(N^{2}\right)$.

However, one can construct more clever and shorter interactive fingerprinting codes. Specifically, Laarhoven et al. (2013) (building on Tardos (2008)) give a construction that would be suitable for our application with $\ell=\tilde{O}\left(N^{2}\right)$. Extending their results, we give a new analysis of their interactive fingerprinting code as well as Tardos' non interactive fingerprinting code that allows us to achieve length $\ell=O\left(N^{2}\right)$ while still being sufficiently secure for our application.

Theorem 3 (Informal) For every N, there exists an interactive fingerprinting code with $\ell=O\left(N^{2}\right)$ that, except with negligible probability, makes at most N/1000 false accusations.

This result suffices for the informal statements made above, but our construction is somewhat more general and has additional parameters and security properties, which we detail in Section 2.

1.2. Applications to Data Privacy

The adversary used to show hardness of preventing false discovery is effectively carrying out a reconstruction attack against the database of samples. Roughly, if there is an adversary who can
reconstruct the set of samples S from the oracle's answers, then the oracle is said to be "blatantly non-private"-it reveals essentially all of the data it holds, and so cannot guarantee any reasonable notion of privacy to the owners of the data. Since the seminal work of Dinur and Nissim (2003), such reconstruction attacks have been used to establish strong limitations on the accuracy of privacypreserving oracles.

Using interactive fingerprinting codes, combined with the framework of Hardt and Ullman (2014), we obtain the following results. In both cases, Hardt and Ullman (2014) show similar results, in which our $O\left(n^{2}\right)$ bounds are replaced with $\tilde{O}\left(n^{3}\right)$.

Theorem 4 (Informal) Assuming the existence of one-way functions, every computationally efficient oracle that, given n samples, is accurate on $O\left(n^{2}\right)$ arbitrary adaptively chosen queries is blatantly non private.

Theorem 4 should be compared with the result in Ullman (2013), which showed that any computationally efficient oracle that, given n samples, is accurate for $\tilde{O}\left(n^{2}\right)$ non-adaptively chosen queries cannot satisfy the strong guarantee of "differential privacy" Dinur and Nissim (2003); Dwork et al. (2006). Theorem 4 also shows that, in the adaptive setting, we can obtain a stronger privacy violation using fewer queries than Ullman (2013).

Theorem 5 (Informal) Every oracle (even one that is computationally unbounded) that is accurate on $O\left(n^{2}\right)$ arbitrary adaptively chosen queries when given n samples in dimension $d=O\left(n^{2}\right)$, is blatantly non private.

Theorem 5 should be compared with the result in Bun et al. (2014) that showed any (possibly computationally unbounded) oracle that answers a fixed family of $\tilde{O}\left(n^{2}\right)$ simple queries in dimension $d=\tilde{O}\left(n^{2}\right)$ cannot satisfy differential privacy.

In contrast with Theorems 4 and 5, the well-known result of Dwork et al. (2006) shows that there is an efficient differentially private algorithm that answers $\tilde{\Omega}\left(n^{2}\right)$ adaptively chosen queries. Our results show that, in the adaptive setting, there is a sharp threshold for the number of queries where, below this threshold, the strong notation of differential privacy can be achieved and, above this threshold, even minimal notions of privacy are unachievable.

1.3. Additional Related Work

Our work and Hardt and Ullman (2014) is part of a line of work connecting technology for secure watermarking to lower bounds for private and interactive data analysis tasks. This connection first appeared in the work of Dwork, Naor, Reingold, Rothblum, and Vadhan Dwork et al. (2009), who showed that the existence of traitor-tracing schemes implies hardness of differential privacy. Traitor-tracing schemes were introduced by Chor, Fiat, and Naor Chor et al. (1994), also for the problem of watermarking digital content. The connection between traitor-tracing and differential privacy was strengthened in Ullman (2013), which introduced the use of fingerprinting codes in the context of differential privacy, and used them to show optimal hardness results for certain settings. Bun et al. (2014) showed that fingerprinting codes can be used to prove nearly-optimal informationtheoretic lower bounds for differential privacy, which established fingerprinting codes as the key information-theoretic object underlying lower bounds in differential privacy. These results were further sharpened in Steinke and Ullman (2015).

Interactive fingerprinting codes and the analogous interactive traitor tracing schemes were first studied by Fiat and Tassa (2001) under the name "dynamic traitor-tracing schemes." Formally their results are in a somewhat different model and cannot be used to prove hardness of preventing false discovery. Tassa (2005) gave the first construction in the model we use, but achieved suboptimal code length. Recently Laarhoven, Doumen, Roelse, Škorić, and de Wegner Laarhoven et al. (2013), gave a construction with nearly optimal length by generalizing Tardos' influential non interactive fingerprinting code Tardos (2008) to the interactive setting. Their construction is quite similar to ours, but our analysis is substantively different and leads to more general parameters and guarantees.

The algorithms of Dwork et al. (2015) rely on known differentially private mechanisms for answering adaptive statistical queries. Recently, Ullman (2014) showed how to design differentially private mechanisms for answering exponentially many adaptively chosen queries from the richer class of convex empirical risk minimization queries. By the results of Dwork et al. (2015), this algorithm is also a (computationally inefficient) oracle that is accurate for exponentially many adaptively chosen convex empirical risk minimization queries.

2. Interactive Fingerprinting Codes

In order to motivate the definition of interactive fingerprinting codes, it will be helpful to review the motivation for standard, non interactive fingerprinting codes.

Fingerprinting codes were introduced by Boneh and Shaw Boneh and Shaw (1998) for the problem of watermarking digital content (such as a movie or a piece of software). Consider a company that distributes some content to N users. Some of the users may illegally distribute copies of the content. To combat this, the company gives each user a unique version of the content by adding distinctive "watermarks" to it. Thus, if the company finds an illegal copy, it can be traced back to the user who originally purchased it. Unfortunately, users may be able to remove the watermarks. In particular, a coalition of users may combine their copies in a way that mixes or obfuscates the watermarks. A fingerprinting code ensures that, even if up to n users collude to combine their codewords, an illegal copy can be still be traced to at least one of the users.

Formally, every user $i \in[N]$ is given a codeword $\left(c_{i}^{1}, c_{i}^{2}, \ldots, c_{i}^{\ell}\right) \in\{ \pm 1\}^{\ell}$ by the fingerprinting code, which represents the combination of watermarks in that user's copy. A subset $S \subset[N]$ of at most n users can arbitrarily combine their codewords to create a "pirate codeword" $a=$ $\left(a^{1}, a^{2}, \ldots, a^{\ell}\right) \in\{ \pm 1\}^{\ell}$. The only constraint is so-called consistency-for every $j \in[\ell]$, if, for every colluding user $i \in S$, we have $c_{i}^{j}=b$, then $a^{j}=b$. That is to say, if each of the colluding users receives the same watermark, then their combined codeword must also have that watermark. Given a, the fingerprinting code must be able to trace at least one user $i \in S$. Tardos Tardos (2008) constructed optimal fingerprinting codes with $\ell=O\left(n^{2} \log N\right)$.

A key drawback of fingerprinting codes is that we can only guarantee that a single user $i \in S$ is traced. This is inherent, as setting the pirate codeword a to be the codeword of a single user prevents any other user from being identified. We will see that this can be circumvented by moving to an interactive setting.

Suppose the company is instead distributing a stream of content (such as a TV series) to N users-that is, the content is not distributed all at once and the illegal copies are obtained whilst the content is being distributed (e.g. the episodes of the TV series appear on the internet before the next episode is shown). Again, the content is watermarked so that each user receives a unique stream and a subset $S \subset[N]$ of at most n users combine their streams and distribute an illegal stream.

The company obtains the illegal stream and uses this to trace the colluding users S. As soon as the company can identify a colluding user $i \in S$, that user's stream is terminated (e.g. their subscription is cancelled). This process continues until every $i \in S$ has been traced and the distribution of illegal copies ceases.

Another twist on fingerprinting codes is robustness Bun et al. (2014). Suppose that the consistency constraint only holds for $(1-\beta) \ell$ choices of $j \in[\ell]$. That is to say, the colluding users can somehow remove a β fraction of the watermarks. Bun et al. (2014) showed how to modify the Tardos fingerprinting code to be robust to a small constant fraction of inconsistencies. In this work, we show that robustness to any $\beta<1 / 2$ fraction of inconsistencies can be achieved.

2.1. Definition and Existence

We are now ready to formally define interactive fingerprinting codes. To do so we make use of the following game between an adversary \mathcal{P} and the fingerprinting code \mathcal{F}. Both \mathcal{P} and \mathcal{F} may be stateful. For a given execution of \mathcal{F}, we let $C \in\{ \pm 1\}^{N \times \ell}$ be the matrix with columns c^{1}, \ldots, c^{ℓ}
\mathcal{P} selects a subset of users $S^{1} \subseteq[N]$ of size n, unknown to \mathcal{F}.
For $j=1, \ldots, \ell$:
\mathcal{F} outputs a column vector $c^{j} \in\{ \pm 1\}^{N}$.
Let $c_{S^{j}}^{j} \in\{ \pm 1\}^{\left|S^{j}\right|}$ be the restriction of c^{j} to coordinates in S^{j}, which is given to \mathcal{P}.
\mathcal{P} outputs $a^{j} \in\{ \pm 1\}$, which is given to \mathcal{F}.
\mathcal{F} accuses a (possibly empty) set of users $I^{j} \subseteq[N]$. Let $S^{j+1}=S^{j} \backslash I^{j}$.

Figure 1: $\mathrm{IFPC}_{N, n, \ell}[\mathcal{P}, \mathcal{F}]$
and let $a \in\{ \pm 1\}^{\ell}$ be the vector with entries a^{1}, \ldots, a^{ℓ}. We want to construct the fingerprinting code so that, if a is consistent, then the tracer succeeds in recovering every user in S. For convenience, we will define the notation θ^{j} to be the number of rounds $1, \ldots, j$ in which a^{j} is not consistent with c^{j}. Formally, for a given execution of \mathcal{F},

$$
\theta^{j}=\left|\left\{1 \leq k \leq j \mid \nexists i \in[N], a^{k}=c_{i}^{k}\right\}\right| .
$$

Using this notation, a is β-consistent if $\theta^{\ell} \leq \beta \ell$. We also define the notation ψ^{j} to be the number of users in I^{1}, \ldots, I^{j} who are falsely accused (i.e. not in the coalition S^{1}). Formally,

$$
\psi^{j}=\left|\left(\bigcup_{1 \leq k \leq j} I^{k}\right) \backslash S^{1}\right| .
$$

Using this notation, we require $\psi^{\ell} \leq \delta\left(N-\left|S^{1}\right|\right)$ - that is, the tracing algorithm does not make too many false accusations. "Too many" is defined as more than a δ-fraction of innocent users.

Definition 6 (Interactive Fingerprinting Codes) We say that an algorithm \mathcal{F} is an n-collusionresilient interactive fingerprinting code of length ℓ for N users robust to a β fraction of errors with failure probability ε and false accusation probability δ if for every adversary \mathcal{P}, it holds that

$$
\underset{\operatorname{IFPC}_{N, n, \ell}[\mathcal{P}, \mathcal{F}]}{\mathbb{P}}\left[\left(\theta^{\ell} \leq \beta \ell\right) \vee\left(\psi^{\ell}>\delta(N-n)\right)\right] \leq \varepsilon
$$

Steinke Ullman

The length ℓ may depend on $N, n, \beta, \varepsilon, \delta$.
The constraint $\psi^{\ell} \leq \delta N$ is called soundness-the interactive fingerprinting code should not make (many) false accusations. The constraint $\theta^{\ell}>\beta \ell$ is called completeness-the interactive fingerprinting code should force the adversary \mathcal{P} to be inconsistent. Although it may seem strange that we make no reference to recovering the coalition S^{1}, notice that if $S^{j} \neq \emptyset$, then \mathcal{P} can easily be consistent. Therefore, if the pirate cannot be consistent, it must be the case that $S^{j}=\emptyset$ for some j, meaning all of S^{1} has been accused.

In the remainder of this section, we give a construction of interactive fingerprinting codes, and establish the following theorem.

Theorem 7 (Existence of Interactive Fingerprinting Codes) For every $1 \leq n \leq N, 0 \leq \beta<$ $1 / 2$, and $0<\delta \leq 1$, there is a n-collusion-resilient interactive fingerprinting code of length ℓ for N users robust to a fraction of errors with failure probability

$$
\varepsilon \leq \min \left\{\delta(N-n), 2^{-\Omega(\delta(N-n))}\right\}+\delta^{\Omega\left(\left(\frac{1}{2}-\beta\right) n\right)}
$$

and false accusation probability δ for

$$
\ell=O\left(\frac{n^{2} \log (1 / \delta)}{\left(\frac{1}{2}-\beta\right)^{4}}\right)
$$

We remark on the parameters of our construction and how they relate to the literature.

Remark 8

- The expression for the failure probability ε is a bit mysterious. To interpret it, we fix $\beta=$ $1 / 2-\Omega(1)$ and consider two parameter regimes: $\delta(N-n) \ll 1$ and $\delta(N-n) \gg 1$.
In the traditional parameter regime for fingerprinting codes $\delta(N-n)=\varepsilon^{\prime} \ll 1$, and so no users are falsely accused. Then our fingerprinting code has length $O\left(n^{2} \log \left((N-n) / \varepsilon^{\prime}\right)\right)$ and a failure probability of ε^{\prime}. This matches the result of Laarhoven et al. (2013).
However, if we are willing to tolerate falsely accusing a small constant fraction of users, then we can set, for example, $\delta(N-n)=.01 N$, and our fingerprinting code will have length $O\left(n^{2}\right)$ and failure probability $2^{-\Omega(n)}$. To our knowledge, such large values of δ have not been considered before. For this regime we save roughly a $O(\log N)$ factor over prior work.

3. Hardness of False Discovery

In this section we prove our main result - that answering $O\left(n^{2}\right)$ adaptive queries given n samples is hard. But first we must formally define the model in which we are working.

3.1. The Statistical Query Model

Given a distribution \mathcal{D} over $\{0,1\}^{d}$, we would like to answer statistical queries about \mathcal{D}. A statistical query on $\{0,1\}^{d}$ is specified by a function $q:\{0,1\}^{d} \rightarrow[-1,1]$ and (abusing notation) is defined to be

$$
q(\mathcal{D})=\underset{x \leftarrow \mathbb{R}^{\mathcal{D}}}{\mathbb{E}}[q(x)]
$$

Our goal is to design an oracle \mathcal{O} that answers statistical queries on \mathcal{D} using only iid samples $x_{1}, \ldots, x_{n} \leftarrow_{\mathrm{R}} \mathcal{D}$. Our focus is the case where the queries are chosen adaptively and adversarially.

Specifically, \mathcal{O} is a stateful algorithm that holds a collection of samples $x_{1}, \ldots, x_{n} \in\{0,1\}^{d}$, takes a statistical query q as input, and returns a real-valued answer $a \in[-1,1]$. We require that when x_{1}, \ldots, x_{n} are iid samples from \mathcal{D}, the answer a is close to $q(\mathcal{D})$, and moreover that this condition holds for every query in an adaptively chosen sequence q^{1}, \ldots, q^{ℓ}. Formally, we define the following game between an \mathcal{O} and a stateful adversary \mathcal{A}.

```
\(\mathcal{A}\) chooses a distribution \(\mathcal{D}\) over \(\{0,1\}^{d}\).
Sample \(x_{1}, \ldots, x_{n} \leftarrow_{\mathrm{R}} \mathcal{D}\), let \(x=\left(x_{1}, \ldots, x_{n}\right)\).
For \(j=1, \ldots, \ell\)
    \(\mathcal{A}\) outputs a query \(q^{j}\).
    \(\mathcal{O}\left(x, q^{j}\right)\) outputs \(a^{j}\).
    (As \(\mathcal{A}\) and \(\mathcal{O}\) are stateful, \(q^{j}\) and \(a^{j}\) may depend on the history \(q^{1}, a^{1}, \ldots, q^{j-1}, a^{j-1}\).)
```

Figure 2: $\operatorname{Acc}_{n, d, \ell}[\mathcal{O}, \mathcal{A}]$

Definition 9 (Accuracy) An oracle \mathcal{O} is (α, β, γ)-accurate for ℓ adaptively chosen queries given n samples in $\{0,1\}^{d}$ if for every adversary \mathcal{A},

$$
\underset{\operatorname{Acc}_{n, d, \ell}(\mathcal{O}, \mathcal{A}]}{\mathbb{P}}\left[\text { For }(1-\beta) \ell \text { choices of } j \in[\ell],\left|\mathcal{O}\left(x, q^{j}\right)-q^{j}(\mathcal{D})\right| \leq \alpha\right] \geq 1-\gamma
$$

As a shorthand, we will say that \mathcal{O} is (α, β)-accurate for ℓ queries if for every $n, d \in \mathbb{N}, \mathcal{O}$ is $\left(\alpha, \beta, o_{n}(1)\right)$-accurate for ℓ queries given n samples in $\{0,1\}^{d}$. Here, ℓ may depend on n and d and $o_{n}(1)$ is a function of n that tends to 0 .

We are interested in oracles that are both accurate and computationally efficient. We say that an oracle \mathcal{O} is computationally efficient if, when given samples $x_{1}, \ldots, x_{n} \in\{0,1\}^{d}$ and a query $q:\{0,1\}^{d} \rightarrow[-1,1]$, it runs in time $\operatorname{poly}(n, d,|q|)$. Here q will be represented as a circuit that evaluates $q(x)$ and $|q|$ denotes the size of this circuit.

3.2. Encryption Schemes

Our attack relies on the existence of a semantically secure private-key encryption scheme. An encryption scheme is a triple of efficient algorithms (Gen, Enc, Dec) with the following syntax:

- Gen is a randomized algorithm that takes as input a security parameter λ and outputs a λ-bit secret key. Formally, $s k \leftarrow_{\mathrm{R}} \operatorname{Gen}\left(1^{\lambda}\right)$.
- Enc is a randomized algorithm that takes as input a secret key and a message $m \in\{-1,0,1\}$ and outputs a ciphertext $c t \in\{0,1\}^{\text {poly }(\lambda)}$. Formally, $c t \leftarrow_{\mathrm{R}} \operatorname{Enc}(s k, m)$.
- Dec is a deterministic algorithm that takes as input a secret key and a ciphertext $c t$ and outputs a decrypted message m^{\prime}. If the ciphertext $c t$ was an encryption of m under the key $s k$, then $m^{\prime}=m$. Formally, if $c t \leftarrow_{\mathrm{R}} \operatorname{Enc}(s k, m)$, then $\operatorname{Dec}(s k, c t)=m$ with probability 1.

Roughly, security of the encryption scheme asserts that no polynomial time adversary who does not know the secret key can distinguish encryptions of $m=0$ from encryptions of $m=1$, even if the adversary has access to an oracle that returns the encryption of an arbitrary message under the unknown key. For convenience, we will require that this security property holds simultaneously for an arbitrary polynomial number of secret keys. The existence of an encryption scheme with this property follows immediately from the existence an ordinary semantically secure encryption scheme. We start with the stronger definition only to simplify our proofs. A secure encryption scheme exists under the minimal cryptographic assumption that one-way functions exist. The formal definition of security is not needed until Section D.

3.3. The Attack

The adversary is specified in Figure 3. Observe that Attack $_{n, d}$ is only well defined for pairs $n, d \in N$ for which $1+\left\lceil\log _{2}(2000 n)\right\rceil \leq d$, so that there exists a suitable choice of $\lambda \in \mathbb{N}$. Through this section we will assume that $n=n(d)$ is a polynomial in d and that d is a sufficiently large unspecified constant, which ensures that Attack $_{n, d}$ is well defined.

The distribution \mathcal{D} :
Given parameters d, n, let $N=2000 n$, let $\lambda=d-\left\lceil\log _{2}(N)\right\rceil$.
Let (Gen, Enc, Dec) be an encryption scheme
For $i \in[N]$, let $s k_{i} \leftarrow_{\mathrm{R}} G e n\left(1^{\lambda}\right)$ and let $y_{i}=\left(i, s k_{i}\right) \in\{0,1\}^{d}$.
Let \mathcal{D} be the uniform distribution over $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq\{0,1\}^{d}$.
\mathcal{O} samples $x_{1}, \ldots, x_{n} \leftarrow_{\mathrm{R}} \mathcal{D}$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$.
Let $S \subseteq[N]$ be the set of unique indices i such that $\left(i, s k_{i}\right)$ appears in x.

Attack:

Initialise a n-collusion resilient interactive fingerprinting code \mathcal{F} of length ℓ for N users robust to a β fraction of errors with failure probability $\varepsilon=\operatorname{negl}(n)$ and false accusation probability $\delta=1 / 1000$.

Let $T^{1}=\emptyset$.
For $j=1, \ldots, \ell=\ell(N)$:
Let $c^{j} \in\{ \pm 1\}^{N}$ be the column given by \mathcal{F}.
For $i=1, \ldots, N$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$.
Define the query $q^{j}\left(i^{\prime}, s k^{\prime}\right)$ to be $\operatorname{Dec}\left(s k^{\prime}, c t_{i^{\prime}}^{j}\right)$ if $i^{\prime} \notin T^{j}$ and 0 otherwise.
Let $a^{j}=\mathcal{O}\left(x ; q^{j}\right)$ and round a^{j} to $\{ \pm 1\}$ to obtain \bar{a}^{j}.
Give \bar{a}^{j} to \mathcal{F} and let $I^{j} \subseteq[N]$ be the set of accused users and $T^{j}=T^{j-1} \cup I^{j}$.

$$
\text { Figure 3: } \operatorname{Attack}_{n, d}[\mathcal{O}]
$$

Now we can state and prove our main theorem.
Theorem 10 (Theorem 1) Assuming one-way functions exist, for all $\beta<1 / 2$, there is a function $\ell(2000 n, \beta)=O\left(n^{2} /\left(\frac{1}{2}-\beta\right)^{4}\right)$ such that there is no computationally efficient oracle \mathcal{O} that is ($0.99, \beta, 1 / 2$)-accurate for $\ell(2000 n, \beta)$ adaptively chosen queries given n samples in $\{0,1\}^{d}$.

3.4. Informal Analysis of the Attack

Before formally analysing the attack, we comment on the overall structure thereof.
At a high level, the attack Attack $_{n, d}[\mathcal{O}]$ runs the fingerprinting game $\operatorname{IFPC}_{N, n, \ell}[\mathcal{P}, \mathcal{F}]$, where the oracle \mathcal{O} plays the rôle of the fingerprinting adversary \mathcal{P}. Each challenge c^{j} issued by \mathcal{F} is passed to the oracle in encrypted form as q^{j}. The oracle must output an approximation a^{j} to the true answer

$$
q^{j}(\mathcal{D})=\frac{1}{N} \sum_{i \in[N] \backslash T^{j}} c_{i}^{j} .
$$

In order to do this, the oracle could decrypt q^{j} to obtain c^{j} for every j. However, the oracle does not have all the necessary secret keys; it only has the secret keys corresponding to its sample S. Thus, by the security of the encryption scheme, any efficient oracle effectively can only see $c_{S \backslash T^{j}}^{3}$. That is to say, if the oracle is computationally efficient, then it has the same restriction as a fingerprinting adversary \mathcal{P}. Thus, any computationally efficient oracle must lose the fingerprinting game, meaning it cannot answer every query (or even just a $\beta=1 / 2+\Omega(1)$ fraction of the queries) accurately.

One subtly arises since "accuracy" for the oracle is defined with respect to the true answer $q^{j}(\mathcal{D})=\frac{1}{N} \sum_{i \in[N] \backslash T^{j}} c_{i}^{j}$, whereas "accuracy" in the fingerprinting game is defined with respect to the average over all of c^{j}, that is $\frac{1}{N} \sum_{i \in[N]} c_{i}^{j}$. We deal with these subtleties by arguing that T^{j}, which is the number of users accused by the interactive fingerprinting code prior to the j-th query, is small. Here we use the fact that the fingerprinting code only allows a relatively small number of false accusations $N / 1000$. Therefore $\left|T^{j}\right| \leq n+N / 1000 \leq N / 500$. As a result, the definition of accuracy guaranteed by the oracle will be close enough to the definition of accuracy required for the interactive fingerprinting code to succeed in identifying the sample.

Acknowledgments

We thank Moritz Hardt and Salil Vadhan for insightful discussions during the early stages of this work. We also thank Thijs Laarhoven for bringing his work on interactive fingerprinting codes to our attention.

Steinke Ullman

References

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289-300, 1995.

Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory, 44(5):1897-1905, 1998.

Carlo Emilio Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali di Firenze., 8, 1936.

Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes and the price of approximate differential privacy. In STOC, pages 1-10. ACM, May 31 - June 32014.

Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, pages 257-270. Springer, August 21-25 1994.

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS, pages 202-210. ACM, June 9-12 2003.

Olive Jean Dunn. Multiple comparisons among means. Journal of the American Statistical Association, 56:52-64, 1961.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284. Springer, March 4-7 2006.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In STOC, pages 381-390. ACM, May 31 - June 22009.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Roth. Preserving statistical validity in adaptive data analysis. In STOC, 2015.
N. Etemadi. On some classical results in probability theory. Sankhya: The Indian Journal of Statistics, Series A (1961-2002), 47(2):pp. 215-221, 1985.

Amos Fiat and Tamir Tassa. Dynamic traitor tracing. J. Cryptology, 14(3):211-223, 2001.
Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data analysis is hard. In FOCS. IEEE, October 19-21 2014.

Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. In STOC, pages 392401. ACM, May 16-18 1993.
T. Laarhoven, J. Doumen, P. Roelse, B. Skoric, and B. de Weger. Dynamic tardos traitor tracing schemes. Information Theory, IEEE Transactions on, 59(7):4230-4242, July 2013. ISSN 00189448. doi: 10.1109/TIT.2013.2251756.

Ryan O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

Thomas Steinke and Jonathan Ullman. Between pure and approximate differential privacy. CoRR, abs/1501.06095, 2015.
Gábor Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2), 2008.
Tamir Tassa. Low bandwidth dynamic traitor tracing schemes. J. Cryptology, 18(2):167-183, 2005.
Jonathan Ullman. Answering $\mathrm{n}^{2+o(1)}$ counting queries with differential privacy is hard. In STOC, pages 361-370. ACM, June 1-4 2013.
Jonathan Ullman. Private multiplicative weights beyond linear queries. CoRR, abs/1407.1571, 2014.

Appendix A. Construction and Analysis of the Interactive Fingerprinting Code

A.1. The Construction

Our construction and analysis is based on the optimal (non interactive) fingerprinting codes of Tardos Tardos (2008), and the robust variant by Bun et al. Bun et al. (2014). The code is essentially the same, but columns are generated and shown to the adversary one at a time, and tracing is modified to identify users interactively.

We begin with some definitions and notation. For $0 \leq a<b \leq 1$, let $D_{a, b}$ be the distribution with support (a, b) and probability density function $\mu(p)=C_{a, b} / \sqrt{p(1-p)}$, where $C_{a, b}$ is a normalising constant. ${ }^{4}$ For $\alpha, \zeta \in(0,1 / 2)$, let $\bar{D}_{\alpha, \zeta}$ be the distribution on $[0,1]$ that returns a sample from $D_{\alpha, 1-\alpha}$ with probability $1-2 \zeta$ and 0 or 1 each with probability ζ.

For $p \in[0,1]$, let $c \sim p$ denote that $c \in\{ \pm 1\}$ is drawn from the distribution with $\mathbb{P}[c=1]=p$ and $\mathbb{P}[c=-1]=1-p$. Let $c_{1 \cdots n} \sim p$ denote that $c \in\{ \pm 1\}^{n}$ is drawn from a product distribution in which $c_{i} \sim p$ independently for all $i \in[n]$.

Define $\phi^{p}:\{ \pm 1\} \rightarrow \mathbb{R}$ by $\phi^{0}(c)=\phi^{1}(c)=0$ and, for $p \in(0,1), \phi^{p}(1)=\sqrt{(1-p) / p}$ and $\phi^{p}(-1)=-\sqrt{p /(1-p)}$. The function ϕ^{p} is chosen so that $\phi^{p}(c)$ has mean 0 and variance 1 when $c \sim p$.

The fingerprinting code \mathcal{F} is defined in Figure 4. In addition to the precise setting of parameters, we have given asymptotic bounds to help follow the analysis. We now analyze \mathcal{F} and establish Theorem 7. The proof of Theorem 7 is split into Theorems 15 and 26. For convenience, define $I=\bigcup_{j \in[\ell]} I^{j}$.

A.2. Analysis Overview

Intuitively, the quantity s_{i}^{j}, which we call the score of user i, measures the "correlation" between the answers $\left(a^{1}, \cdots, a^{j}\right)$ of \mathcal{P} and the i-th codeword $\left(c_{i}^{1}, \cdots, c_{i}^{j}\right)$, using a particular measure of correlation that takes into account the choices p^{1}, \ldots, p^{j}. If s_{i}^{j} ever exceeds the threshold σ, meaning that the answers are significantly correlated with the i-th codeword, then we accuse user i. Thus, our goal is to show two things: Soundness, that the score of an innocent user (i.e. $i \notin S^{1}$) never exceeds the threshold, as the answers cannot be correlated with the unknown i-th codeword. And completeness, that the score of every guilty user (i.e. $i \in S^{1}$) will at some point exceed the threshold, meaning that the answers must correlate with the i-th codeword for every $i \in S^{1}$.

[^1]Given parameters $1 \leq n \leq N$ and $0<\delta, \beta<1 / 2$
Set parameters:

$$
\begin{aligned}
\alpha & =\frac{\left(\frac{1}{2}-\beta\right)}{4 n} & & \geq \Omega\left(\frac{\left(\frac{1}{2}-\beta\right)}{n}\right) \\
\zeta & =\frac{3}{8}+\frac{\beta}{4} & & =\frac{1}{2}-\frac{1}{4}\left(\frac{1}{2}-\beta\right) \\
\sigma & =64 \cdot\left\lceil\frac{6 \pi n}{\left(\frac{1}{2}-\beta\right)^{2}}\right] \cdot\left\lceil\log _{e}\left(\frac{32}{\delta}\right)\right] & & \leq O\left(\frac{n}{\left(\frac{1}{2}-\beta\right)^{2}} \log \left(\frac{1}{\delta}\right)\right) \\
\ell & =\left\lceil\frac{6 \pi n}{\left(\frac{1}{2}-\beta\right)^{2}}\right\rceil \cdot \sigma & & \leq O\left(\frac{n^{2}}{\left(\frac{1}{2}-\beta\right)^{4}} \log \left(\frac{1}{\delta}\right)\right)
\end{aligned}
$$

Let $s_{i}^{0}=0$ for every $i \in[N]$.
For $j=1, \ldots, \ell$:
Draw $p^{j} \sim \overline{D_{\alpha, \zeta}}$ and $c_{1 \cdots N}^{j} \sim p^{j}$.
Issue $c^{j} \in\{ \pm 1\}^{N}$ as a challenge and receive $a^{j} \in\{ \pm 1\}$ as the response.
For $i \in[N]$, let $s_{i}^{j}=s_{i}^{j-1}+a^{j} \cdot \phi^{p^{j}}\left(c_{i}^{j}\right)$.
Accuse $I^{j}=\left\{i \in[N] \mid s_{i}^{j}>\sigma\right\}$.
Figure 4: The interactive fingerprinting code $\mathcal{F}=\mathcal{F}_{n, N, \delta, \beta}$

A.2.1. Soundness

The proof of soundness closely mirrors Tardos' analysis Tardos (2008) of the non-interactive case. If i is innocent, then, since \mathcal{P} doesn't see the codeword $\left(c_{i}^{1}, \cdots, c_{i}^{j}\right)$ of the $i^{\text {th }}$ user, there cannot be too much correlation. In this case, one can show that s_{i}^{j} is the sum of j independent random variables, each with mean 0 and variance 1 , where we take the answers a^{1}, \ldots, a^{j} as fixed and the randomness is over the choice of the unknown codeword. By analogy to Gaussian random variables, one would expect that $s_{i}^{j} \leq \sigma=\Theta(\sqrt{\ell \log (1 / \delta)})$ with probability at least $1-\delta$. Formally, the fact that the score in each round is not bounded prevents the use of a Chernoff bound. But nonetheless, in Section A.3, we prove soundness using a Chernoff-like tail bound for s_{i}^{j}.

A.2.2. Completeness

To prove completeness, we must show that, for guilty users $i \in S^{1}$, we have $s_{i}^{j}>\sigma$ for some $j \in[\ell]$ with high probability. In Sections A.4.1 and A.4.3, we prove that if \mathcal{P} gives consistent answers in a $1-\beta$ fraction of rounds, then the sum of the scores for each of the guilty users is large. Specifically, in Theorem 24, we prove that with high probability

$$
\begin{equation*}
\sum_{i \in S^{1}} s_{i}^{\ell} \geq \Theta(\ell) \tag{1}
\end{equation*}
$$

The constants hidden by the asymptotic notation are set to imply that, for at least one $i \in S^{1}$, the score s_{i}^{ℓ} is above the threshold $\sigma=\Theta(\ell / n)$. This step is not too different from the analysis of Tardos and Bun et al. Tardos (2008); Bun et al. (2014) for the non-interactive case. To show that, for every $i \in S^{1}$, we will have $s_{i}^{j}>\sigma$ at some point, we must depart from the analysis of non-interactive fingerprinting codes. If $s_{i}^{j}>\sigma$, and user i is accused in round j, then the adversary will not see the suffix of codeword $\left(c_{i}^{j+1}, \cdots, c_{i}^{\ell}\right)$. By the same argument that was used to prove soundness, the answers will not be correlated with this suffix, so with high probability the score s_{i}^{ℓ} does not increase much beyond σ. Thus,

$$
\begin{equation*}
\sum_{i \in S^{1}} s_{i}^{\ell} \leq n \cdot O(\sigma)=\Theta(\ell) \tag{2}
\end{equation*}
$$

The hidden constants are set to ensure that Equation (2) conflicts with Equation (1). Thus, we can conclude that \mathcal{P} cannot give consistent answers for a $1-\beta$ fraction of rounds. That is to say, \mathcal{P} is forced to be inconsistent because all of S^{1} is accused and eventually \mathcal{P} sees none of the codewords and is reduced to guessing an answer a^{j}.

A.2.3. Establishing Correlation

Proving Equation (1) is key to the analysis. Our proof thereof combines and simplifies the analyses of Tardos (2008) and Bun et al. (2014). For this high level overview, we ignore the issue of robustness and fix $\beta=0$.

First we prove that the correlation bound holds in expectation and then we show that it holds with high probability using an Azuma-like concentration bound. (Again, as the random variables being summed are not bounded, we are forced to use a more tailored analysis to prove concentration.) We show that it holds in expectation for each round. In Proposition 21, we show that the concentration grows in expectation in each round. For every $j \in[\ell]$,

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i \in S^{1}} s_{i}^{j}-s_{i}^{j-1}\right]=\mathbb{E}\left[\sum_{i \in S^{1}} a^{j} \cdot \phi^{p^{j}}\left(c_{i}^{j}\right)\right] \geq \Omega(1), \tag{3}
\end{equation*}
$$

where the expectations are taken over the randomness of p^{j}, c^{j}, and a^{j}., Equation (3), combined with a concentration result, implies Equation (1).

The intuition behind Equation (3) and the choice of p^{j} is as follows. Consistency guarantees that, if $c_{i}^{j}=b$ for all $i \in S^{1}$, then $a^{j}=b$. This is a weak correlation guarantee, but it suffices to ensure correlation between a^{j} and $\sum_{i \in S^{1}} c_{i}^{j}$. The affine scaling $\phi^{p^{j}}$ ensures that $\phi^{p^{j}}\left(c_{i}^{j}\right)$ has mean zero (i.e. is uncorrelated with a constant) and and unit variance (i.e. has unit correlation with itself). The expectation of $a^{j} \cdot \phi^{p^{j}}\left(c_{i}^{j}\right)$ can be interpreted as the i-th first-order Fourier coefficient of a^{j} as a function of c^{j}. To understand first-order Fourier coefficients, consider the "dictator" function: Suppose $a^{j}=c_{i^{*}}^{j}$ for some $i^{*} \in S^{1}$ - that is, \mathcal{P} always outputs the i^{*}-th bit. Then

$$
\underset{a^{j}, c^{j}, p^{j}}{\mathbb{E}}\left[a^{j} \sum_{i \in S^{1}} \phi^{p^{j}}\left(c_{i}^{j}\right)\right]=\underset{c^{j}, p^{j}}{\mathbb{E}}\left[c_{i^{*}}^{j} \cdot \phi^{p^{j}}\left(c_{i^{*}}^{j}\right)\right]=\underset{p^{j}}{\mathbb{E}}\left[2 \sqrt{p^{j}\left(1-p^{j}\right)}\right]=\Theta(1) .
$$

This example can be generalised to a^{j} being an arbitrary function of $c_{S^{1}}^{j}$ using Fourier analysis. This calculation also indicates why we choose the probability density function of $p^{j} \sim D_{\alpha, 1-\alpha}$ to be proportional to $1 / \sqrt{p(1-p)}$.

To handle robustness $(\beta>0)$ we use the ideas of Bun et al. (2014). With probability 2ζ each round is a "special" constant round—i.e. $c^{j}=(1)^{N}$ or $c^{j}=(-1)^{N}$. Otherwise it is a "normal" round where c^{j} is sampled as before. Intuitively, the adversary \mathcal{P} cannot distinguish the special rounds from the normal rounds in which c happens to be constant. If the adversary gives inconsistent answers on normal rounds, then it must also give inconsistent answers on special rounds. Since there are many more special rounds than normal rounds, this means that a small number of inconsistencies in normal rounds implies a large number of inconsistencies on special rounds. Conversely, inconsistencies are absorbed by the special rounds, so we can assume there are very few inconsistencies in normal rounds. Thus \mathcal{P} is forced to behave consistently on the normal rounds and the analysis on these rounds proceeds as before.

A.3. Proof of Soundness

We first show that no user is falsely accused except with probability $\delta / 2$. This boils down to proving a concentration bound. Then another concentration bound shows that with high probability at most a δ fraction of users are falsely accused.

These concentrations bounds are essentially standard. However, we are showing concentration of sums of variables of the form $\phi^{p}(c)$, which may be quite large if $p \approx 0$ or $p \approx 1$. This technical problem prevents us from directly applying standard concentration bounds. Instead we open up the standard proofs and verify the desired concentration. We take the usual approach of bounding the moment generating function and using that to give a tail bound.

Lemma 11 For $p \in[\alpha, 1-\alpha] \cup\{0,1\}$ and $t \in[-\sqrt{\alpha} / 2, \sqrt{\alpha} / 2]$, we have

$$
\underset{c \sim p}{\mathbb{E}}\left[e^{t \phi^{p}(c)}\right] \leq e^{t^{2}}
$$

Proof If $p \in\{0,1\}, \phi^{p}=0$ and the result is trivial. We have $\underset{c \sim p}{\mathbb{E}}\left[\phi^{p}(c)\right]=0, \underset{c \sim p}{\mathbb{E}}\left[\phi^{p}(c)^{2}\right]=1$, and, for $c \in\{ \pm 1\},\left|\phi^{p}(c)\right| \leq 1 / \sqrt{\alpha}$. In particular, $\left|\phi^{p}(c) \cdot t\right| \leq 1 / 2$. For $u \in[-1 / 2,1 / 2]$, we have $e^{u} \leq 1+u+u^{2}$. Thus

$$
\underset{c \sim p}{\mathbb{E}}\left[e^{t \phi^{p}(c)}\right] \leq 1+t \underset{c \sim p}{\mathbb{E}}\left[\phi^{p}(c)\right]+t^{2} \underset{c \sim p}{\mathbb{E}}\left[\phi^{p}(c)^{2}\right]=1+t^{2} \leq e^{t^{2}}
$$

Lemma 12 Let $p_{1} \cdots p_{m} \in[\alpha, 1-\alpha] \cup\{0,1\}$ and $c_{1} \cdots c_{m}$ drawn independently with $c_{i} \sim p_{i}$. Let $a_{1} \cdots a_{m} \in[-1,1]$ be fixed. For all $\lambda \geq 0$, we have

$$
\mathbb{P}\left[\sum_{i \in[m]} a_{i} \phi^{p_{i}}\left(c_{i}\right) \geq \lambda\right] \leq e^{-\lambda^{2} / 4 m}+e^{-\sqrt{\alpha} \lambda / 4}
$$

Proof By Lemma 11, for all $t \in[-\sqrt{\alpha} / 2, \sqrt{\alpha} / 2]$,

$$
\underset{c}{\mathbb{E}}\left[e^{t \sum_{i \in[m]} a_{i} \phi^{p_{i}}\left(c_{i}\right)}\right] \leq \prod_{i \in[m]} \underset{c_{i}}{\mathbb{E}}\left[e^{t a_{i} \phi^{p_{i}}\left(c_{i}\right)}\right] \leq e^{t^{2} m}
$$

By Markov's inequality,

$$
\mathbb{P}\left[\sum_{i \in[m]} a_{i} \phi^{p_{i}}\left(c_{i}\right) \geq \lambda\right] \leq \frac{\mathbb{E}\left[e^{t \sum_{i \in[m]} a_{i} \phi^{p_{i}}\left(c_{i}\right)}\right]}{e^{t \lambda}} \leq e^{t^{2} m-t \lambda} .
$$

Set $t=\min \{\sqrt{\alpha} / 2, \lambda / 2 m\}$. If $\lambda \in[0, m \sqrt{\alpha}]$, then

$$
\mathbb{P}\left[\sum_{i \in[m]} a_{i} \phi^{p_{i}}\left(c_{i}\right) \geq \lambda\right] \leq e^{-\lambda^{2} / 4 m} .
$$

On the other hand, if $\lambda \geq m \sqrt{\alpha}$, then

$$
\mathbb{P}\left[\sum_{i \in[m]} a_{i} \phi^{p_{i}}\left(c_{i}\right) \geq \lambda\right] \leq e^{\alpha m / 4-\sqrt{\alpha} \lambda / 2} \leq e^{-\sqrt{\alpha} \lambda / 4} .
$$

The result is obtained by adding these expressions.

The following theorem shows how we can beat the union bound for tail bounds on partial sums.

Theorem 13 (Etemadi's Inequality Etemadi (1985)) Let $X_{1} \cdots X_{n} \in \mathbb{R}$ be independent random variables. For $k \in[n]$, define $S_{k}=\sum_{i \in[k]} X_{i}$ to be the $k^{\text {th }}$ partial sum. Then, for all $\lambda>0$,

$$
\mathbb{P}\left[\max _{k \in[n]}\left|S_{k}\right|>4 \lambda\right] \leq 4 \cdot \max _{k \in[n]} \mathbb{P}\left[\left|S_{k}\right|>\lambda\right] .
$$

Proposition 14 (Individual Soundness) For all $i \in[N]$, we have

$$
\mathbb{P}\left[i \in I \backslash S^{1}\right] \leq 8\left(e^{-\sigma^{2} / 64 \ell}+e^{-\sigma \sqrt{\alpha} / 16}\right) \leq \delta / 2,
$$

where the probability is taken over $\operatorname{IFPC} C_{N, \leq N, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$ for an arbitrary \mathcal{P}.
Here IFPC ${ }_{N, \leq n, \ell}$ denotes IFPC ${ }_{N, n, \ell}$ with the constraint $\left|S^{1}\right|=n$ replaced by the constraint $\left|S^{1}\right| \leq$ n.
Proof Let $i \in[N] \backslash S^{1}$. Since the adversary does not see c_{i}^{j} for any $j \in[\ell]$, we may treat the answers of the adversary as fixed and analyse s_{i}^{j} as if c_{i}^{j} was drawn after the actions of the adversary are fixed. Thus, by Lemma 12 , for every $j \in[\ell]$,

$$
\mathbb{P}\left[s_{i}^{j}>\frac{\sigma}{4}\right]=\mathbb{P}\left[\sum_{k \in[j]} a^{k} \phi^{p^{k}}\left(c_{i}^{k}\right)>\frac{\sigma}{4}\right] \leq e^{-\sigma^{2} / 64 \ell}+e^{-\sigma \sqrt{\alpha} / 16} .
$$

Likewise $\mathbb{P}\left[s_{i}^{j}<-\frac{\sigma}{4}\right] \leq e^{-\sigma^{2} / 64 \ell}+e^{-\sigma \sqrt{\alpha} / 16}$. Thus, by Theorem 13,

$$
\mathbb{P}[i \in I] \leq \mathbb{P}\left[\max _{j \in[\ell]}\left|s_{i}^{j}\right|>\sigma\right] \leq 4 \max _{j \in[\ell]} \mathbb{P}\left[\left|s_{i}^{j}\right|>\frac{\sigma}{4}\right] \leq 8\left(e^{-\sigma^{2} / 64 \ell}+e^{-\sigma \sqrt{\alpha} / 16}\right) \leq \frac{\delta}{2} .
$$

Theorem 15 (Soundness) We have

$$
\mathbb{P}\left[\left|I \backslash S^{1}\right|>\delta\left(N-\left|S^{1}\right|\right)\right] \leq \min \left\{\delta\left(N-\left|S^{1}\right|\right), e^{-\delta\left(N-\left|S^{1}\right|\right) / 8}\right\},
$$

where the probability is taken over $\operatorname{IFPC} C_{N, \leq N, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$ for an arbiratry \mathcal{P}.
Remark 16 Interestingly, Theorem 15 does not require $\left|S^{1}\right| \leq n$ - that is, it holds with respect to $\operatorname{IFPC}_{N, \leq N, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$, rather than $\operatorname{IFPC}_{N, n, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$. It only requires that \mathcal{F} does not see the codewords of users not in S^{1}.

This is a useful if we are in a setting where $\left|S^{1}\right|$ is unknown: if $\left|S^{1}\right|>n$, then the interactive fingerprinting code will still not make too many false accusations, even if it fails to identify all of S^{1}.

Proof Let $E_{i} \in\{0,1\}$ be the indicator of the event $i \in I \backslash S^{1}$. The $E_{i} \mathrm{~s}$ for $i \in[N]$ are independent (conditioned on the choice of S^{1} and p^{j} for $j \in[\ell]$). Moreover, by Proposition $14, \mathbb{E}\left[E_{i}\right] \leq \delta / 2$ for all $i \in[N]$. Thus, by a Chernoff bound,

$$
\mathbb{P}\left[\left|I \backslash S^{1}\right|>\delta\left(N-\left|S^{1}\right|\right)\right]=\mathbb{P}\left[\sum_{i \in[N] \backslash S^{1}} E_{i}>\delta\left(N-\left|S^{1}\right|\right)\right] \leq e^{-\delta\left(N-\left|S^{1}\right|\right) / 8}
$$

If $\delta<1 /\left(N-\left|S^{1}\right|\right)$, then this is a very poor bound. Instead we use the fact that the $E_{i} \mathrm{~s}$ are discrete and Markov's inequality, which amounts to a union bound. For $\delta\left(N-\left|S^{1}\right|\right)<1$, we have

$$
\mathbb{P}\left[\left|I \backslash S^{1}\right|>\delta\left(N-\left|S^{1}\right|\right)\right]=\mathbb{P}\left[\left|I \backslash S^{1}\right| \geq 1\right] \leq \mathbb{E}\left[\sum_{i \in[N] \backslash S^{1}} E_{i}\right] \leq \frac{\delta\left(N-\left|S^{1}\right|\right)}{2} \leq \delta\left(N-\left|S^{1}\right|\right)
$$

The following lemma will be useful later.
Lemma 17 For $i \in[N]$, let $j_{i} \in[\ell+1]$ be the first j such that $i \notin S^{j}$, where we define $S^{\ell+1}=\emptyset$. For any $S \subset[N]$,

$$
\mathbb{P}\left[\sum_{i \in S} s_{i}^{\ell}-s_{i}^{j_{i}-1}>\lambda\right] \leq e^{-\lambda^{2} / 4|S| \ell}+e^{-\sqrt{\alpha} \lambda / 4},
$$

where the probability is taken over $\operatorname{IFPC} C_{N, \leq N, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$ for an arbitrary \mathcal{P}.
Proof We have

$$
\sum_{i \in S} s_{i}^{\ell}-s_{i}^{j_{i}-1}=\sum_{i \in S} \sum_{j \in[\ell]} \mathbb{I}\left(j \geq j_{i}\right) a^{j} \phi^{p^{j}}\left(c_{i}^{j}\right) .
$$

Again, since the adversary doesn't see c_{i}^{j} for $j \geq j_{i}$, the random variables $\mathbb{I}\left(j \geq j_{i}\right) a^{j}$ and $\phi^{p^{j}}\left(c_{i}^{j}\right)$ are independent, so we can view $\mathbb{I}\left(j \geq j_{i}\right) a^{j} \in[-1,1]$ as fixed. Now the result follows from Lemma 12.

A.4. Proof of Completeness

To show that the fingerprinting code identifies guilty users we must lower bound the scores $\sum_{i \in S^{1}} s_{i}^{\ell}$. First we bound their expectation and then their tails.

A.4.1. Biased Fourier Analysis

For this section, assume that the adversary \mathcal{P} is always consistent - that is, we have no robustness and $\beta=0$. Robustness will be added in Section A.4.2. Here we establish that the scores have good expectation, namely

$$
\mathbb{E}\left[\sum_{i \in S^{1}} s_{i}^{j}-s_{i}^{j-1}\right] \geq \Omega(1)
$$

for all $j \in[\ell]$. The score s_{i}^{ℓ} computes the 'correlation' between the bits given to user i and the output of the adversary. We must show that that the adversary's consistency constraint implies that there exists some correlation on average.

In this section we deviate from the proof in Tardos (2008). We use biased Fourier analysis to give a more intuitive proof of the correlation bound.

We have the following lemma and proposition, which relate the correlation $a^{j} \cdot \sum_{i \in S^{1}} \phi^{p^{j}}\left(c_{i}^{j}\right)$ to the properties of a^{j} as a function of p^{j}. To interpret these imagine that f represents the adversary \mathcal{P} with one round viewed in isolation - the fingerprinting code gives the adversary c^{j} and the adversary responds with $f\left(c_{S^{j}}^{j}\right)$.

Firstly, the following lemma gives an interpretation of the correlation value for a fixed p^{j}.
Lemma 18 Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$. Define $g:[0,1] \rightarrow \mathbb{R}$ by $g(p)=\underset{c_{1} \cdots n \sim p}{\mathbb{E}}[f(c)]$. For any $p \in(0,1)$,

$$
\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)\right]=g^{\prime}(p) \sqrt{p(1-p)}
$$

Proof For $p \in(0,1)$ and $s \subset[n]$, define $\phi_{s}^{p}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ by $\phi_{s}^{p}(c)=\prod_{i \in s} \phi^{p}\left(c_{i}\right)$. The functions ϕ_{s}^{p} form an orthonormal basis with respect to the product distribution with bias p - that is,

$$
\forall s, t \subset[n] \underset{c_{1 \cdots n} \sim p}{\mathbb{E}}\left[\phi_{s}^{p}(c) \cdot \phi_{t}^{p}(c)\right]=\left\{\begin{array}{ll}
1 & s=t \\
0 & s \neq t
\end{array}\right\}
$$

Thus, for any $p \in(0,1)$, we can write f in terms of these basis functions:

$$
\forall c \in\{ \pm 1\}^{n} \quad f(c)=\sum_{s \subset[n]} \tilde{f}^{p}(s) \phi_{s}^{p}(c)
$$

where

$$
\forall s \subset[n] \quad \tilde{f}^{p}(s)=\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[f(c) \phi_{s}^{p}(c)\right]
$$

This decomposition is a generalisation of Fourier analysis to biased distributions (O'Donnell, 2014, $\S 8.4)$. For $p, q \in(0,1)$, the expansion of f gives the following expressions for $g(q), g^{\prime}(q)$ and $g^{\prime}(p)$.

$$
\begin{aligned}
g(q) & =\underset{c_{1} \ldots n \sim q}{\mathbb{E}}[f(c)] \\
& =\sum_{s \subset[n]} \tilde{f}^{p}(s) \underset{c_{1} \ldots n \sim q}{\mathbb{E}}\left[\phi_{s}^{p}(c)\right] \\
& =\sum_{s \subset[n]} \tilde{f}^{p}(s) \prod_{i \in s} \underset{c \sim q}{\mathbb{E}}\left[\phi^{p}(c)\right] \\
& =\sum_{s \subset[n]} \tilde{f}^{p}(s)\left(q \sqrt{\frac{1-p}{p}}-(1-q) \sqrt{\frac{p}{1-p}}\right)^{|s|} . \\
g^{\prime}(q) & =\sum_{s \subset[n]: s \neq \emptyset} \tilde{f}^{p}(s) \cdot|s| \cdot\left(q \sqrt{\frac{1-p}{p}}-(1-q) \sqrt{\frac{p}{1-p}}\right)^{|s|-1} \cdot\left(\sqrt{\frac{1-p}{p}}+\sqrt{\frac{p}{1-p}}\right) . \\
g^{\prime}(p) & =\sum_{s \subset[n]: s \neq \emptyset} \tilde{f}^{p}(s) \cdot|s| \cdot 0^{|s|-1} \cdot\left(\sqrt{\frac{1-p}{p}}+\sqrt{\frac{p}{1-p}}\right) \\
& =\sum_{i \in[n]} \tilde{f}^{p}(\{i\}) \cdot\left(\sqrt{\frac{1-p}{p}}+\sqrt{\frac{p}{1-p}}\right) .
\end{aligned}
$$

Note that $\tilde{f}^{p}(\{i\})=\underset{c_{1} \ldots n \sim p}{\mathbb{E}}\left[f(c) \phi^{p}\left(c_{i}\right)\right]$ and, hence,

$$
\underset{c_{1} \ldots n \sim p}{\mathbb{E}}\left[f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)\right]=\sum_{i \in[n]} \tilde{f}^{p}(\{i\})=\frac{g^{\prime}(p)}{\sqrt{\frac{1-p}{p}}+\sqrt{\frac{p}{1-p}}}=g^{\prime}(p) \sqrt{p(1-p)} .
$$

Now we can interpret the correlation for a random $p^{j} \sim D_{a, b}$.
Proposition 19 Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$. Define $g:[0,1] \rightarrow \mathbb{R}$ by $g(p)=\underset{c_{1} \ldots n \sim p}{\mathbb{E}}[f(c)]$. For any $0 \leq a<b \leq 1$,

$$
\underset{p \sim D_{a, b}}{\mathbb{E}}\left[\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)\right]\right]=\frac{g(b)-g(a)}{2 \sin ^{-1}(\sqrt{b})-2 \sin ^{-1}(\sqrt{a})} \geq \frac{g(b)-g(a)}{\pi}
$$

This effectively follows by integrating Lemma 18.

Proof Let $\mu(p)=C_{a, b} / \sqrt{p(1-p)}$ be the probability density function for the distribution $D_{a, b}$ on the interval (a, b). By Lemma 18 and the fundamental theorem of calculus, we have

$$
\begin{aligned}
\underset{p \sim D_{a, b}}{\mathbb{E}}\left[\underset{c_{1} \ldots n \sim p}{\mathbb{E}}\left[f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)\right]\right] & =\underset{p \sim D_{a, b}}{\mathbb{E}}\left[g^{\prime}(p) \sqrt{p(1-p)}\right] \\
& =\int_{a}^{b} g^{\prime}(p) \sqrt{p(1-p)} \mu(p) \mathrm{d} p \\
& =C_{a, b} \int_{a}^{b} g^{\prime}(p) \mathrm{d} p \\
& =C_{a, b} \cdot(g(b)-g(a)) .
\end{aligned}
$$

It remains to show that $C_{a, b}=\left(2 \sin ^{-1}(\sqrt{b})-2 \sin ^{-1}(\sqrt{a})\right)^{-1} \geq 1 / \pi$. This follows from observing that

$$
C_{a, b}^{-1}=\int_{a}^{b} \frac{1}{\sqrt{p(1-p)}} \mathrm{d} p=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} p} 2 \sin ^{-1}(\sqrt{p})\right) \mathrm{d} p=2 \sin ^{-1}(\sqrt{b})-2 \sin ^{-1}(\sqrt{a})
$$

and

$$
C_{a, b}^{-1} \leq C_{0,1}^{-1}=2 \sin ^{-1}(1)-2 \sin ^{-1}(0)=\pi
$$

Now we have a lemma to bring consistency into the picture. If f is consistent, $b \approx 1$, and $a \approx 0$, then

$$
g(b)-g(a) \approx g(1)-g(0)=f\left((1)^{n}\right)-f\left((-1)^{n}\right)=1-(-1)=2
$$

This gives a lower bound on the correlation for consistent f.
Lemma 20 Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$. Define $g:[0,1] \rightarrow[-1,1]$ by $g(p)=\underset{c_{1} \cdots n \sim p}{\mathbb{E}}[f(c)]$. Suppose $\alpha \in[0,1]$. Then $|g(1-\alpha)-g(1)| \leq 2 n \alpha$ and $|g(\alpha)-g(0)| \leq 2 n \alpha$.

Proof We have $\underset{c_{1 \cdots n} \sim 1-\alpha}{\mathbb{P}}\left[X=(1)^{n}\right]=(1-\alpha)^{n}$ and

$$
\begin{aligned}
g(1-\alpha)-g(1) & =f\left((1)^{n}\right) \cdot \underset{c_{1} \cdots n \sim 1-\alpha}{\mathbb{P}}\left[c=(1)^{n}\right]+\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[f(c) \mid c \neq(1)^{n}\right] \cdot \underset{c_{1} \cdots n \sim 1-\alpha}{\mathbb{P}}\left[c \neq(1)^{n}\right]-g(1) \\
& =g(1) \cdot(1-\alpha)^{n}+\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[f(c) \mid c \neq(1)^{n}\right] \cdot\left(1-(1-\alpha)^{n}\right)-g(1) \\
& =\left(g(1)-\underset{c_{1 \cdots n} \sim p}{\mathbb{E}}\left[f(c) \mid c \neq(1)^{n}\right]\right) \cdot\left((1-\alpha)^{n}-1\right) .
\end{aligned}
$$

Now $\left|g(1)-\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[f(c) \mid c \neq(1)^{n}\right]\right| \leq 2$ and $\left|(1-\alpha)^{n}-1\right| \leq n \alpha$, whence $|g(1-\alpha)-g(1)| \leq$ $2 n \alpha$. The other half of the lemma is symmetric.

A.4.2. Robustness

We require the fingerprinting code to be robust to inconsistent answers. We show that the correlation is still good in the presence of inconsistencies.

For $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, define a random variable $\xi_{\alpha, \zeta}(f)$ by

$$
\xi_{\alpha, \zeta}(f)=f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)+\gamma \mathbb{I}(p \in\{0,1\} \wedge f(c) \neq 2 p-1), \quad p \sim \overline{D_{\alpha, \zeta}}, \quad c_{1 \cdots n} \sim p
$$

where \mathbb{I} is the indicator function and $\gamma \in(0,1 / 2)$ satisfies $\zeta \gamma / 2=(1-2 \zeta) / \pi$ - that is,

$$
\gamma:=\frac{2}{\pi} \frac{1-2 \zeta}{\zeta}
$$

The first term $f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)$ measures the correlation as before. The second term $\gamma \mathbb{I}(p \in\{0,1\} \wedge f(c) \neq 2 p-1)$ measures inconsistencies. We will lower bound the expectation of $\xi_{\alpha, \zeta}(f)$, which amounts to saying "either there is good correlation or there is an inconsistency with good probability." Thus either the fingerprinting code is able to accuse users or the adversary is forced to be inconsistent.

The following bounds the expected increase in scores from one round of interaction.
Proposition 21 Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $\alpha, \zeta \in(0,1 / 2)$. Then

$$
\mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right] \geq \frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha) .
$$

Proof Define $g:[0,1] \rightarrow[-1,1]$ by $g(p)=\underset{c_{1} \cdots n \sim p}{\mathbb{E}}[f(c)]$. Now

$$
\begin{aligned}
\mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]= & \underset{p \sim \bar{D}_{\alpha, \zeta}}{\mathbb{P}}[p=0] \cdot \gamma \mathbb{I}\left(f\left((-1)^{n}\right)=1\right)+\underset{p \sim \overline{D_{\alpha, \zeta}}}{\mathbb{P}}[p=1] \cdot \gamma \mathbb{I}\left(f\left((1)^{n}\right)=-1\right) \\
& +\underset{p \sim \overline{D_{\alpha, \zeta}}}{\mathbb{P}}[p \in[\alpha, 1-\alpha]] \cdot \underset{p \sim D_{\alpha, 1-\alpha}}{\mathbb{E}}\left[\underset{c_{1 \cdots n} \sim p}{\mathbb{E}}\left[f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)\right]\right] \\
= & \zeta \cdot \gamma(\mathbb{I}(g(0)=1)+\mathbb{I}(g(1)=-1))
\end{aligned}
$$

(by Proposition 19) $+(1-2 \zeta) \cdot \frac{g(1-\alpha)-g(\alpha)}{2 \sin ^{-1}(\sqrt{1-\alpha})-2 \sin ^{-1}(\sqrt{\alpha})}$
$\geq \zeta \cdot \gamma\left(\frac{1+g(0)}{2}+\frac{1-g(1)}{2}\right)+(1-2 \zeta) \cdot \frac{g(1-\alpha)-g(\alpha)}{\pi}$
$=\frac{1-2 \zeta}{\pi}(1+g(0)+1-g(1)+g(1-\alpha)-g(\alpha))$
$\geq \frac{1-2 \zeta}{\pi}(2-|g(\alpha)-g(0)|-|g(1-\alpha)-g(1)|)$
(by Lemma 20) $\geq \frac{1-2 \zeta}{\pi}(2-4 n \alpha)$.

A.4.3. Concentration

So far we have shown that the fingerprinting code achieves good correlation or the adversary is not consistent in expectation. However, we need this to hold with high probability. Thus we now show that sums of $\xi_{\alpha, \zeta}(f)$ variables concentrate around their expectation.

Again, the proofs in this section are standard. However, the $\xi_{\alpha, \zeta}(f)$ variables can be quite unwieldy and we are thus unable to apply standard results directly. So instead we must open the proofs and verify that the concentration bounds hold. We proceed by bounding the moment generating function of $\xi_{\alpha, \zeta}(f)$ and then proving an Azuma-like concentration inequality. These calculations are not novel or insightful.

Proposition 22 Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}, \alpha \in(0,1 / 2), \zeta \in[1 / 4,1 / 2)$, and $t \in[-\sqrt{\alpha} / 8, \sqrt{\alpha} / 8]$. Then

$$
\mathbb{E}\left[e^{t\left(\xi_{\alpha, \zeta}(f)-\mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]\right)}\right] \leq e^{C t^{2}}
$$

where $C=\frac{64 e^{n \alpha / 4}}{\alpha}$.
Proof We have

$$
\xi_{\alpha, \zeta}(f)=f(c) \cdot \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)+\gamma \mathbb{I}(p \in\{0,1\} \wedge f(c) \neq 2 p-1), \quad p \sim \overline{D_{\alpha, \zeta}}, \quad c_{1 \cdots n} \sim p .
$$

Let $Y=\sum_{i \in[n]} \phi^{p}\left(c_{i}\right)$. By Lemma 11 and independence,

$$
\mathbb{E}\left[e^{t Y}\right]=\underset{c_{1} \cdots n \sim p}{\mathbb{E}}\left[e^{t \sum_{i \in[n]} \phi^{p}\left(c_{i}\right)}\right]=\left(\underset{c \sim p}{\mathbb{E}}\left[e^{t \phi^{p}(c)}\right]\right)^{n} \leq e^{t^{2} n}
$$

for $t \in[-\sqrt{\alpha} / 2, \sqrt{\alpha} / 2]$. Pick $t \in\{ \pm \sqrt{\alpha} / 2\}$ such that

$$
\sum_{k=0}^{\infty} \frac{t^{2 k+1}}{(2 k+1)!} \mathbb{E}\left[Y^{2 k+1}\right] \geq 0
$$

Then by dropping positive terms, for all $j \geq 1$,

$$
0 \leq \mathbb{E}\left[Y^{2 j}\right] \leq \frac{(2 j)!}{t^{2 j}} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbb{E}\left[Y^{k}\right]=\frac{(2 j)!}{t^{2 j}} \mathbb{E}\left[e^{t Y}\right] \leq \frac{(2 j)!}{t^{2 j}} e^{n t^{2}}=\frac{4^{j}(2 j)!}{\alpha^{j}} e^{n \alpha / 4}
$$

Thus we have bounded the even moments of Y. By Cauchy-Schwartz, for $k=2 j+1 \geq 3$,
$\mathbb{E}\left[|Y|^{k}\right] \leq \sqrt{\mathbb{E}\left[Y^{2 j}\right] \cdot \mathbb{E}\left[Y^{2 j+2}\right]} \leq \sqrt{\frac{4^{j}(2 j)!}{\alpha^{j}} e^{n \alpha / 4} \cdot \frac{4^{j+1}(2 j+2)!}{\alpha^{j+1}} e^{n \alpha / 4}}=\frac{2^{k} k!}{\alpha^{k / 2}} e^{n \alpha / 4} \sqrt{\frac{k+1}{k}}$.
Since $|f(c)| \leq 1$, we have $\mathbb{E}\left[|f(c) \cdot Y|^{k}\right] \leq \mathbb{E}\left[|Y|^{k}\right] \leq 2^{k+1} k!e^{n \alpha / 4} / \alpha^{k / 2}$ for all $k \geq 2$. Since $\zeta \in[1 / 4,1 / 2)$, we have $\gamma=(2 / \pi)(1-2 \zeta) / \zeta \in(0,1)$. Hence $\mathbb{E}\left[|\gamma \mathbb{I}(p \in\{0,1\} \wedge f(c) \neq 2 p-1)|^{k}\right] \leq$ 1 for all k. The map $u \mapsto|u|^{k}$ is convex for all $k \geq 2$, thus $|(x+y) / 2|^{k} \leq\left(|x|^{k}+|y|^{k}\right) / 2$ for all $k \geq 2$ and $x, y \in \mathbb{R}$. Combining these three facts, we have

$$
\mathbb{E}\left[\left|\xi_{\alpha, \zeta}(f)\right|^{k}\right] \leq 2^{k-1} \mathbb{E}\left[|f(c) \cdot Y|^{k}+\left|\gamma \mathbb{I}\left(f(c) \neq f^{*}(c)\right)\right|^{k}\right] \leq \frac{2^{2 k} k!e^{n \alpha / 4}}{\alpha^{k / 2}}+2^{k-1} \leq \frac{2^{2 k+1} k!e^{n \alpha / 4}}{\alpha^{k / 2}}
$$

For $t \in[-\sqrt{\alpha} / 8, \sqrt{\alpha} / 8]$, we have

$$
\begin{aligned}
\mathbb{E}\left[e^{t \xi_{\alpha, \zeta}(f)}\right] & \leq 1+t \mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]+\sum_{k=2}^{\infty} \frac{|t|^{k}}{k!} \mathbb{E}\left[\left|\xi_{\alpha, \zeta}(f)\right|^{k}\right] \\
& \leq 1+t \mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]+\sum_{k=2}^{\infty} \frac{|t|^{k}}{k!} \frac{2^{2 k+1} k!e^{n \alpha / 4}}{\alpha^{k / 2}} \\
& =1+t \mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]+2 e^{n \alpha / 4} \sum_{k=2}^{\infty}\left(\frac{4|t|}{\sqrt{\alpha}}\right)^{k} \\
& \leq 1+t \mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]+2 e^{n \alpha / 4} \sum_{k=2}^{\infty}\left(\frac{4|t|}{\sqrt{\alpha}}\right)^{2} 2^{-(k-2)} \\
& =1+t \mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]+\frac{64 e^{n \alpha / 4}}{\alpha} t^{2} \\
& \leq e^{t \mathbb{E}\left[\xi_{\alpha, \zeta}(f)\right]+C t^{2}}
\end{aligned}
$$

Theorem 23 (Azuma-Doob Inequality) Let $X_{1} \cdots X_{m} \in \mathbb{R}, \mu_{1} \cdots \mu_{m} \mathbb{R}$ and $\mathcal{U}_{0} \cdots \mathcal{U}_{m} \in \Omega$ be random variables such that, for all $i \in[m]$,

- X_{i} is determined by \mathcal{U}_{i},
- μ_{i} is determined by \mathcal{U}_{i-1}, and
- \mathcal{U}_{i-1} is determined by \mathcal{U}_{i}.

Suppose that, for all $i \in[m], u \in \Omega$, and $t \in[-c, c]$,

$$
\mathbb{E}\left[e^{t\left(X_{i}-\mu_{i}\right)} \mid \mathcal{U}_{i-1}=u\right] \leq e^{C t^{2}}
$$

If $\lambda \in[0,2 C m c]$, then

$$
\mathbb{P}\left[\left|\sum_{i \in[m]}\left(X_{i}-\mu_{i}\right)\right| \geq \lambda\right] \leq 2 e^{-\lambda^{2} / 4 C m} .
$$

If $\lambda \geq 2 C m c$, then

$$
\mathbb{P}\left[\left|\sum_{i \in[m]}\left(X_{i}-\mu_{i}\right)\right| \geq \lambda\right] \leq 2 e^{m C c^{2}-c \lambda} \leq 2 e^{-c \lambda / 2} .
$$

Proof First we show by induction on $k \in[m]$ that, for all $u \in \Omega$ and $t \in[-c, c]$,

$$
\mathbb{E}\left[e^{t \sum_{i=m-k+1}^{m}\left(X_{i}-\mu_{i}\right)} \mid \mathcal{U}_{m-k}=u\right] \leq e^{k \cdot C t^{2}}
$$

This clearly holds for $k=1$, as this is our supposition for $i=m$. Now suppose this holds for some $k \in[m-1]$. For $u \in \Omega$ and $t \in[-c, c]$, we have

$$
\begin{aligned}
\mathbb{E}\left[e^{t \sum_{i=m-k}^{m}\left(X_{i}-\mu_{i}\right)} \mid \mathcal{U}_{m-(k+1)}=u\right]= & \sum_{v \in \Omega} \mathbb{P}\left[\mathcal{U}_{m-k}=v \mid \mathcal{U}_{m-k-1}=u\right] \mathbb{E}\left[e^{t \sum_{i=m-k}^{m}\left(X_{i}-\mu_{i}\right)} \mid \mathcal{U}_{m-k}=v\right] \\
= & \sum_{v \in \Omega} \mathbb{P}[v \mid u] \mathbb{E}\left[e^{t\left(X_{m-k}-\mu_{m-k}\right)} e^{t \sum_{i=m-k+1}^{m}\left(X_{i}-\mu_{i}\right)} \mid v\right] \\
& \left(\text { using shorthand } v \equiv \mathcal{U}_{m-k}=v \text { and } u \equiv \mathcal{U}_{m-k-1}=u\right) \\
= & \sum_{v \in \Omega} \mathbb{P}[v \mid u] \mathbb{E}\left[e^{t\left(X_{m-k}-\mu_{m-k}\right)} \mid v\right] \mathbb{E}\left[e^{t \sum_{i=m-k+1}^{m}\left(X_{i}-\mu_{i}\right)} \mid v\right] \\
& \left(\text { since } U_{m-k}=v \text { determines } X_{m-k} \text { and } \mu_{m-k}\right) \\
\leq & \sum_{v \in \Omega} \mathbb{P}[v \mid u] \mathbb{E}\left[e^{t\left(X_{m-k}-\mu_{m-k}\right)} \mid v\right] e^{k \cdot C t^{2}}
\end{aligned}
$$

(by the induction hypothesis)
$=\mathbb{E}\left[e^{t\left(X_{m-k}-\mu_{m-k}\right)} \mid u\right] e^{k \cdot C t^{2}}$
$\leq e^{C t^{2}} e^{k \cdot C t^{2}}$
(by our supposition for $i=m-k$)

$$
=e^{(k+1) \cdot C t^{2}}
$$

Thus, for all $t \in[-c, c]$, we have

$$
\mathbb{E}\left[e^{t \sum_{i=1}^{m}\left(X_{i}-\mu_{i}\right)}\right] \leq e^{m \cdot C t^{2}}
$$

By Markov's inequality we have

$$
\mathbb{P}\left[\sum_{i \in[m]}\left(X_{i}-\mu_{i}\right) \geq \lambda\right] \leq \frac{\mathbb{E}\left[e^{t \sum_{i \in[m]}\left(X_{i}-\mu_{i}\right)}\right]}{e^{t \lambda}} \leq e^{m C t^{2}-t \lambda}
$$

and

$$
\mathbb{P}\left[\sum_{i \in[m]}\left(X_{i}-\mu_{i}\right) \leq-\lambda\right] \leq \frac{\mathbb{E}\left[e^{-t \sum_{i \in[m]}\left(X_{i}-\mu_{i}\right)}\right]}{e^{(-t)(-\lambda)}} \leq e^{m C t^{2}-t \lambda}
$$

for all $t \in[0, c]$ and $\lambda>0$. Set $t=\min \{c, \lambda / 2 m C\}$ to obtain the result.

A.4.4. Bounding the Score

Now we can finally show that the scores are large with high probability.
Theorem 24 (Correlation Lower Bound) At the end of $\operatorname{IFPC}_{N, n, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$ for arbitrary \mathcal{P}, we have, for any $\lambda \in[0,17.5 \ell / \sqrt{\alpha}]$,

$$
\gamma \theta^{\ell}+\sum_{i \in S^{1}} s_{i}^{\ell} \geq \frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha) \ell-\lambda
$$

with probability at least $1-2 e^{-\frac{\lambda^{2} \alpha}{280 \ell}}$.
Proof Since the adversary \mathcal{P} is computationally unbounded and arbitrary, we may assume it is deterministic. We may also assume $n=\left|S^{1}\right|$ and that the adversary is able to see $c_{S^{1}}^{j}$ at each round. (This only gives the adversary more power.)

This means that for each $j \in[\ell]$ we can define a function $f^{j}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ that only depends on the interaction up to round $j-1$ (i.e. is a function of the state of \mathcal{P} before it receives c^{j}) and satisfies $f^{j}\left(c_{S^{j}}^{j}\right)=a^{j}$. For $j \in[\ell]$, define

$$
X_{j}:=\gamma \cdot \mathbb{I}\left(p^{j} \in\{0,1\} \wedge f^{j}\left(c_{S^{1}}^{j}\right) \neq 2 p^{j}-1\right)+f^{j}\left(c_{S^{1}}^{j}\right) \cdot \sum_{i \in S^{1}} \phi^{p^{j}}\left(c_{i}^{j}\right) \sim \xi_{\alpha, \zeta}\left(f^{j}\right)
$$

where \sim denotes having the same distribution. We have

$$
\gamma \cdot\left(\theta^{j}-\theta^{j-1}\right)+\sum_{i \in S^{1}}\left(s_{i}^{j}-s_{i}^{j-1}\right) \leq X_{j}
$$

and

$$
\gamma \theta^{\ell}+\sum_{i \in S^{1}} s_{i}^{\ell} \leq \sum_{j \in[\ell]} X_{j} \sim \sum_{j \in[\ell]} \xi_{\alpha, \zeta}\left(f^{j}\right)
$$

Now we can apply the above lemmas to bound the expectation and tail of this random variable.
Firstly, Proposition 21 shows that

$$
\mu_{j}:=\mathbb{E}\left[X_{j}\right]=\mathbb{E}\left[\xi_{\alpha, \zeta}\left(f^{j}\right)\right] \geq \frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha)
$$

for all f^{j}. Moreover, by Proposition 22,

$$
\mathbb{E}\left[e^{t\left(X^{j}-\mu_{j}\right)}\right]=\mathbb{E}\left[e^{t\left(\xi_{\alpha, \zeta}\left(f^{j}\right)-\mathbb{E}\left[\xi_{\alpha, \zeta}\left(f^{j}\right)\right]\right)}\right] \leq e^{C t^{2}}
$$

for all $t \in[-\sqrt{\alpha} / 8, \sqrt{\alpha} / 8]$, where $C=70 / \alpha \geq 64 e^{n \alpha / 4} / \alpha$, as $\alpha \leq 1 / 4 n$.
Define $\mathcal{U}_{j}=\left(f^{1}, p^{1}, c^{1}, \cdots, f^{j}, p^{j}, c^{j}, f^{j+1}\right)$ for $j \in[\ell] \cup\{0\}$. Now $X_{1} \cdots X_{\ell}, \mu_{1} \cdots \mu_{\ell}$, and $\mathcal{U}_{0}, \cdots, \mathcal{U}_{\ell}$ satisfy the hypotheses of Theorem 23 with $C=70 / \alpha, c=\sqrt{\alpha} / 8$, and $m=\ell$.

For $\lambda \in[0,2 C m c]=[0,17.5 \ell / \sqrt{\alpha}]$, we have
$\mathbb{P}\left[\sum_{j \in[\ell]} X_{j} \leq \frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha) \ell-\lambda\right] \leq \mathbb{P}\left[\left|\sum_{i \in[m]}\left(X_{i}-\mu_{i}\right)\right| \geq \lambda\right] \leq 2 e^{-\lambda^{2} / 4 C m} \leq 2 e^{-\frac{\lambda^{2} \alpha}{280 \ell}}$, as required.

However, we can also prove that the scores are small with high probability. This follows from the fact that users with large scores are accused and therefore no user's score can be too large:

Lemma 25 For all $\lambda>0$,

$$
\mathbb{P}\left[\sum_{i \in S^{1}} s_{i}^{\ell}>\lambda+n \sigma+\frac{n}{\sqrt{\alpha}}\right] \leq e^{-\lambda^{2} / 4 n \ell}+e^{-\sqrt{\alpha} \lambda / 4}
$$

where the probability is taken over $\operatorname{IFP} C_{N, n, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$ for an arbitrary \mathcal{P}.

We will set $\lambda=\sigma$ and, since $1 / \sqrt{\alpha} \leq \sigma$, we get that $\sum_{i \in S^{1}} s_{i}^{\ell} \leq 3 \sigma n$ with high probability.
Proof Let $j_{i} \in[\ell+1]$ be as in Lemma 17 - that is, $i \notin S^{j_{i}}$ and $i \in S^{j_{i}-1}$, where we define $S^{\ell+1}=\emptyset$ and $S^{0}=[N]$. By the definition of j_{i}, s^{j}, and S^{j}, we have $s_{i}^{j_{i}-2} \leq \sigma$ for all $i \in S^{1}$, as otherwise $i \in I^{j_{i}-2}$ and therefore $i \notin S^{j_{i}-1}=S^{j_{i}-2} \backslash I^{j_{i}-2}$. If $i \in S^{1}$, then $j_{i}=1$ and $s_{i}^{j_{i}-1}=0$. Thus

$$
\sum_{i \in S^{1}} s_{i}^{j_{i}-1}=\sum_{i \in S^{1}} s_{i}^{j_{i}-2}+a^{j_{i}-1} \phi^{p^{j_{i}-1}}\left(c_{i}^{j_{i}-1}\right) \leq \sum_{i \in S^{1}} \sigma+\frac{1}{\sqrt{\alpha}} \leq n \sigma+\frac{n}{\sqrt{\alpha}} .
$$

By Lemma 17,

$$
\mathbb{P}\left[\sum_{i \in S^{1}} s_{i}^{\ell}-s_{i}^{j_{i}-1}>\lambda\right] \leq e^{-\lambda^{2} / 4 n \ell}+e^{-\sqrt{\alpha} \lambda / 4} .
$$

The lemma follows.

Now we show that the conflicting bounds of Theorem 24 and Lemma 25 imply completeness that is, the adversary \mathcal{P} cannot be consistent.

Theorem 26 (Completeness) At the end of $\operatorname{IFPC}_{N, n, \ell}\left[\mathcal{P}, \mathcal{F}_{N, n, \delta, \beta}\right]$ for an arbitrary \mathcal{P}, we have $\theta^{\ell}>\beta \ell$ with probability at least $1-\delta^{\frac{1}{2}\left(\frac{1}{2}-\beta\right) n}$, assuming $\left(\frac{1}{2}-\beta\right) n \geq 1$.

Proof Suppose for the sake of contradiction that $\theta^{\ell} \leq \beta \ell$. By Lemma 25, $\sum_{i \in S^{1}} S_{i}^{\ell} \leq \lambda+n \sigma+\frac{n}{\sqrt{\alpha}}$ with probability at least $1-e^{-\lambda^{2} / 4 n \ell}-e^{-\sqrt{\alpha} \lambda / 4}$. Set $\lambda=n \sigma \geq \frac{n}{\sqrt{\alpha}}$. Now we assume

$$
\sum_{i \in S^{1}} s_{i}^{\ell} \leq 3 n \sigma,
$$

which holds with probability at least $1-e^{-n \sigma^{2} / 4 \ell}-e^{-\sqrt{\alpha} n \sigma / 4}$. Then

$$
\begin{equation*}
\gamma \theta^{\ell}+\sum_{i \in S^{1}} s_{i}^{\ell} \leq \gamma \beta \ell+3 n \sigma . \tag{4}
\end{equation*}
$$

By Theorem 24 , with probabilty at least $1-2 e^{-\frac{\lambda^{2} \alpha}{280 \ell}}$,

$$
\begin{equation*}
\gamma \theta^{\ell}+\sum_{i \in S^{1}} s_{i}^{\ell} \geq \frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha) \ell-\lambda \tag{5}
\end{equation*}
$$

for all $\lambda \in[0,17.5 \ell / \sqrt{\alpha}]$. Set $\lambda=\left(\frac{1}{2}-\beta\right)^{2} \ell / 2 \pi$ and assme Equation (5) also holds.
Combining Equations (4) and (5) gives

$$
\begin{equation*}
\frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha) \ell-\frac{\left(\frac{1}{2}-\beta\right)^{2}}{2 \pi} \ell \leq \gamma \beta \ell+3 n \sigma \tag{6}
\end{equation*}
$$

We claim this is a contradiction, which then holds with high probability, thus proving the theorem.
Rearranging Equation (6) gives

$$
\begin{equation*}
\frac{2}{\pi}(1-2 \zeta)(1-2 n \alpha) \leq \frac{\left(\frac{1}{2}-\beta\right)^{2}}{2 \pi}+\gamma \beta+\frac{3 n \sigma}{\ell} \tag{7}
\end{equation*}
$$

Our setting of parameters gives

$$
2 n \alpha \leq \frac{\left(\frac{1}{2}-\beta\right)}{2} \quad \text { and } \quad \frac{3 n \sigma}{\ell} \leq \frac{\left(\frac{1}{2}-\beta\right)^{2}}{2 \pi}
$$

Substituting these into Equation (7) gives

$$
\begin{equation*}
\frac{2}{\pi}(1-2 \zeta)\left(1-\frac{1}{2}\left(\frac{1}{2}-\beta\right)\right) \leq \frac{\left(\frac{1}{2}-\beta\right)^{2}}{\pi}+\gamma \beta \tag{8}
\end{equation*}
$$

Now we use $1-2 \zeta=\frac{1}{2}\left(\frac{1}{2}-\beta\right)$ and $\gamma=\frac{2}{\pi} \frac{1-2 \zeta}{\zeta}=\frac{\left(\frac{1}{2}-\beta\right)}{\pi \zeta}$ to derive a contradiction from Equation (8):

$$
\begin{aligned}
\frac{\left(\frac{1}{2}-\beta\right)}{\pi}\left(1-\frac{1}{2}\left(\frac{1}{2}-\beta\right)\right) & \leq \frac{\left(\frac{1}{2}-\beta\right)^{2}}{\pi}+\frac{\left(\frac{1}{2}-\beta\right)}{\pi \zeta} \beta \\
1-\frac{1}{2}\left(\frac{1}{2}-\beta\right) & \leq\left(\frac{1}{2}-\beta\right)+\frac{\beta}{\zeta} \\
\zeta\left(1-\frac{3}{2}\left(\frac{1}{2}-\beta\right)\right) & \leq \beta
\end{aligned}
$$

Since $\zeta=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{2}-\beta\right)$, we have

$$
\zeta\left(1-\frac{3}{2}\left(\frac{1}{2}-\beta\right)\right)=\frac{1}{2}\left(1-\frac{1}{2}\left(\frac{1}{2}-\beta\right)\right)\left(1-\frac{3}{2}\left(\frac{1}{2}-\beta\right)\right)>\frac{1}{2}\left(1-2\left(\frac{1}{2}-\beta\right)\right) .
$$

And

$$
\beta=\frac{1}{2}\left(1-2\left(\frac{1}{2}-\beta\right)\right) .
$$

This gives a contradiction.
The total failure probability is bounded by

$$
e^{-n \sigma^{2} / 4 \ell}+e^{-\sqrt{\alpha} n \sigma / 4}+2 e^{-\lambda^{2} \alpha / 280 \ell} \leq\left(\frac{\delta}{32}\right)^{16 n}+\left(\frac{\delta}{32}\right)^{4 n}+2\left(\frac{\delta}{32}\right)^{\frac{1}{2}\left(\frac{1}{2}-\beta\right) n} \leq \delta^{\frac{1}{2}\left(\frac{1}{2}-\beta\right) n}
$$

assuming $\left(\frac{1}{2}-\beta\right) n \geq 1$.

Appendix B. Analysis of the Attack

B.1. The Attack (Restated)

We restate our attack in Figure 5. Observe that Attack $_{n, d}$ is only well defined for pairs $n, d \in N$ for which $1+\left\lceil\log _{2}(2000 n)\right\rceil \leq d$, so that there exists a suitable choice of $\lambda \in \mathbb{N}$. Through this section we will assume that $n=n(d)$ is a polynomial in d and that d is a sufficiently large unspecified constant, which ensures that Attack ${ }_{n, d}$ is well defined.

The distribution \mathcal{D} :
Given parameters d, n, let $N=2000 n$, let $\lambda=d-\left\lceil\log _{2}(N)\right\rceil$.
Let (Gen, Enc, Dec) be an encryption scheme
For $i \in[N]$, let $s k_{i} \leftarrow_{\mathrm{R}} G e n\left(1^{\lambda}\right)$ and let $y_{i}=\left(i, s k_{i}\right) \in\{0,1\}^{d}$.
Let \mathcal{D} be the uniform distribution over $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq\{0,1\}^{d}$.
\mathcal{O} samples $x_{1}, \ldots, x_{n} \leftarrow_{\mathrm{R}} \mathcal{D}$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$.
Let $S \subseteq[N]$ be the set of unique indices i such that $\left(i, s k_{i}\right)$ appears in x.
Attack:
Initialise a n-collusion resilient interactive fingerprinting code \mathcal{F} of length ℓ for N users robust to a β fraction of errors with failure probability $\varepsilon=\operatorname{negl}(n)$ and false accusation probability $\delta=1 / 1000$.

Let $T^{1}=\emptyset$.
For $j=1, \ldots, \ell=\ell(N)$:
Let $c^{j} \in\{ \pm 1\}^{N}$ be the column given by \mathcal{F}.
For $i=1, \ldots, N$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$.
Define the query $q^{j}\left(i^{\prime}, s k^{\prime}\right)$ to be $\operatorname{Dec}\left(s k^{\prime}, c t_{i^{\prime}}^{j}\right)$ if $i^{\prime} \notin T^{j}$ and 0 otherwise.
Let $a^{j}=\mathcal{O}\left(x ; q^{j}\right)$ and round a^{j} to $\{ \pm 1\}$ to obtain \bar{a}^{j}.
Give \bar{a}^{j} to \mathcal{F} and let $I^{j} \subseteq[N]$ be the set of accused users and $T^{j}=T^{j-1} \cup I^{j}$.

Figure 5: Attack ${ }_{n, d}[\mathcal{O}]$

B.2. Analysis of the Attack

Now we can restate and prove our main theorem.
Theorem 27 (Theorem 1) Assuming one-way functions exist, for all $\beta<1 / 2$, there is a function $\ell(2000 n, \beta)=O\left(n^{2} /\left(\frac{1}{2}-\beta\right)^{4}\right)$ such that there is no computationally efficient oracle \mathcal{O} that is ($0.99, \beta, 1 / 2$)-accurate for $\ell(2000 n, \beta)$ adaptively chosen queries given n samples in $\{0,1\}^{d}$.

We will start by establishing that the number of falsely accused users is small. That is, we have $\left|T^{\ell} \backslash S\right| \leq N / 1000$ with high probability. This condition will follow from the security of the interactive fingerprinting code \mathcal{F}. However, security alone is not enough to guarantee that the number of falsely accused users is small, because security of \mathcal{F} applies to adversaries that only have access to c_{i}^{j} for users $i \in S \backslash T^{j}$, whereas the queries to the oracle depend on c_{i}^{j} for users $i \notin S \backslash T^{j}$. To remedy this problem we rely on the fact entries c_{i}^{j} for i outside of $S \backslash T^{j}$ are encrypted under keys $s k_{i}$ that are not known to the oracle. Thus, a computationally efficient oracle "does not know" those rows. We can formalize this argument by comparing Attack to an IdealAttack (Figure 6) where these entries are replaced with zeros, and argue that the adversary cannot distinguish between these two attacks without breaking the security of the encryption scheme.

Claim 28 For every oracle \mathcal{O}, every polynomial $n=n(d)$, and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { Ideal }^{\text {Attack }}{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\left|T^{\ell} \backslash S\right|>N / 1000\right] \leq \operatorname{negl}(n)
$$

The distribution \mathcal{D} :
Given parameters d, n, let $N=2000 n$, and $\lambda=d-\left\lceil\log _{2}(N)\right\rceil$.
Let (Gen, Enc, Dec) be an encryption scheme
For $i \in[N]$, let $s k_{i} \leftarrow_{\mathrm{R}} G e n\left(1^{\lambda}\right)$ and let $y_{i}=\left(i, s k_{i}\right) \in\{0,1\}^{d}$.
Let \mathcal{D} be the uniform distribution over $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq\{0,1\}^{d}$.
Choose samples $x_{1}, \ldots, x_{n} \leftarrow_{\mathrm{R}} \mathcal{D}$, let $x=\left(x_{1}, \ldots, x_{n}\right)$.
Let $S \subseteq[N]$ be the set of unique indices i such that $\left(i, s k_{i}\right)$ appears in x.
Recovery phase:
Initialise a n-collusion resilient interactive fingerprinting code \mathcal{F} of length ℓ for N users robust to a β fraction of errors with failure probability $\varepsilon=\operatorname{negl}(n)$ and false accusation probability $\delta=1 / 1000$.

Let $T^{1}=\emptyset$.
For $j=1, \ldots, \ell=\ell(N)$:
Let $c^{j} \in\{ \pm 1\}^{N}$ be the column given by \mathcal{F}.
For $i \in S$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$, for $i \in[N] \backslash S$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, 0\right)$.
Define the query $q^{j}\left(i^{\prime}, s k^{\prime}\right)$ to be $\operatorname{Dec}\left(s k^{\prime}, c t_{i^{\prime}}^{j}\right)$ if $i^{\prime} \notin T^{j}$ and 0 otherwise.
Let $a^{j}=\mathcal{O}\left(x ; q^{j}\right)$ and round a^{j} to $\{ \pm 1\}$ to obtain \bar{a}^{j}.
Give \bar{a}^{j} to \mathcal{F} and let $I^{j} \subseteq[N]$ be the set of accused users and $T^{j}=T^{j-1} \cup I^{j}$.
Figure 6: IdealAttack ${ }_{n, d}[\mathcal{O}]$

Proof This follows straightforwardly from a reduction to the security of the fingerprinting code. Notice that the query q^{j} does not depend on any entry c_{i}^{j} for $i \notin S \backslash T^{j-1}$. Thus, an adversary for the fingerprinting code who has access to $c_{S \backslash T^{j-1}}^{j}$ can simulate the view of the oracle. Since we have for any adversary \mathcal{P}

$$
\underset{\operatorname{IFPC}_{N, n, \ell}[\mathcal{P}, \mathcal{F}]}{\mathbb{P}}\left[\psi^{\ell}>(N-n) \delta\right] \leq \varepsilon,
$$

we also have

$$
\underset{\text { IdealAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\left|T^{\ell} \backslash S\right|>N / 1000\right] \leq \operatorname{negl}(n),
$$

as desired.

Now we can argue that an efficient oracle cannot distinguish between the real attack and the ideal attack. Thus the conclusion that $\left|T^{\ell} \backslash S\right| \leq N / 1000$ with high probability must also hold in the real game.

Claim 29 Let Z_{1} be the event $\left\{\left|T^{\ell} \backslash S\right|>N / 1000\right\}$. Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let $n=n(d)$ be any polynomial. Then, if \mathcal{O} is computationally efficient, for every sufficiently large $d \in \mathbb{N}$

$$
\mid \underset{\mid \text { dealAttack }}{\mathbb{P}} \underset{n, d}{ }[\mathcal{O}] \text { [Z }\left[Z_{1}\right]-\underset{\text { Attack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{1}\right] \mid \leq \operatorname{negl}(n)
$$

The proof is straightforward from the definition of security, and is deferred to Section D. Combining Claims 28 and 29 we easily obtain the following.

Claim 30 For every computionally efficient oracle \mathcal{O}, every polynomial $n=n(d)$, and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\operatorname{Attack}_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\left|T^{\ell} \backslash S\right|>N / 1000\right] \leq \operatorname{negl}(n)
$$

Claim 30 will be useful because it will allow us to establish that an accurate oracle must give answers that are consistent with the fingerprinting code. That is, using θ^{ℓ} to denote the number of inconsistent answers $\bar{a}^{1}, \ldots, \bar{a}^{\ell}$, we will have $\theta^{\ell} \ll \ell / 2$ with high probability.

Claim 31 If \mathcal{O} is ($0.99, \beta, 1 / 2$)-accurate for $\ell=\ell(2000 n)$ adaptively chosen queries then, for every polynomial $n=n(d)$ and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { Attack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{\ell} \leq \beta \ell\right] \geq 1 / 2-\operatorname{negl}(n)
$$

Proof In the attack, the oracle's input consists of n samples from \mathcal{D}, and the total number of queries issued is ℓ. Therefore, by the assumption that \mathcal{O} is $(0.99, \beta, 1 / 2)$-accurate for ℓ queries, we have

$$
\mathbb{P}\left[\begin{array}{c}
\text { For }(1-\beta) \ell \text { choices of } j \in[\ell] \tag{9}\\
\left|\mathcal{O}\left(x, q^{j}\right)-\underset{\left(i, s k_{i}\right) \leftarrow \mathbf{R} \mathcal{D}}{\mathbb{E}}\left[q^{j}\left(i, s k_{i}\right)\right]\right| \leq 0.99
\end{array}\right] \geq 1 / 2
$$

Observe that, by construction, for every $j \in[\ell]$,

$$
\begin{align*}
& \left|\underset{\left(i, s k_{i}\right) \leftarrow \mathbb{R} \mathcal{D}}{\mathbb{E}}\left[q^{j}\left(i, s k_{i}\right)\right]-\underset{i \in[N]}{\mathbb{E}}\left[c_{i}^{j}\right]\right| \\
= & \left|\left(\frac{1}{N} \sum_{i \in[N] \backslash T^{j-1}} \operatorname{Dec}\left(s k_{i}, c t_{i}^{j}\right)+\frac{1}{N} \sum_{i \in T^{j-1}} 0\right)-\underset{i \in[N]}{\mathbb{E}}\left[c_{i}^{j}\right]\right| \\
= & \left|\left(\frac{1}{N} \sum_{i \in[N] \backslash T^{j-1}} c_{i}^{j}\right)-\frac{1}{N} \sum_{i \in[N]} c_{i}^{j}\right| \\
= & \left|-\frac{1}{N} \sum_{i \in T^{j-1}} c_{i}^{j}\right| \\
\leq & \frac{\left|T^{j-1}\right|}{N} \\
& \frac{\left|T^{j-1} \backslash S\right|+|S|}{N} \tag{10}
\end{align*}
$$

where the second equality is because by construction $c t_{i}^{j} \leftarrow_{\mathrm{R}} \operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$ and the inequality is because we have $c_{i}^{j} \in\{ \pm 1\}$.

By Claim 30, and the fact that $T^{j-1} \subseteq T^{\ell}$, we have

$$
\mathbb{P}\left[\left|T^{j-1} \backslash S\right|>N / 1000\right] \leq \operatorname{negl}(n)
$$

Noting that $N / 1000+n<N / 500$ and combining with (10), we have

$$
\begin{equation*}
\mathbb{P}\left[\forall j \in[\ell],\left|\underset{\left(i, s k_{i}\right) \leftarrow \mathrm{R} \mathcal{D}}{\mathbb{E}}\left[q^{j}\left(i, s k_{i}\right)\right]-\underset{i \in[n]}{\mathbb{E}}\left[c_{i}^{j}\right]\right| \leq 1 / 500\right] \geq 1-\operatorname{negl}(n) \tag{11}
\end{equation*}
$$

Applying the triangle inequality to (9) and (11), we obtain

$$
\mathbb{P}\left[\begin{array}{c}
\text { For }(1-\beta) \ell \text { choices of } j \in[\ell], \tag{12}\\
\left|\mathcal{O}\left(x, q^{j}\right)-\underset{i \in[N]}{\mathbb{E}}\left[c_{i}^{j}\right]\right| \leq 0.99+1 / 500
\end{array}\right] \geq 1 / 2-\operatorname{negl}(n)
$$

Fix a $j \in[\ell]$ such that a^{j} is 0.99 -accurate for query q^{j}. If $c_{i}^{j}=1$ for every $i \in[N]$, then $a^{j}=\mathcal{O}\left(x, q^{j}\right) \geq 1-0.99-1 / 500$, so the rounded answer $\bar{a}^{j}=1$. Similarly if $c_{i}^{j}=-1$ for every $i \in[N], \bar{a}^{j}=-1$. Therefore there must exist $i \in[N]$ so that $\bar{a}^{j}=c_{i}^{j}$. Thus there are $(1-\beta) \ell$ choices of $j \in[\ell]$ for which this condition holds, so the number of errors θ^{ℓ} is at most $\beta \ell$. This completes the proof of the claim.

As before, we can argue that the real attack and the ideal attack are computationally indistinguishable, and thus the oracle must also give consistent answers in the ideal attack.

Claim 32 Let Z_{2} be the event $\left\{\theta^{\ell} \leq \beta \ell\right\}$. Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let $n=n(d)$ be any polynomial. Then if \mathcal{O} is computationally efficient, for every $d \in \mathbb{N}$

$$
\left|\underset{\text { Ideal } 1 \text { Attack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{2}\right]-\underset{\text { Attack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{2}\right]\right| \leq \operatorname{negl}(n)
$$

The proof is straightforward from the definition of security, and is deferred to Section D. Combining Claims 31 and 32 we easily obtain the following.

Claim 33 If \mathcal{O} computationally efficient and ($0.99, \beta, 1 / 2$)-accurate for $\ell=\ell(2000 n)$ adaptively chosen queries then for every polynomial $n=n(d)$ and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { IdealAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{\ell} \leq \beta \ell\right] \geq 1 / 2-\operatorname{negl}(n) .
$$

However, the conclusion of 33 can easily be seen to lead to a contradiction, because the security of the fingerprinting code assures that no attacker who only has access to $c_{S \backslash T^{j-1}}^{j}$ in each round $j=1, \ldots, \ell$ can give answers that are consistent for $(1-\beta) \ell$ of the columns c^{j}. Thus, we have

Claim 34 For every oracle \mathcal{O}, every polynomial $n=n(d)$, and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { Ideal } A t t a c k_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{\ell} \leq \beta \ell\right] \leq \operatorname{negl}(n)
$$

Putting the above claims together, we obtain the main theorem:
Proof [Theorem 10] Assume for the sake of contradiction that there were such an oracle. Theorem 7 implies that an interactive fingerprinting code of length $O\left(n^{2} /\left(\frac{1}{2}-\beta\right)^{4}\right)$ exists, so the attack can be carried out. By Claim 33 we would have

$$
\underset{\text { IdealAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{\ell} \leq \beta \ell\right] \geq 1 / 2-\operatorname{negl}(n)
$$

But, by Claim 34 we have

$$
\underset{\text { IdealAttack }}{\mathbb{P}} \underset{n, \alpha}{ }[\mathcal{O}]\left[\theta^{\ell} \leq \beta \ell\right] \leq \operatorname{negl}(n)
$$

which is a contradiction.

Note that the constants in the $(0.99, \beta, 1 / 2)$-accuracy assumption are arbitrary and have only been fixed for simplicity.

B.3. An Information-Theoretic Lower Bound

As in Hardt and Ullman (2014), we observe that the techniques underlying our computational hardness result can also be used to prove an information-theoretic lower bound when the dimension of the data is large. At a high level, the argument uses the fact that the encryption scheme we rely on only needs to satisfy relatively weak security properties, specifically security for at most $O\left(n^{2}\right)$ messages. This security property can actually be achieved against computationally unbounded adversaries provided that the length of the secret keys is $O\left(n^{2}\right)$. As a result, our lower bound can be made to hold against computationally unbounded oracles, but since the secret keys have length $O\left(n^{2}\right)$, we will require $d=O\left(n^{2}\right)$. We refer the reader to Hardt and Ullman (2014) for a slightly more detailed discussion, and simply state the following result.
Theorem 35 (Theorem 2) For all $\beta<1 / 2$, there is a function $\ell(2000 n, \beta)=O\left(n^{2} /\left(\frac{1}{2}-\beta\right)^{4}\right)$ such that there is no oracle \mathcal{O} (even one that is computationally unbounded) that is ($0.99, \beta, 1 / 2$)accurate for $\ell(2000 n, \beta)$ adaptively chosen queries given n samples in $\{0,1\}^{d}$ when $d \geq \ell(2000 n, \beta)$.

Appendix C. Hardness of Avoiding Blatant Non Privacy

In this section we show how our arguments also imply that computationally efficient oracles that guarantee accuracy for adaptively chosen statistical queries must be blatantly non-private.

C.1. Blatant Non Privacy and Sample Accuracy

Before we can define blatant non-privacy, we need to define a notion of accuracy that is more appropriate for the application to privacy. In contrast to Definition 9 where accuracy is defined with respect to the distribution, here we define accurate with respect to the sample itself. With this change in mind, we model blatant non-privacy via the following game.

```
\(\mathcal{A}_{\text {priv }}\) chooses a set \(y=\left\{y_{1}, \ldots, y_{2 n}\right\} \subseteq\{0,1\}^{d}\)
Sample a random subsample \(x \subseteq_{R} y\) of size \(n\)
For \(j=1, \ldots, \ell\)
    \(\mathcal{A}_{\text {priv }}\) outputs a query \(q^{j}\)
    \(\mathcal{O}\left(x, q^{j}\right)\) outputs \(a^{j}\)
    (As \(\mathcal{A}_{\text {priv }}\) and \(\mathcal{O}\) are stateful, \(q^{j}\) and \(a^{j}\) may depend on \(q^{1}, a^{1}, \ldots, q^{j-1}, a^{j-1}\).)
\(\mathcal{A}_{\text {priv }}\) outputs a set \(x^{\prime} \subseteq y\)
```

Figure 7: NonPrivacy ${ }_{n, d}\left[\mathcal{O}, \mathcal{A}_{\text {priv }}\right]$

Definition 36 An oracle \mathcal{O} is (α, β, γ)-sample-accurate for ℓ adaptively chosen queries given n samples in $\{0,1\}^{d}$ if for every adversary $\mathcal{A}_{\text {priv }}$,

$$
\underset{\text { NonPrivacy }_{n, d, e}\left[\mathcal{O}, \mathcal{A}_{\text {priv }}\right]}{\mathbb{P}}\left[\operatorname{For}(1-\beta) \ell \text { choices of } j \in[\ell],\left|\mathcal{O}\left(x, q^{j}\right)-q^{j}(x)\right| \leq \alpha\right] \geq 1-\gamma
$$

where $q(x)=\frac{1}{n} \sum_{i \in[n]} q\left(x_{i}\right)$ is the average over the sample.
As a shorthand, we will say that \mathcal{O} is (α, β)-sample-accurate for ℓ queries iffor every $n, d \in \mathbb{N}$, \mathcal{O} is $\left(\alpha, \beta, o_{n}(1)\right)$-accurate for ℓ queries given n samples in $\{0,1\}^{d}$. Here, ℓ may depend on n and d and $o_{n}(1)$ is a function of n that tends to 0 .

Definition 37 An oracle \mathcal{O} is blatantly non-private if there exists an adversary $\mathcal{A}_{\text {priv }}$ such that

$$
\underset{\text { NonPrivacy }_{n, d, \ell}\left[\mathcal{O}, \mathcal{A}_{\text {priv }}\right]}{\mathbb{P}}\left[\left|x \triangle x^{\prime}\right|>n / 100\right] \leq o_{n}(1)
$$

C.2. Lower Bounds

In this section we show the following theorem
Theorem 38 Assuming one-way functions exist, any computationally efficient oracle \mathcal{O} that gives accurate answers to $O\left(n^{2}\right)$ adaptively chosen queries is blatantly non-private.

The attack is defined in Figure 8. Therein \mathcal{F} is a n-collusion-resilient interactive fingerprinting code of length ℓ for $N=2 n$ users robust to a β fraction of errors with false accusation probability $\delta=1 / 20000$. And (Gen, Enc, Dec) is a computationally secure encryption scheme.

We will start by establishing that the number of falsely accused users is small. That is, we have $\left|T^{L} \backslash x\right| \leq n / 10000$ with high probability. As in Section 3, this condition will follow from the security of the interactive fingerprinting code \mathcal{F} combined with the security of the encryption scheme, via the introduction of an "ideal attack" (Figure 9).

Claim 39 For every oracle \mathcal{O}, every polynomial $n=n(d)$, and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { Ideal }^{\operatorname{Pttack}}{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\left|T^{L} \backslash x\right|>n / 10000\right] \leq \operatorname{negl}(n)
$$

The set y :
Given parameters d, n, let $\lambda=d-\left\lceil\log _{2}(2 n)\right\rceil$.
For $i \in[2 n]$, let $s k_{i} \leftarrow_{\mathrm{R}} \operatorname{Gen}\left(1^{\lambda}\right)$ and let $y_{i}=\left(i, s k_{i}\right)$.

Attack:

Let $T^{1}=\emptyset$.
For $j=1, \ldots, \ell=\ell(2 n)$:
Let $c^{j} \in\{ \pm 1\}^{2 n}$ be the column given by \mathcal{F}.
For $i=1, \ldots, 2 n$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$.
Define the query $q^{j}\left(i^{\prime}, s k^{\prime}\right)$ to be $\operatorname{Dec}\left(s k^{\prime}, c t_{i^{\prime}}^{j}\right)$ if $i^{\prime} \notin T^{j}$ and 0 otherwise.
Let $a^{j}=\mathcal{O}\left(x ; q^{j}\right)$ and round $\left(n /\left(n-\left|T^{j-1}\right|\right)\right) a^{j}$ to $\{ \pm 1\}$ to obtain \bar{a}^{j}.
Give \bar{a}^{j} to \mathcal{F} and let $I^{j} \subseteq[N]$ be the set of accused users and $T^{j}=T^{j-1} \cup I^{j}$.
If $\left|T^{j}\right|>499 n / 500$, let $L=j$, halt, and output $x^{\prime}=\left\{y_{i}: i \in T^{L}\right\}$.
Let $L=\ell$, and output $x^{\prime}=\left\{y_{i}: i \in T^{L}\right\}$.

Figure 8: Privacy $^{\text {Attack }}{ }_{n, d}[\mathcal{O}]$

The set y :
Given parameters d, n, let $\lambda=d-\left\lceil\log _{2}(2 n)\right\rceil$.
For $i \in[2 n]$, let $s k_{i} \leftarrow_{\mathrm{R}} \operatorname{Gen}\left(1^{\lambda}\right)$ and let $y_{i}=\left(i, s k_{i}\right)$.
Attack:
Let $T^{1}=\emptyset$.
For $j=1, \ldots, \ell=\ell(2 n)$:
Let $c^{j} \in\{ \pm 1\}^{2 n}$ be the column given by \mathcal{F}.
For $i=1, \ldots, 2 n$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$.
For $i \in S$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$, for $i \in[N] \backslash x$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, 0\right)$.
Let $a^{j}=\mathcal{O}\left(x ; q^{j}\right)$ and round $\left(n /\left(n-\left|T^{j-1}\right|\right)\right) a^{j}$ to $\{ \pm 1\}$ to obtain \bar{a}^{j}.
Give \bar{a}^{j} to \mathcal{F} and let $I^{j} \subseteq[N]$ be the set of accused users and $T^{j}=T^{j-1} \cup I^{j}$.
If $\left|T^{j}\right|>499 n / 500$, let $L=j$, halt, and output $x^{\prime}=\left\{y_{i}: i \in T^{L}\right\}$.
Let $L=\ell$, and output $x^{\prime}=\left\{y_{i}: i \in T^{L}\right\}$.
Figure 9: IdealPrivacy Attack $_{n, d}[\mathcal{O}]$

Proof This follows straightforwardly from a reduction to the security of the fingerprinting code. Notice that since the query q^{j} does not depend on any entry c_{i}^{j} for $i \notin x \backslash T^{j-1}$. Thus, an adversary for the fingerprinting code who has access to $c_{x \backslash T^{j-1}}^{j}$ can simulate the view of the oracle. Since we have for any adversary \mathcal{P}

$$
\underset{\operatorname{IFPC}_{N, n, \ell}[\mathcal{P}, \mathcal{F}]}{\mathbb{P}}\left[\psi^{\ell}>N / 20000\right] \leq \operatorname{negl}(n),
$$

we also have

$$
\underset{\text { IdealPrivacyAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\left|T^{L} \backslash x\right|>n / 10000\right] \leq \operatorname{negl}(n),
$$

where we have used the fact that $\left|T^{L} \backslash x\right|=\psi^{L} \leq \psi^{\ell}$. This completes the proof.

Now we can argue that an efficient oracle cannot distinguish between the real attack and the ideal attack. Thus the conclusion that $\left|T^{L} \backslash x\right| \leq n / 10000$ with high probability must also hold in the real game.
Claim 40 Let Z_{1} be the event $\left\{\left|T^{L} \backslash x\right|>n / 10000\right\}$. Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let $n=n(d)$ be any polynomial. Then if \mathcal{O} is computationally efficient, for every $d \in \mathbb{N}$

$$
\left|\underset{\text { IdealPrivacyAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{1}\right]-\underset{\text { PrivacyAttack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{1}\right]\right| \leq \operatorname{negl}(n)
$$

The proof is straightforward from the definition of security, and is deferred to Section D. Combining Claims 39 and 40 we easily obtain the following.

Claim 41 For every computionally efficient oracle \mathcal{O}, every polynomial $n=n(d)$, and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { PrivacyAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\left|T^{L} \backslash x\right|>n / 10000\right] \leq \operatorname{negl}(n)
$$

By Claim 41 we have $\left|x^{\prime} \backslash x\right| \leq n / 10000$. Now, in order to show $\left|x^{\prime} \triangle x\right| \leq n / 100$, it suffices to show that $\left|x \backslash x^{\prime}\right| \leq n / 200$. In order to do so we begin with the following claim, which establishes that if the oracle \mathcal{O} is sufficiently accurate, and $\left|x \backslash T^{j-1}\right| \leq n / 200$, then the oracle returns a consistent answer to the query q^{j}. Recalling that we use θ^{j} to denote the number of rounded answers \bar{a}^{k} for $1 \leq k \leq j$ that are inconsistent with c^{j}, we can state the following claim.

Claim 42 If \mathcal{O} is $(1 / 1000, \beta, 1 / 2)$-sample-accurate for $\ell=\ell(2 n, \beta)$ adaptively chosen queries then for every polynomial $n=n(d)$, every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { PrivacyAttack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{L} \leq \beta L\right] \geq 1 / 2
$$

Proof Observe that, by construction, for every $j \in[\ell]$,

$$
\begin{aligned}
\underset{x_{i} \in x}{\mathbb{E}}\left[q^{j}\left(x_{i}\right)\right] & =\frac{1}{n}\left(\sum_{i \in\left(x \backslash T^{j-1}\right)} c_{i}^{j}+\sum_{i \in\left(x \cap T^{j-1}\right)} 0\right) \\
& =\underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right] \cdot\left(\frac{\left|x \backslash T^{j-1}\right|}{n}\right)
\end{aligned}
$$

After renormalizing by $\left(n / n-\left|T^{j-1}\right|\right)$ we have

$$
\begin{aligned}
& \left(\frac{n}{n-\left|T^{j-1}\right|}\right) \cdot \underset{i \in x}{\mathbb{E}}\left[q^{j}\left(x_{i}\right)\right] \\
= & \underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right] \cdot\left(\frac{n}{n-\left|T^{j-1}\right|}\right) \cdot\left(\frac{\left|x \backslash T^{j-1}\right|}{n}\right) \\
= & \underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right] \cdot\left(\frac{n-\left|T^{j-1}\right|+\left|T^{j-1} \backslash x\right|}{n-\left|T^{j-1}\right|}\right) \\
= & \underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right] \cdot\left(1+\frac{\left|T^{j-1} \backslash x\right|}{n-\left|T^{j-1}\right|}\right)
\end{aligned}
$$

Since $0 \leq\left|T^{j-1} \backslash x\right| \leq n / 10000$ (by Claim 41), and since the algorithm terminates unless $\left|T^{j-1}\right| \leq$ $499 n / 500$, we obtain

$$
\begin{align*}
& \underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right] \leq\left(\frac{n}{n-\left|T^{j-1}\right|}\right) \cdot \underset{i \in x}{\mathbb{E}}\left[q^{j}\left(x_{i}\right)\right] \leq \frac{21}{20} \cdot \underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right] \\
\Longrightarrow & \left|\left(\frac{n}{n-\left|T^{j-1}\right|}\right) \cdot \underset{i \in x}{\mathbb{E}}\left[q^{j}\left(x_{i}\right)\right]-\underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right]\right| \leq \frac{1}{20} \tag{13}
\end{align*}
$$

By the assumption that \mathcal{O} is $(1 / 1000, \beta, 1 / 2)$-sample-accurate, we have that, with probability at least $1 / 2$, for $(1-\beta) L$ choices of $j \in[L]$,

$$
\begin{equation*}
\left|a^{j}-\underset{i \in x}{\mathbb{E}}\left[q^{j}\left(x_{i}\right)\right]\right| \leq 1 / 1000 . \tag{14}
\end{equation*}
$$

Now, combining (13) and (14), we have

$$
\begin{align*}
& \left|\left(\frac{n}{n-\left|T^{j-1}\right|}\right) \cdot a^{j}-\underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right]\right| \\
\leq & \left|\left(\frac{n}{n-\left|T^{j-1}\right|}\right) \cdot \underset{i \in x}{\mathbb{E}}\left[q^{j}\left(x_{i}\right)\right]-\underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right]\right|+\left|\frac{n}{n-\left|T^{j-1}\right|} \cdot \frac{1}{1000}\right| \leq \frac{1}{20}+\frac{1}{2} \leq \frac{2}{3} \tag{15}
\end{align*}
$$

for $(1-\beta) L$ choices of $j \in[L]$.
Finally, observe that if $c_{i}^{j}=1$ for every $i \in[2 n]$, then we have

$$
\underset{i \in\left(x \backslash T^{j-1}\right)}{\mathbb{E}}\left[c_{i}^{j}\right]=1,
$$

and by (15) we have $\left(n /\left(n-\left|T^{j}\right|\right)\right) a^{j} \geq 1-2 / 3=1 / 3$. Thus, the rounded answer $\bar{a}^{j}=1$. Similarly, if $c_{i}^{j}=-1$ for every $i \in[2 n]$, then we have $\bar{a}^{j}=-1$. This completes the proof of the claim.

As before, we can argue that the real attack and the ideal attack are computationally indistinguishable, and thus the oracle must also give consistent answers in the ideal attack.
Claim 43 Let Z_{2} be the event $\left\{\theta^{L} \leq \beta L\right\}$. Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let $n=n(d)$ be any polynomial. Then if \mathcal{O} is computationally efficient, for every $d \in \mathbb{N}$

$$
\left.\mid \underset{\text { IdealPrivacyAttack } n, d}{\mathbb{P}}[\mathcal{O}] \text { [Z } Z_{2}\right]-\underset{\text { PrivacyAttack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{2}\right] \mid \leq \operatorname{negl}(n) .
$$

The proof is straightforward from the definition of security, and is deferred to Section D. Combining Claims 42 and 43 we easily obtain the following.
Claim 44 If \mathcal{O} iscomputationally efficient and $(1 / 1000, \beta, 1 / 2)$-accurate for $\ell=\ell(2 n, \beta)$ adaptively chosen queries then for every polynomial $n=n(d)$ and every sufficiently large $d \in \mathbb{N}$,

$$
\underset{\text { IdealPrivacyAttack }{ }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{L} \leq \beta L\right] \geq 1 / 2-\operatorname{negl}(n)
$$

We can use Claim 44 to derive a contradiction. To do so we use the fact that the security of the fingerprinting code assures that no attacker who only has access to $c_{x \backslash T^{j-1}}^{j}$ in each round $j=$ $1, \ldots, \ell$ can give answers that are consistent for all ℓ of the columns c^{j}. Thus, we have
Claim 45 For every oracle \mathcal{O}, every polynomial $n=n(d)$, and every sufficiently large $d \in \mathbb{N}$, if $L=\ell$

$$
\underset{\text { IdealPrivacyAttack }}{n, d}[\mathcal{O}]\left[\theta^{\ell} \leq \beta \ell\right] \leq \operatorname{negl}(n)
$$

Putting it together, we obtain the following theorem.
Theorem 46 Assuming one-way functions exist, for every $\beta<1 / 2$, there is a function $\ell(2 n, \beta)=$ $O\left(n^{2} /\left(\frac{1}{2}-\beta\right)^{4}\right)$ such that there is no computationally efficient oracle \mathcal{O} that is $(1 / 1000, \beta, 1 / 2)$ accurate for $\ell(2 n)$ adaptively chosen queries given n samples in $\{0,1\}^{d}$.
Proof Assume for the sake of contradiction that there were such an oracle. Now consider two cases. First consider the case that $L<\ell$, which means the algorithm has terminated early due to the condition $\left|T^{L}\right| \geq 499 n / 500$ being reached. In this case we have $\left|x^{\prime}\right|=\left|T^{L}\right| \geq 499 n / 500$. However, by Claim 39, we have that $\left|x^{\prime} \backslash x\right| \leq n / 10000$. Therefore we have

$$
\left|x \triangle x^{\prime}\right|=|x|-\left|x^{\prime}\right|+2\left|x^{\prime} \backslash x\right| \leq \frac{n}{500}+\frac{2 n}{10000} \leq \frac{n}{200}
$$

as desired.
Now consider the case where $L=\ell$, meaning the algorithm does not terminate early. In this case, by Claim 44 we have

$$
\underset{\text { IdealPrivacyAttack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[\theta^{\ell} \leq \beta L\right] \geq 1 / 2-\operatorname{negl}(n)
$$

but by Claim 45 we have

$$
\underset{\text { IdeaIPrivacyAttack }}{n, d}[\mathcal{O}]\left[\theta^{\ell} \leq \beta L\right] \leq \operatorname{negl}(n)
$$

which is a contradiction. This completes the proof of the theorem.

C.3. An Information-Theoretic Lower Bound

As we did in Section B.3, we can prove an information-theoretic analogue of our hardness result for avoiding blatant non-privacy.
Theorem 47 There is a function $\ell(2 n, \beta)=O\left(n^{2} /\left(\frac{1}{2}-\beta\right)^{4}\right)$ such that there is no oracle \mathcal{O} (even a computationally unbounded one) that is $(1 / 1000, \beta, 1 / 2)$-accurate for $\ell(2 n, \beta)$ adaptively chosen queries given n samples in $\{0,1\}^{d}$ where $d \geq \ell(2 n, \beta)$.
The proof is essentially identical to what is sketched in Section B.3.

Appendix D. Security Reductions from Appendix B and Appendix C

In Section 3 we made several claims comparing the probability of events in Attack to the probability of events in IdealAttack. Each of these claims follow from the assumed security of the encryption scheme. In this section we restate and prove these claims. Since the claims are all of a similar nature, the proof will be somewhat modular. The claims in Appendix C relating PrivacyAttack to IdealPrivacyAttack can be proven in an essentially identical fashion, and we omit these proofs for brevity.

Before we begin recall the formal definition of security of an encryption scheme. Security is defined via a pair of oracles \mathcal{E}_{0} and $\mathcal{E}_{1} . \mathcal{E}_{1}\left(s k_{1}, \ldots, s k_{N}, \cdot\right)$ takes as input the index of a key $i \in[N]$ and a message m and returns $\operatorname{Enc}\left(s k_{i}, m\right)$, whereas $\mathcal{E}_{0}\left(s k_{1}, \ldots, s k_{N}, \cdot\right)$ takes the same input but returns $\operatorname{Enc}\left(s k_{i}, 0\right)$. The security of the encryption scheme asserts that for randomly chosen secret keys, no computationally efficient adversary can tell whether or not it is interacting with \mathcal{E}_{0} or \mathcal{E}_{1}.

Definition 48 An encryption scheme (Gen, Enc, Dec) is secure iffor every polynomial $N=N(\lambda)$, and every $\operatorname{poly}(\lambda)$-time adversary \mathcal{B}, if $s k_{1}, \ldots, s k_{N} \leftarrow_{R} \operatorname{Gen}\left(1^{\lambda}\right)$

$$
\left|\mathbb{P}\left[\mathcal{B}^{\mathcal{E}_{0}\left(s k_{1}, \ldots, s k_{N}, \cdot\right)}=1\right]-\mathbb{P}\left[\mathcal{B}^{\mathcal{E}_{1}\left(s k_{1}, \ldots, s k_{N}, \cdot\right)}=1\right]\right|=\operatorname{negl}(\lambda)
$$

We now restate the relevant claims from Section 3.
Claim 49 (Claim 29 Restated) Let Z_{1} be the event $\left\{\psi^{\ell}>N / 8\right\}$. Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let $n=n(d)$ be any polynomial. Then if \mathcal{O} is computationally efficient, for every $d \in \mathbb{N}$

$$
\left|\underset{\text { IdealAttack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{1}\right]-\underset{\text { Attack }_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{1}\right]\right| \leq \operatorname{negl}(n)
$$

Claim 50 (Claim 32 Restated) Let Z_{2} be the event $\left\{\theta^{\ell} \leq \beta \ell\right\}$. Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let $n=n(d)$ be any polynomial. Then if \mathcal{O} is computationally efficient, for every $d \in \mathbb{N}$

$$
\left|\underset{\mid \text { dealAttack }}{\mathbb{P}}\left[\begin{array}{l}
{[\mathcal{O}]} \\
\operatorname{Attack}_{n, d}[\mathcal{O}] \\
\mathbb{P}
\end{array} Z_{2}\right]\right| \leq \operatorname{negl}(n)
$$

To prove both of these claims, for $c \in\{1,2\}$ we construct an adversary \mathcal{B}_{c} that will attempt to use \mathcal{O} to break the security of the encryption. We construct \mathcal{B}_{c} in such a way that its advantage in breaking the security of encryption is precisely the difference in the probability of the event Z_{c} between Attack and IdealAttack, which implies that the difference in probabilities is negligible. The simulator is given in Figure 10
Proof [Proof of Claims 49,50] First, observe that for $c \in\{1,2\}, \mathcal{B}_{c}$ is computationally efficient as long as \mathcal{F} and \mathcal{O} are both computationally efficient. It is not hard to see that our construction \mathcal{F} is efficient and efficiency of \mathcal{O} is an assumption of the claim. Also notice \mathcal{B} can determine whether Z_{c} has occurred efficiently.

Now we observe that when the oracle is \mathcal{E}_{1} (the oracle that takes as input i and m and returns $\operatorname{Enc}\left(\overline{s k}_{i}, m\right)$), and $\overline{s k}_{1}, \ldots, \overline{s k}_{N}$ are chosen randomly from $\operatorname{Gen}\left(1^{\lambda}\right)$, then the view of the oracle is identical to Attack $_{n, d}[\mathcal{O}]$. Specifically, the oracle holds a random sample of pairs $\left(i, s k_{i}\right)$ and is

Simulate constructing and sampling from \mathcal{D} :
Given parameters d, n, let $N=2000 n$, let $\lambda=d-\left\lceil\log _{2}(2000 n)\right\rceil$.
Sample users $u_{1}, \ldots, u_{n} \leftarrow_{\mathrm{R}}[N]$, let S be the set of distinct users in the sample.
Choose new keys $s k_{i} \leftarrow_{\mathrm{R}} \operatorname{Gen}\left(1^{\lambda}\right)$ for $i \in S$.
For $i \in S$, let $x_{i}=\left(u_{i}, s k_{u_{i}}\right)$, let $x=\left(x_{1}, \ldots, x_{n}\right)$.
Simulate the attack:
Let $T^{1}=\emptyset$.
For $j=1, \ldots, \ell=\ell(N)$:
Let c^{j} be the column given by \mathcal{F}.
For $i=1, \ldots, N$:
If $i \in S$, let $c t_{i}^{j}=\operatorname{Enc}\left(s k_{i}, c_{i}^{j}\right)$, otherwise as \mathcal{E} for an encryption of c_{i}^{j} under
key $\overline{s k}_{i}$, that is $c t_{i}^{j}=\mathcal{E}_{b}\left(\overline{s k}_{1}, \ldots, \overline{s k}_{N}, i, c_{i}^{j}\right)$.
Define the query $q^{j}\left(i^{\prime}, s k^{\prime}\right)$ to be $\operatorname{Dec}\left(s k^{\prime}, c t_{i^{\prime}}^{j}\right)$ if $i^{\prime} \notin T^{j}$ and 0 otherwise.
Let $a^{j}=\mathcal{O}\left(x ; q^{j}\right)$ and round a^{j} to $\{ \pm 1\}$ to obtain \bar{a}^{j}.
Give \bar{a}^{j} to \mathcal{F} and let $I^{j} \subseteq[N]$ be the set of accused users and $T^{j}=T^{j-1} \cup I^{j}$.
Output 1 if and only if the event Z_{c} occurs
Figure 10: $\mathcal{B}_{c, n, d}^{\mathcal{E}_{b}\left(\overline{s k}_{1}, \ldots, s \overline{s k}_{N}, \cdot\right)}$
shown queries that are encryptions either under keys it knows or random unknown keys. Moreover, the messages being encrypted are chosen from the same distribution. On the other hand, when the oracle is \mathcal{E}_{0} (the oracle that takes as input i and $c t$ and returns $\operatorname{Enc}\left(\overline{s k}_{i}, 0\right)$), then the view of the oracle is identical to Attack $_{n, d}[\mathcal{O}]$. Thus we have that for $c \in\{1,2\}$,

$$
\begin{aligned}
& \left|\underset{\text { Ideal } \mid \operatorname{Attack}_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{c}\right]-\underset{\operatorname{Attack}_{n, d}[\mathcal{O}]}{\mathbb{P}}\left[Z_{c}\right]\right| \\
& =\left|\underset{s k_{1}, \ldots, s \overline{s k}_{N} \leftarrow_{\mathrm{R}} G e n\left(1^{\lambda}\right)}{\mathbb{P}}\left[\mathcal{B}_{c, n, d}^{\mathcal{E}_{0}\left(\overline{s k}_{1}, \ldots, \overline{s k_{N}}, \cdot\right)}=1\right]-\underset{\overline{s k}_{1}, \ldots, \overline{s k}_{N} \leftarrow_{\mathrm{R}} G \operatorname{len}\left(1^{\lambda}\right)}{\mathbb{P}}\left[\mathcal{B}_{c, n, d}^{\mathcal{E}_{1}\left(\overline{s k}_{1}, \ldots, \overline{s k}_{N}, \cdot\right)}=1\right]\right| \\
& =\operatorname{negl}(\lambda)=\operatorname{negl}(d)
\end{aligned}
$$

The last equality holds because we have chosen $N=2000 n(d)=\operatorname{poly}(d)$, and therefore we have $\lambda=d-\lceil\log N\rceil=d-O(\log d)$. This completes the proof of both claims.

Appendix E. Non-Interactive Fingerprinting Codes

Our construction and analysis also easily implies a construction of traditional non-interactive fingerprinting codes with optimal parameters. In a nutshell, the reason is because the columns of the interactive fingerprinting code can all be chosen in advance, and only the accusations are done interactively.

First we give a formal definition of a (non-interactive) fingerprinting code.

Definition 51 ((Non-Interactive) Fingerprinting Codes) A n-collusion resilient (non-interactive) fingerprinting code of length ℓ for N users robust to a β fraction of errors with failure probability ε and false accusation probability δ is a pair of random variables $C \in\{ \pm 1\}^{N \times \ell}$ and Trace : $\{ \pm 1\}^{\ell} \rightarrow 2^{[N]}$ such that the following holds. For all adversaries $\mathcal{P}:\{ \pm 1\}^{n \times \ell} \rightarrow\{ \pm 1\}^{\ell}$ and $S \subset[N]$ with $|S|=n$,

$$
\underset{C, \text { Trace }, \mathcal{P}}{\mathbb{P}}\left[\left(\left|\left\{1 \leq j \leq \ell: \nexists i \in[N] \mathcal{P}\left(C_{S}\right)^{j}=c_{i}^{j}\right\}\right| \leq \beta \ell\right) \wedge\left(\operatorname{Trace}\left(\mathcal{P}\left(C_{S}\right)\right)=\emptyset\right)\right] \leq \varepsilon
$$

and

$$
\underset{C, \text { Trace }, \mathcal{P}}{\mathbb{P}}\left[\left|\operatorname{Trace}\left(\mathcal{P}\left(C_{S}\right)\right) \cap([N] \backslash S)\right|>\delta(N-n)\right] \leq \varepsilon,
$$

where $C_{S} \in\{ \pm 1\}^{n \times \ell}$ contains the rows of C given by S.
Our construction and analysis is readily adapted to the non-interactive setting. We obtain the following theorem.

Theorem 52 (Existence of Non-Interactive Fingerprinting Codes) For every $1 \leq n \leq N, 0 \leq$ $\beta<1 / 2$, and $0<\delta \leq 1$, there is a n-collusion-resilient (non-interactive) fingerprinting code of length ℓ for N users robust to a β fraction of errors with failure probability

$$
\varepsilon \leq \min \left\{\delta(N-n), 2^{-\Omega(\delta(N-n))}\right\}+\delta^{\Omega\left(\left(\frac{1}{2}-\beta\right) n\right)}
$$

and false accusation probability δ for

$$
\ell=O\left(\frac{n^{2} \log (1 / \delta)}{\left(\frac{1}{2}-\beta\right)^{4}}\right)
$$

We omit the proof, which is essentially identical to our proof for the interactive case.

[^0]: ${ }^{\dagger}$ Supported by NSF grant CCF-1116616.
 ${ }^{\dagger}$ Supported by NSF grant CNS-1237235 and a Junior Fellowship from the Simons Society of Fellows.

[^1]: 4. To sample from $D_{a, b}$, first sample $\varphi \in\left(\sin ^{-1}(\sqrt{a}), \sin ^{-1}(\sqrt{b})\right)$ uniformly, then output $\sin ^{2}(\varphi)$ as the sample.
