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Abstract
Non-smooth regularized convex optimization procedures have emerged as a powerful tool to re-
cover structured signals (sparse, low-rank, etc.) from (possibly compressed) noisy linear measure-
ments. We focus on the problem of linear regression and consider a general class of optimization
methods that minimize a loss function measuring the misfit of the model to the observations with an
added structured-inducing regularization term. Celebrated instances include the LASSO, Group-
LASSO, Least-Absolute Deviations method, etc.. We develop a quite general framework for how
to determine precise prediction performance guaranties (e.g. mean-square-error) of such methods
for the case of Gaussian measurement ensemble. The machinery builds upon Gordon’s Gaussian
min-max theorem under additional convexity assumptions that arise in many practical applications.
This theorem associates with a primary optimization (PO) problem a simplified auxiliary optimiza-
tion (AO) problem from which we can tightly infer properties of the original (PO), such as the
optimal cost, the norm of the optimal solution, etc. Our theory applies to general loss functions and
regularization and provides guidelines on how to optimally tune the regularizer coefficient when
certain structural properties (such as sparsity level, rank, etc.) are known.
Keywords: Linear Regression, mean-square-error , structured signals, sparsity, LASSO, Gaussian
min-max Theorem, convexity

1. Introduction

1.1. Linear Regression for structured target vectors

Consider the problem of linear regression with additive noise:

y = Xβ0 + ε (1)

where β = (β1, . . . ,βd)
T ∈ Rd is the “true” parameter, X = (X1, . . . ,Xd) ∈ Rn×d is the

measurement matrix, y = (y1, . . . ,yn)T ∈ Rn are the responses, and, ε = (ε1, . . . , εn)T ∈ Rn is
the noise vector. Our task is to learn the target vector β0. In order to measure the fit of any vector
β ∈ Rd to the vector of observations y ∈ Rn we introduce a loss function L : Rd → R, which
assigns a penalty L(y − Xβ) ≥ 0 to the corresponding residual y − Xβ. We are particularly
interested in the high-dimensional setup in which the number of observations n is fewer than the
dimension d of the ambient space, a scenario which arises in most big-data problems (e.g. high
resolution images, gene expression data from a DNA microarray, social network data, etc.). It
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is typical in such applications that the properties of the target vector β0 lie in some some low-
dimensional structure (sparsity, low-rankness, clusters, etc.). With the particular structure of β0 we
associate a properly chosen regularizer f : Rd → R. For example, if β0 is a sparse vector then f
can be the `1-norm, if β0 is a

√
n×
√
n low-rank matrix then a popular choice for f is the nuclear

norm (e.g. Negahban et al. (2012); Chandrasekaran et al. (2012) for more examples). A natural
estimate β̂ of β0 is then obtained by solving the following1 optimization problem which we shall
henceforth call the Regression Optimization (RO):

β̂ := arg min
β
L(y −Xβ) + λf(β). (2)

Here, λ > 0 is a regularizer parameter. If the functions L and f are both convex, then the opti-
mization program in (2) is convex, so it can be solved efficiently Boyd and Vandenberghe (2009).
Specific choices of the loss function L and the regularizer f give rise to different popular instances:

• Ordinary Least-Squares (LS) (L(·) = (1/2)‖ · ‖22, f(·) = 0).

• Ridge regression (L(·) = (1/2)‖ · ‖22, f(·) = ‖ · ‖22).

• LASSO (L(·) = (1/2)‖ · ‖22, f(·) = ‖ · ‖1). Popular sparse recovery algorithm. The acronym
was introduced in Tibshirani (1996). To distinguish from the `2-LASSO defined below, we
often refer to this version as the `22-LASSO. The “least-squares” nature of the loss function
corresponds to a maximum likelihood estimator for the case when ε is gaussian.

• `2- (or, Square-root) LASSO, (L(·) = ‖·‖2). A sparse-recovery algorithm similar in nature to
the LASSO but there exists differences among them, e.g. tuning of the regularizer parameter
of the `2-LASSO does not require knowledge of the standard deviation of the noise Belloni
et al. (2011); Oymak et al. (2013).

• Generalized-LASSO, (L(·) = (1/2)‖ · ‖22 or L(·) = ‖ · ‖2). A natural generalization of the
LASSO to arbitrary convex (and, typically non-smooth) regularizers f , e.g. nuclear norm,
`1,2 norm (Group-LASSO, Yuan and Lin (2006)) and discrete total variation.

• Regularized LAD (L(·) = ‖ · ‖1). Least Absolute Deviation algorithms are known to have
robust properties in linear regression models (e.g. Rao and Toutenburg (1995)). Also, they
perform particularly well in the presence of heavy-tailed errors Wang (2013), and, of sparse
noise Wright and Ma (2010); Foygel and Mackey (2014); Thrampoulidis and Hassibi (2014).

• Support Vector Machines regression, (L(·) = ‖ · ‖ε, f(·) = ‖ · ‖22) Here, ‖β‖ε =
∑

i |βi|ε,
where |x|ε = |x| − ε if |x| ≥ ε and 0, otherwise, is the Vapniks epsilon-insensitive norm; ε
can be though of as the resolution at which we want to look at the data Evgeniou et al. (2000)

The list above is not exhaustive. For instance, in a scenario where noise is known to be bounded it
might be preferable to choose the `∞-norm as the loss function.

1. the minimizer of (2) need not be unique. Using a slight abuse of notation, let the operator argmin return any one of
those optimal values.

2



PRECISE ERROR ANALYSIS FOR REGULARIZED LINEAR REGRESSION

1.2. Precise Estimation Performance Analysis

A prevalent problem is characterizing the parameter estimation accuracy of (2): How accurate is β̂
when compared to the target vector β0 in a certain norm? The focus of this work is on the normal-
ized squared error2 ‖β̂ − β0‖22/‖ε‖22, which quantifies robustness of the estimator. Understanding
the behavior of this quantity in terms of the choice of the measurement matrix X, the number of
measurements m, the convex regularizer f , the value of the regularizer parameter λ and the un-
known signal β0 itself, is both of theoretical and practical interest. As an example, knowledge of
the dependence on λ can provide valuable insights for the challenging task of optimally tuning (2).

Inevitably, the theoretical analysis of (RO) problems as in (2) has attracted enormous attention
over the last twenty years or so. In particular, the advances in the study of noiseless underdetermined
problems, under the prism of “compressive sampling” Candès et al. (2006); Donoho (2006) have
resulted in a significant progress on our understanding regarding the performance of (2) in the pres-
ence of noise. Sparse linear regression has been the most active area, e.g. Candès and Tao (2007);
Bickel et al. (2009); Belloni et al. (2011); Raskutti et al. (2010); Banerjee et al. (2014) and many
others. There have also been contributions which characterize general classes of algorithms like (2),
e.g. Negahban et al. (2012). The theory holds under standard incoherence or restricted eigenvalue
conditions on the measurement matrix X3. Although remarkable, those results characterize the nor-
malized squared error only up to unknown absolute constants (order-wise analysis), which yields
our understanding (even for the classical Gaussian measurement ensemble) not comparable to more
traditional topics in statistical learning theory, such as performance of LS.

It is only very recently that precise characterizations of the estimation performance have ap-
peared in the literature. The price paid is that the measurement matrix X is restricted to have
entries i.i.d. Gaussian4. Donoho et al. (2011b); Bayati and Montanari (2012) were the first to
perform an asymptotically exact characterization of the performance of the `22-LASSO algorithm.
Stojnic (2013a) derived precise such results for the constrained version of the LASSO, but most sig-
nificantly, was the first to introduce the idea of analyzing the prediction performance via Gaussian
comparison inequalities. In particular, he cleverly combines the Gaussian min-max theorem (GMT),
a comparison inequality proved by Gordon (1988), with a duality trick. Our work is motivated by
this recent line of work, Stojnic (2013b,d,c).

1.3. Our Contribution

We describe a quite general and unifying theory for how to determine precise performance guar-
anties (minimum number of measurements, normalized squared-error, etc.) for the (RO) in (2),
when the measurement matrix belongs to the Gaussian ensemble. The framework provides guar-

2. similarly defined measures of performance are considered in the literature under the term of noise sensitivity, e.g. Wu
and Verdú (2012); Donoho et al. (2011a). Also, see for example Zhang et al. (2009) for other typical measures of
performance such as prediction accuracy and feature selection accuracy.

3. Such conditions have been shown to be satisfied by a wide class of randomly designed measurement matrices, e.g.
Candès and Tao (2007); Raskutti et al. (2010); Adamczak et al. (2011), etc.. Please also refer to the recent line
of work by Mendelson (2014); Lecué and Mendelson (2014) where similar (order-wise) bounds are obtained under
weaker assumptions on the randomness properties of X.

4. Although restrictive, this assumption is generic in the sense that many of the results derived for the Gaussian ensemble
are known/observed to enjoy a universality property, i.e. to hold true for fairly broad family of probability ensembles,
thus, is typical in the random matrix theory community. In particular, it is a common practice in the literature of
compressive sensing (please refer to the tutorials Vershynin (2014); Candès (2014)).
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antees for the large-system limit in which the problem dimensions n and d grow to infinity at pro-
portional rates5. In principle, the framework can be applied to any instance of (2), for convex L
and f . The proposed methodology builds upon our main Theorem 3, which is a stronger version
of the classical Gaussian Min-max Theorem due to Gordon (1988), in the presence of additional
convexity assumptions. We expect the theorem to find applications even beyond the error analysis
of (RO) problems.

1.4. Overview of the Framework

The Gaussian min-max Theorem (GMT) of Gordon (1988), essentially provides probabilistic lower
bounds on the optimal cost of (RO) via a simpler auxiliary optimization (AO). Motivated by recent
work of M. Stojnic, we show that under convexity assumptions the (AO) problem allows one to
tightly upper and lower bound both the optimal cost and the norm of the optimal solution of the
(RO). We introduce the core ideas here and elaborate in Sections 2–3.

Theorem 1 (GMT Gordon (1988)) 6. Let G ∈ Rn×d, g ∈ R, g ∈ Rn and h ∈ Rd have entries
i.i.d. N (0, 1), Sw ⊂ Rd, Su ⊂ Rn be compact sets and ψ : Sw × Su → R be continuous. Define,

Φ(G, g) := min
w∈Sw

max
u∈Su

uTGw + g‖w‖2‖u‖2 + ψ(w,u) (3)

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖2gTu + ‖u‖2hTw + ψ(w,u). (4)

Then, for any c ∈ R: P(Φ(G, g) < c) ≤ P (φ(g,h) ≤ c) .

Henceforth, we refer to the optimization in (4) as the Auxiliary Optimization (AO). Theorem 1
asserts that the lower tail probability of Φ(G, g) is upper bounded by that of φ(g,h): if c is a high
probability lower bound on φ(g,h) (in the sense that P (φ(g,h) ≤ c) is close to zero), so it is for
Φ(G, g). At this point it is still unclear how the result relates to the analysis of the (RO) in (2).
This is shown in two steps. First, we bring the minimization in (2) in the format of (3). Second, we
strengthen the conclusions of Theorem 1.

Let L∗ be the Fenchel conjugate of L; from convexity of L, L(v) = supu u
Tv − L∗(u). Also

let w = β − β0 denote the error vector and recall (1). With these, the (RO) in (2) becomes:

min
w

sup
u

uTXw−uT ε− L∗(u) + λf(β0 + w). (5)

Identifying ψ(w,u) := −uT ε−L∗(u)+λf(β0 +w), we see that (5) is almost in the format of (3).
The only term missing is “g‖w‖2‖u‖2”, but this can be accounted for in Theorem 1 with a simple
symmetrization trick. In particular, Theorem 3 shows that slightly changing (3) to the following
optimization problem, which we shall henceforth refer to as Primary Optimization (PO),

Φ(G) := min
w∈Sw

max
u∈Sy

uTGw + ψ(w,u), (6)

5. Numerical simulations suggest that the results hold for matrices with i.i.d. entries from wider class of distributions.
Also, Thrampoulidis and Hassibi (2015) leverages the framework to obtain results for the Haar ensemble. Also,
simulation results show the predictions to be accurate for problem dimensions ranging over a few hundreds.

6. Thm. 1 is a slight modification of the original result (Gordon, 1988, Lem. 3.1). In contrast to Thm. 1, the latter
assumes Sw to be arbitrary (not necessarily compact) set, Sy is restricted to be the unit sphere and ψ(·, ·) is only a
function of w. For completeness, we include some background and a proof of the theorem in Appendix A.
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only changes the conclusion of the theorem to

P(Φ(G) < c) ≤ 2P (φ(g,h) ≤ c) . (7)

Note that this does not affect the essence of the result of Theorem 1: if P(φ(g,h) ≤ c) is close
to zero, then c is still a high probability lower bound on Φ(G). This result is remarkable, since it
relates the (PO) (and, essentially the (RO) thanks to (5)) to a seemingly unrelated, but potentially
easier to analyze, (AO) problem as given by (4). Yet, this only establishes a lower bound type of
relation regarding the optimal cost of the two optimizations. How could this possibly lead to any
conclusion regarding the minimizer of (2)? Theorem 3 provides an answer to this question.

In short, Theorem 3 shows that in the presence of appropriate convexity assumptions on the sets
Sw, Su and on the function ψ the (AO) problem tightly bounds the optimal cost of the (PO) in the
sense that for all µ ∈ R and t > 0,

P (|Φ(G)− µ| > t) ≤ 2P (|φ(g,h)− µ| > t) . (8)

In (2), the principal objective is not characterizing the optimal cost of the optimization, but rather, its
optimal minimizer β̂ and concluding about the achieved parameter estimation accuracy ‖β̂ − β0‖.
With this serving as our motivation, we show that, in an asymptotic setting and under proper addi-
tional assumptions, the optimal solutions of the problems (AO) and (PO) are also closely related:

‖wΦ(G)‖ ≈ ‖wφ(g,h)‖, (9)

where wΦ(G) and wφ(g,h) denote the optimal minimizers in (6) and (4), respectively.

2. The Convex Gaussian Min-max Theorem

We start by fixing some notation and introducing the asymptotic setting under which the analysis
holds.
Definition 2 (GMT admissible sequence) The sequence {G(d),g(d),h(d),S(d)

w ,S(d)
u , ψ(d)}d∈N in-

dexed by d, with G(d) ∈ Rn×d,h(d) ∈ Rd,g(d) ∈ Rn, S(d)
w ⊂ Rd, S(d)

u ⊂ Rn, ψ(d) : S(d)
w ×S(d)

u →
R and n = n(d), is said to be admissible if, for each d ∈ N, S(d)

w and S(d)
u are compact sets and

ψ(d) is is continuous on its domain. Onwards, we will drop the superscript (d) from G(d),g(d), h(d).

A sequence {G(d),g(d),h(d),S(d)
w ,S(d)

u , ψ(d)}d∈N defines a sequence of min-max problems

Φ(d)(G) := min
w∈S(d)

w

max
u∈S(d)

u

uTGw + ψ(d)(w,u), (10a)

φ(d)(g,h) := min
w∈S(d)

w

max
u∈S(d)

u

‖w‖2gTu + ‖u‖2hTw + ψ(d)(w,u). (10b)

We refer to those as the Primary optimization (PO), and, the Auxiliary Optimization (AO) problems,
respectively. Also, denote their optimal minimizers as w(d)

Φ (G) and w
(d)
φ (g,h), respectively. Then,

define υ(d) : S(d)
w → R as follows,

υ(d)(w;g,h) := max
u∈S(d)

u

‖w‖2gTu + ‖u‖2hTw + ψ(d)(w,u). (11)

Clearly, φ(d)(g,h) = min
w∈S(d)

w
υ(d)(w;g,h).
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For a sequence of random variables {X (d)}d∈N and constant c ∈ R (independent of d), we write

X (d) P−→ c, to denote convergence in probability, i.e. ∀ε > 0, limd→∞ P
(
|X (d) − c| > ε

)
= 0.

Similarly, for a deterministic sequence {x(d)}d∈N we write x(d) → c if limd→∞ x
(d) = c, c ∈ R.

Theorem 3 (Convex GMT (CGMT)) Let {G(d),g(d),h(d),S(d)
w ,S(d)

u , ψ(d)}d∈N be a GMT admis-
sible sequence as in Definition 2, for which additionally the entries of G,h and g are i.i.d. N (0, 1).
Let Φ(d)(G), φ(d)(g,h) be the optimal costs, and, w(d)

Φ (G), w(d)
φ (g,h) the corresponding optimal

minimizers of the (PO) and (AO) problems in (10a) and (10b). The following three statements hold.

(i) For any d ∈ N and c ∈ R,

P
(

Φ(d)(G) < c
)
≤ 2P

(
φ(d)(g,h) ≤ c

)
. (12)

(ii) Fix any d ∈ N. If S(d)
w , S(d)

u are convex, and, ψ(d)(·, ·) is convex-concave7 on S(d)
w × S(d)

u ,
then, for any µ ∈ R and t > 0,

P
(
|Φ(d)(G)− µ| > t

)
≤ 2P

(
|φ(d)(g,h)− µ| > t

)
. (13)

(iii) Assume the conditions of (ii) hold for all d ∈ N. Let ‖ · ‖ denote some norm in Rd and recall
(11). If, there exist constants (independent of d) κ∗, α∗ and τ > 0 such that

(a) φ(d)(g,h)
P−→ κ∗,

(b) ‖w(d)
φ (g,h)‖ P−→ α∗,

(c) with probability one in the limit d→∞,

{υ(d)(w;g,h) ≥ φ(d)(g,h) + τ(‖w‖ − ‖w(d)
φ (g,h)‖)2, ∀w ∈ S(d)

w },

then,

‖w(d)
Φ (G)‖ P−→ α∗. (14)

The probabilities in Theorem 3 are with respect to the randomness of G, g and h. The proof of
the theorem is included in Appendix C.

2.1. Remarks

Concentration of the optimal cost: A main contribution of the convex GMT (CGMT) is inequality
(13). It shows that in the presence of appropriate convexity assumptions the GMT is tight. In
particular, choosing µ = Eφ(g,h) in (13), we can deduce Corollary 4 below from the fact that
φ(g,h) is Lipschitz in (g,h) (see Lemma B.0.3) and from the Gaussian concentration of Lipschitz
functions (e.g., Theorem B.0.1). (We drop the superscript (d) to enlighten notation).
Corollary 4 Consider the same setup as in Theorem 3 and let the assumptions of statement (ii)
hold. Further, define Rw := maxw∈Sw ‖w‖2 and Ru := maxu∈Su ‖u‖2. Then, for all t > 0,

P ( |Φ(G)− Eφ(g,h)| > t ) ≤ 4 exp
(
−t2/(4R2

wR
2
u)
)
.

7. i.e., convex on its first argument and concave on its second argument. The result remains true under quasi-
convexity/concavity (see Appendix C).
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max min = min max: It turns out from the proof that what is critical for the statement to
hold is that the min-max in (10a) can be flipped into a max-min. Statement (ii) provides sufficient
conditions for this to occur which also appear in practice (e.g. analysis of (2)). It is conceivable
that there exist cases in which the min-max operation can be flipped under relaxed assumptions, in
which (13) would still hold.

Statement (iii): The statement is crucial for error analysis of Regression Optimization, since, in
contrast to statements (i) & (ii), it concludes on the properties of the actual minimizer of the (PO).
Note that it requires that d be large enough (the previous two statements hold for all dimensions).
A few comments on the required conditions: First, the same convexity assumptions as in statement
(ii) are present. Next, it is required that as d → ∞ both φ(d)(g,h) and ‖w(d)

φ (g,h)‖ converge to
constants, say, κ∗ and α∗ (this may require for example proper normalization with d, e.g. Section
3.2.2). It is important to remark that w(d)

φ (g,h) denotes any optimal minimizer in (10b). We do

not require that w(d)
φ (g,h) is unique; there might be multiple such optima, but they all have norms

that converge to α∗. The last condition guarantees that any other feasible β with norm that is far
from the optimal α∗ results in a strictly positive increase (uniform over d) of the objective value.
A sufficient (but not necessary) condition that often occurs in applications (e.g. Appendix D) and
satisfies this is that the function υ(d)(·;g,h) be strongly convex with respect to the norm ‖ · ‖.

Analysis of the (AO): Satisfying the conditions of the third statement of the theorem requires
thorough analysis of the (AO) problem in (10b). Of course, the premise of the theorem is that the
(AO) optimization is simpler to analyze that the (PO). Intuitively, this is the case since the bilinear
term that includes a random matrix in (10a) is “decoupled” in (10b) into two terms which only
involve independent random vectors instead. Practically, we illustrate this in Section 3.3.2 through
a detailed example.

3. Precise Performance Analysis of the Regression Optimization

3.1. Preliminaries

Conjugate pairs: The Fenchel conjugate of L : Rd → R is the function L∗ : Rd → (−∞,+∞]8

defined as L∗(u) := supv v
Tu − L(u). It is always convex and lower semi-continuous. Further-

more, by the Fenchel–Moreau theorem, if L is convex and continuous, then L(v) = supu{uTv −
L∗(u)} for all v ∈ domL (Rockafellar, 1997, Thm. 12.2). In the last maximization, u∗ is optimal
iff u∗ ∈ ∂L(v) (e.g., (Rockafellar, 1997, Thm. 23.5)). Here, ∂L(v) denotes the subdifferential of
L at v; if v ∈ int domL, then ∂L(v) is a non-empty, closed and bounded set. Standard examples
of conjugate pairs of continuous convex functions, also relevant to our analysis, are the following:

L(v) = (1/2)‖v‖2↔L∗(u) = (1/2)‖u‖2 and L(v) = ‖v‖↔L∗(u) =

{
0 ‖u‖∗ ≤ 1,

+∞ else.
Here, ‖u‖∗ = sup‖v‖≤1 v

Tu denotes the dual-norm of ‖ · ‖. For instance, ‖ · ‖∞ is the dual-norm
of ‖ · ‖1, while ‖ · ‖2 is self-dual.

Assumptions: Let both L and f in (2) be continuous proper convex functions. In addition, we
assume that L∗ is continuous on its effective domain domL∗ := {u|L∗(u) < ∞}. (We have not
made any particular effort to relax this latter technical assumption, partly because it appears to be
mild for our interests.) . Finally, the entries of X are drawn i.i.d. N (0, 1).

8. Following the common practice (e.g. as in (Rockafellar, 1997, Ch. 12) and (Bertsekas et al., 2003, Ch. 7)) we define
L∗ as an extended real-valued function that takes the value +∞ whenever u /∈ domL.

7
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3.2. Applying the Framework

3.2.1. (RO)→(PO)→(AO)

Recall the (RO) optimization in (2) and the goal of characterizing the squared error ‖β̂ − β0‖22. As
in Section 1.4, we introduce the new variable w := β−β0 and apply the Fenchel–Moreau theorem
to equivalently express the optimization as follows,

min
w

max
u

uTXw−uT ε− L∗(u) + λf(β0 + w). (15)

This can be immediately recognized to be in the form of the (PO) problem in (10a), with ψ(w,u) :=
−uT ε− L∗(u) + λf(β0 + w). Also, ψ is appropriately convex in w and concave in u. However,
both the constraint sets in (15) appear to be unbounded. In order to apply the framework of the
CGMT (Theorem 3) we further need to impose compact constraint sets in (15), which otherwise
appear to be unbounded. We proceed along the following strategy.

In agreement with the notation introduced in Section 2 let wΦ := wΦ(X) be any minimizer in
(15). Recall our end goal is evaluating a limit (if it exists) of ‖wΦ‖29. We will assume that with
probability approaching one in the limit of d → ∞, there exists an absolute constant (in particular
independent of d), sayKw > 0, such that ‖wΦ‖2 ≤ Kw. The exact value ofKw will be determined
later in the proof, in particular, after the analysis of the (AO); we elaborate on this shortly, but for
now assume that such a constant can be found. Once this is the case (after conditioning on the event),
we can impose the additional constraint ‖w‖2 ≤ Kw in (15), without altering the optimization.
Next, we consider imposing a constraint u ∈ Su in (15), for appropriately chosen compact Su.
Recall that the optimal u∗ satisfies u∗ ∈ ∂L(Xw − ε). In the simplest case where domL∗ is a
(closed) bounded set, it suffices to choose Su = domL∗. This covers for example all norms, say
L = ‖ · ‖, as domL∗ = {u | ‖u‖∗ ≤ 1}. For the general case, we need to condition on the
high-probability event that ‖X‖2 ≤ c(

√
n +
√
d) for constant c > 1. Under this event, for all

‖w‖ ≤ Kw and bounded ε, the set of optima
⋃
{∂L(Xw − ε)|w ∈ Sw} is bounded, thus, there

exists (sufficiently large, but finite) Ku > 0 such that constraining the maximization in (15) over
Su := {‖u‖2 ≤ Ku} does not affect the optimization10.

These suggest analyzing the following (AO) problem:

φ(g,h) = min
‖w‖2≤Kw

max
‖u‖2≤Ku

‖w‖2gTu + ‖u‖2hTw − εTu− L∗(u) + λf(β0 + w)

= min
‖w‖2≤Kw

max
‖u‖2≤Ku

(‖w‖2g − ε)Tu− L∗(u) + ‖u‖2hTw + λf(β0 + w). (16)

In view of Theorem 3, the analysis of (16) involves studying the convergence of its optimal cost and
of (the norm of) the minimizer, say wφ := wφ(g,h). Recall that the exact values of Kw,Ku have

9. Further, recall the asymptotic setting of Section 2: (15) actually defines a sequence of optimization problems (indexed
by d), and thus, a sequence of minimizers w(d)

Φ . Strictly speaking, we consider a sequence {X(d), ε(d),β
(d)
0 , f (d)(·)},

such that X(d) ∈ Rm×n with entries i.i.d. N (0, 1), ε(d) ∈ Rn, β(d)
0 ∈ Rd and f (d) : Rd → R a convex function.

We avoid explicitly introducing this notation to keep the presentation simple, but the statements made are to be
interpreted in such a setting.

10. In consideration of the randomness of the noise vector ε, in order for Ku to be independent of it, we may further
need to assume a high-probability upper bound on the noise vector, say ‖ε‖2 ≤ Bε w.h.p. (e.g. Bε = c

√
n for noise

with (sub)-gaussian i.i.d entries). Then Ku can be chosen to only depend on Bε. Also, with proper normalization of
the loss function we can guarantee that Ku is constant independent of d. In particular, this requires scaling L such
that for all constants c > 0, there exists constant C > 0 with ‖∂L(v)‖2 ≤ C, for all v : ‖v‖2 ≤ c(

√
d+
√
n)+Bε.

See (17) for an example.
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not been (yet) fixed, thus, they can be treated as arbitrarily large, but finite, during this analysis. The
precise values ofKw,Ku can be determined after applying this analysis. By that time, we will have
found the value that ‖wφ‖2 converges to. If this value, say α∗ > 0, can be made independent of
Kw,Ku, then we can chooseKw = 2α∗ making our initial assumption was correct. However, if we
cannot find a Kw such that the norm of the optimizer is independent of it, then the initial problem
could not have had a bounded optimizer. We provide a brief example to better illustrate these ideas
in the next section. A detailed example is included in Section 3.3.2.

3.2.2. NORMALIZATION: AN EXAMPLE

To fix the ideas of the framework, let us consider the popular `22-LASSO which solves

β̂ = arg min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.

We analyze the limiting behavior of ‖β̂−β0‖2 in the high dimensional proportional regime, where
n/d → δ ∈ (0,∞). Further, we assume white noise ε ∼ N (0, σ2I) and ‖β0‖2 = O (1) for
simplicity. We start by appropriately normalizing the loss function and the regularizer to make sure
that the optimal cost is O (1) (we need this for condition (a) of CGMT) . Thus, we consider

ŵ = arg min
w

1

2n
‖Xw − ε‖22 +

λ√
n
‖β0 + w‖1,

which we equivalently express as

ŵ = arg min
‖w‖2≤Kw

max
‖u‖2≤Ku

1

2
√
n
uTXw − 1

2
√
n
uT ε− 1

2
‖u‖22 +

λ√
n
‖β0 + w‖1. (17)

Here, as discussed Kw,Ku are to be fixed after the analysis of the corresponding (AO) problem,
i.e. after finding α∗. Also, note that we have normalized the loss function so that both Kw,Ku are
constants independent of d, i.e. O (1). Please refer to Thrampoulidis et al. (2015b) for a further
analysis of the corresponding (AO) problem. The proper normalization differs case by case.

3.2.3. ANALYSIS OF THE (AO)

The analysis of the (AO) problem (cf. (16)) is typically performed in the following two steps. First,
comes a deterministic analysis with the goal of simplifying the (AO): in many cases it is possible
to reduce the optimizations involved into ones involving only scalar quantities. Next, follows the
probabilistic study of the convergence properties of the optimal cost and the norm of the optimal
solution of the (AO) as required in the third statement of Theorem 3. For this, we typically require
a probabilistic model11 for ε and β0, the choice of which depends on the specific instance of the
(RO) in consideration. For example, for the LASSO we assume that ε is Gaussian, while a sparse
noise model is more reasonable for the LAD. Also, an `1-regularizer is typically associated with a
sparse β0, while nuclear-norm regularization corresponds to a low-rank β0. Thus, the analysis of
(16) is problem specific, Thrampoulidis et al. (2015a); Thrampoulidis and Hassibi (2014); Thram-
poulidis et al. (2015b); Thrampoulidis and Hassibi (2015). To make these ideas concrete we include
a detailed example in Section 3.3.2.

11. Note, however, that the probabilistic relation established by Theorem 3 between (15) and (16) holds for all ε and all
β0. Thus, provided that X is statistically independent from them, Theorem 3 continues to hold even after interpreting
the probabilities to be over the joint distribution of X, ε and β0.
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3.3. Examples

3.3.1. HIGH-SNR REGIME

Although the framework is not restrictive to this, it is often common to model the noise ε as having
entries i.i.d. of variance, say, σ2. Then, the Normalized Squared Error (NSE) essentially corre-
sponds to the quantity ‖β̂−β0‖22/σ2. Predicting the NSE for arbitrary values of the noise variance
is of course the ultimate goal, but a significant special case often becomes that of studying the
high-SNR regime corresponding to σ2 → 0. The significance is due to the fact that, in several in-
stances, this captures the worst-case noise sensitivity behavior, i.e. limσ2→0 NSE = supσ2>0 NSE
(e.g. Donoho et al. (2011b); Oymak and Hassibi (2013); Oymak et al. (2013); Wu and Verdú
(2012)). It turns out that when σ2 → 0, the analysis of (16) is somewhat simplified, owning to
the fact that f can then be approximated on the first-order ((Rockafellar, 1997, Thm. 23.4)) by
f(β0 + w) ≈ f(β0) + maxs∈∂f(β0) s

Tw12. With this, the analysis only depends on f and β0

through a “first-order surrogate”, namely the subdifferential ∂f(β0). For example, in sparse recov-
ery with `1-regularization, the high-SNR NSE depends only on the sparsity of the unknown signal
β0. Similarly, in low-rank recovery with nuclear-norm regularization, the high-SNR NSE depends
only on the rank of β0. On the other hand, the NSE in the finite-SNR regime depends on the specific
statistics of β0. The framework of this paper is, of course, applicable in both regimes. We discuss a
few specific examples next.

3.3.2. GENERALIZED-LASSO

We study the popular Generalized LASSO. For simplicity, we focus on the high-SNR regime. Also,
we restrict attention to the `2-LASSO, although the results can be extended to the `22-LASSO (see
Thrampoulidis et al. (2015b)). Specializing (16), the corresponding (AO) optimization for the high-
SNR regime becomes:

φGLASSO(g,h) := min
‖w‖≤Kw

max
‖u‖2≤1
s∈∂f(β0)

1√
d
{(‖w‖2g − ε)Tu− (‖u‖2h− λs)Tw}, (18)

where we have approximated f in the first order and have properly normalized the objective. As-
suming white noise ε ∼ N (0, σ2I), ‖w‖2g − ε above is statistically identical to a random vector
with entries i.i.d N (0, ‖w‖22 + σ2). Thus, with some abuse of notation it becomes equivalent to
substitute the first-term in the objective with

√
‖w‖22 + σ2 gTu, for g ∼ N (0, I). Then, we can

easily maximize over the direction of u to equivalently express the optimization as

min
‖w‖2≤Kw

max
0≤β≤1

s∈∂f(β0)

1√
d
{
√
‖w‖22 + σ2 ‖g‖2β − (βh− λs)Tw} (19)

The objective is now convex in w and (jointly) concave in β, s, and, the constraint sets are bounded.
Thus, as in (Rockafellar, 1997, Corollary 37.3.2) we can flip the order of min-max. Then, it is easy
to minimize over the direction of w to find

max
0≤β≤1

s∈∂f(β0)

min
0≤α≤Kw

1√
d
{
√
α2 + σ2 ‖g‖2β − α‖βh− λs‖2}.

12. The idea here being that the error ‖ŵ‖2 also tends to zero as σ2 → 0. Please refer to (Oymak et al., 2013, Sec. 9.1).
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As a last step, it takes flipping the order of min-max once more. Maximization over s results in the
distance term below, (defined as dist(v, λ∂f(β0)) := mins∈∂f(β0) ‖v − λs‖2):

max
0≤β≤1

min
0≤α≤Kw

1√
d
{
√
α2 + σ2 ‖g‖2β − α · dist(βh, λ∂f(β0))}. (20)

In just a few lines we were able to reduce the (AO) problem to an equivalent optimization in (20) that
now only involves two scalar variables, out of which, α, plays the role of ‖w‖2. Also, the objective
is strongly convex with respect to α (this can be used to show condition (c) of Theorem 3). Further-
more, it is now easier to get a handle on the random components: both ‖g‖ and dist(h, λ∂f(β0)) are
Lipschitz , thus, they normally concentrate around their means. In particular, it can be shown (e.g.
(Oymak et al., 2013, Lem. B.2)) that ‖g‖ concentrates around

√
n and dist(h, λ∂f(β0)) around√

D(λ), where D(λ) is the Gaussian squared distance to the scaled subdifferential:

D(τ) = Df,β0(τ) = Eh∼N (0,I)

[
dist2(h, τ∂f(β0))

]
. (21)

With these and assuming a high-dimensional proportional regime where n
d → δ ∈ (0,∞) and

D(τ)
n → D̄(τ) ∈ (0, 1), we show in Appendix D that the optimal cost and the optimal minimizer of

(20), they both converge to the corresponding quantities of the following deterministic optimization:

max
0≤β≤1

min
0≤α≤Kw

β
√
α2 + σ2

√
δ − αβ

√
D̄(λ/β). (22)

It only remains to analyze the optimality conditions of this to find α∗. We defer this step to the
Appendix D. With all these we conclude with Theorem 5 below, where we define

λbest := arg min
τ≥0

D(τ), and C̄(τ) := C̄f,β0(τ) = −(τ/2)∂D̄(τ)/∂τ. (23)

Theorem 5 (Generalized LASSO: high-SNR regime) 13 Let n
d → δ ∈ (0,∞) and D(τ)

d →
D̄(τ) ∈ (0, 1). If δ < 1, define λcrit as the unique solution of the equation δ− D̄(τ)− C̄(τ) = 0 for
τ ∈ [0, λbest]. Otherwise, set λcrit := 0. For any λ > 0, let λ̂ = min{λcrit, λ}. If δ > D̄(λ̂), then,

lim
σ2→0

‖β̂λ,σ − β0‖22
σ2

P−→ D̄(λ̂)

δ − D̄(λ̂)
. (24)

A few remarks are in place regarding (24) (we refer the reader to the relevant discussion in
(Thrampoulidis et al., 2015b, Sec. II.C). First, the theorem holds for general convex regularizers
and corresponding structures; the structure induced by f and the particular β0 are summarized in
the geometric parameter D, which admits explicit closed form expressions for several popular reg-
ularizers and corresponding structures (e.g., (50) in D.1.1). Importantly, evaluating D only requires
knowledge of the particular structure of the unknown signal β0 (e.g. sparsity), and not the explicit
unknown signal itself. Besides, (24) characterizes the NSE for all values of λ. Minimizing the
formula with respect to λ can lead to useful guidelines for tuning the regularizer parameter. It can
be shown that the minimum is achieved for λ = λbest as defined in (23). Calculating λbest does not
require explicit knowledge of β0 itself, but only knowledge of the particular structure, e.g. of the
sparsity level, or the rank (in practice approximate knowledge on these quantities might suffice).

13. The high-SNR NSE of the `2-LASSO was first studied (in a non-asymptotic setting) by the authors in Oymak et al.
(2013). Theorem 3.2 therein recovers (24) for λ ≥ λcrit. Theorem 5 completes the proof for all values of λ. Most
importantly, thanks to the transparent framework offered by Theorem 3, the analysis here is significantly simplified,
shortened and insightful.
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3.3.3. FINITE-SNR ANALYSIS

In the previous section, we studied the high-SNR NSE of the Generalized-LASSO. Our framework
allows extending the analysis to all values of the noise variance. One needs to consider the following
(AO) problem (we restrict attention to `1-regularization for concreteness):

φ`2-LASSO(g,h) = min
‖w‖2≤Kw

max
‖u‖2≤1

√
‖w‖22 + σ2 gTu + ‖u‖2hTw + λ‖β0 + w‖1. (25)

Although more involved when compared to (18), the analysis of (25) is completely do-able. Please
refer to Thrampoulidis et al. (2015a) for the details.

3.3.4. LAD

Thus far, our examples involved loss function of the forms ‖ · ‖2 or ‖ · ‖22. Here, we consider
the error analysis of the LAD in the presence of sparse noise. To study this, we assume that ε is
s-sparse with its non-zero entries i.i.d. N (0, σ2). With these, it is not hard to see that the (AO)
problem corresponding to the LAD estimator becomes (say, in the high-SNR regime):

φLAD(g,h) = min
‖w‖2≤Kw

max
‖u‖∞≤1
s∈∂f(β0)

√
‖w‖22 + σ2

s∑
i=1

giui + ‖w‖2
m∑

i=s+1

giui + (‖u‖2h + λs)Tw

This has been analyzed in Thrampoulidis and Hassibi (2014). An interesting consequence of the
analysis is an exact performance comparison between the LASSO and the LAD.

4. Conclusion

Starting with the work of Rudelson and Vershynin (2008), Gaussian comparison theorems have
played instrumental role in developing a clear understanding of linear inverse problems when the
measurement matrix follows the standard Gaussian distribution, Stojnic (2009); Oymak and Hassibi
(2010); Chandrasekaran et al. (2012), etc. All works prior to Stojnic (2013a) use Gordon’s original
Theorem 1 to give “lower-bounds”. Stojnic is attributed with the idea of using strong duality to
obtain upper-bounds. However, all statements and proofs of our main Theorem 3 (CGMT) appear
to be novel. First, we use a symmetrization trick to identify Φ(G) as the (PO) (which is slightly
different than Φ(G,g) of Theorem 1). This is critical, and leads to identifying precise convexity
conditions for the concentration result of (13) (and Corollary 4) to hold. As mentioned, the most
important contribution is the conditions and the result of Theorem 3-(iii). Also, expressing the (RO)
as in (5) seems novel. These, when combined allow the use of GMT for the error analysis of (RO)
problems with loss functions other than the classically used L(β) = ‖β‖2. Using the framework of
the CGMT, we analyzed the high-SNR squared error of the Generalized LASSO in Section 3.3.2.
Our accompanying series of work applies the framework to more general settings, e.g. finite-SNR
regime, LAD, etc.. Each of these cases involves a different (AO) problem that needs to be analyzed.
The level of difficulty of the analysis varies from problem to problem, but, in all instances we have
considered it turns out to be doable, and, significantly simpler than a direct analysis of the original
(PO).

Summarizing, the CGMT offers a powerful machinery for the precise performance analysis of
non-smooth convex optimization algorithms when they are used to recover structured signals from
noisy linear observations. At the same time, we expect that it finds applications under more general
settings and even to different problem setups. We briefly discuss a potential example in Section E.
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Appendix A. Gordon’s Gaussian Min-max Theorem

Gaussian comparison theorems are powerful tools in probability theory Ledoux and Talagrand
(1991). A particularly useful such comparison inequality is described by Gordon’s comparison
theorem. In fact. Gordon’s theorem is a generalization of the classical Slepian’s lemma and Fer-
nique’s theorem Gordon (1985). It was first proved by Y. Gordon in Gordon (1985), where it was
also shown how it can be used as an alternative to (re)-derive other well-known results in the field.
See also Gordon (1987) for slight generalized versions of the theorem and the classical reference
(Ledoux and Talagrand, 1991, Chapter 3.3) for an introduction to gaussian comparison theorems
and some applications.

Theorem A.0.1 (Gordon’s Gaussian comparison theorem, Gordon (1985)) Let {Xij} and {Yij},
1 ≤ i ≤ I , 1 ≤ j ≤ J , be centered Gaussian processes such that

EX2
ij = EY 2

ij , for all i, j,
EXijXik ≥ EYijYik, for all i, j, k,
EXijX`k ≤ EYijY`k, for all i 6= ` and j, k.

Then, for all λij ∈ R,

P

 I⋂
i=1

J⋃
j=1

[Yij ≥ λij ]

 ≥ P

 I⋂
i=1

J⋃
j=1

[Xij ≥ λij ]

 .

Gordon’s Theorem A.0.1 establishes a probabilistic comparison between two abstract Gaus-
sian processes {Xij} and {Yij} based on conditions on their corresponding covariance structures.
Theorem 1 is a corollary of Theorem A.0.1 when applied to specific Gaussian processes.

We begin with using Theorem A.0.1 to prove an analogue of Theorem 1 for discrete sets. The
proof is almost identical to the proof of Gordon’s original Lemma 3.1 in Gordon (1988). Nev-
ertheless, we include it here for completeness. Theorem 1 then follows from Lemm A.0.1 by a
compactness argument.

Onwards, we suppress notation and write ‖ · ‖ instead of ‖ · ‖2.
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Lemma A.0.1 (Gordon’s Gaussian Min-max Theorem: Discrete Sets) Let X ∈ Rn×d, g ∈ R,
g ∈ Rn and h ∈ Rd have entries i.i.d. N (0, 1) and be independent of each other. Also, let
I1 ⊂ Rd, I2 ⊂ Rn be finite sets of vectors and ψ(·, ·) be a finite function defined on I1 × I2. For
all c > 0,

P
(

min
w∈I1

max
u∈I2

{
uTXw + g‖w‖‖u‖+ ψ(w,u))

}
≥ c
)
≥

P
(

min
w∈I1

max
u∈I2

{
‖w‖gTu + ‖u‖hTw + ψ(w,u))

}
≥ c
)

Proof Define two Gaussian processes indexed on the set I1 × I2:

Yw,u = wTGu + g‖u‖‖w‖ and Xw,u = ‖w‖gTu− ‖u‖hTw.

First, we show that the processes defined satisfy the conditions of Gordon’s Theorem A.0.1.
Clearly, they are both centered. Furthermore, for all w,w′ ∈ I1 and u,u′ ∈ I2:

E[X2
w,u] = ‖w‖2‖u‖2 + ‖u‖2‖w‖2 = E[Y 2

w,u],

and

E[Xw,uXw′,u′ ]− E[Yw,uYw′,u′ ] = ‖w‖‖w′‖(uTu′) + ‖u‖2(wTw′)− (wTw′)(uTu′)− ‖u‖‖u′‖‖w‖‖w′‖

=

‖w‖‖w′‖ − (wTw′)︸ ︷︷ ︸
≥0


(uTu′)− ‖u‖‖u′‖︸ ︷︷ ︸

≤0

 ,

which is non positive and equal to zero when w = w′.
Next, for each (w,u) ∈ I1 × I2, let λw,u = −ψ(w,u) + c and apply Theorem A.0.1. This

completes the proof by observing that[
min
w∈I1

max
u∈I2
{Yw,u + ψ(w,u)} ≥ c

]
=
⋂

w∈I1

⋃
u∈I2

[Yw,u ≥ λw,u] ,

and similar for the process Xw,u.

Proof (of Theorem 1) Denote R1 := maxw∈Sw ‖w‖ and R2 := maxu∈Su ‖u‖. Fix any ε > 0.
Since ψ(·, ·) is continuous and the sets Sw,Su are compact, ψ(·, ·) is uniformly continuous on
Sw × Su. Thus, there exists δ := δ(ε) > 0 such that for every (w,u), (w̃, ũ) ∈ Sw × Su with
‖
[
w u

]
−
[
w̃ ũ

]
‖ ≤ δ, we have that |ψ(w,u)−ψ(w̃, ũ)| ≤ ε. Let Sδw,Sδu be δ-nets of the sets

Sw and Su, respectively. Then, for any w ∈ Sw, there exists w′ ∈ Sδw such that ‖w−w′‖ ≤ δ and
an analogous statement holds for Su. In what follows, for any vector v in a set S, we denote v′ the
element in the δ-net of S that is the closest to v in the usual `2-metric. To simplify notation, denote

α(w,u) := uTXw+ g‖w‖‖u‖+ψ(w,u) and β(w,u) := ‖w‖gTu+ ‖u‖hTw+ψ(w,u).

From Lemma A.0.1, we know that for all c ∈ R:

P
(

min
w∈Sδw

max
u∈Sδu

α(w,u) ≥ c
)
≥ P

(
min
w∈Sδw

max
u∈Sδu

β(w,u) ≥ c
)
. (26)
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In what follows we show that constraining the minimax optimizations over only the δ-nets Sδw,Sδu
instead of the entire sets Sw,Su, changes the achieved optimal values by only a small amount.

First, we calculate an upper bound on

min
w∈Sδw

max
u∈Sδu

α(w,u)− min
w∈Sw

max
u∈Su

α(w,u) ≤ min
w∈Sδw

max
u∈Sδu

α(w,u)− min
w∈Sw

max
u∈Sδu

α(w,u) =: α(w1,u1)− α(w2,u2)

≤ max
u∈Sδu

α(w′2,u)− α(w2,u2) =: α(w′2,u∗)− α(w2,u2)

≤ α(w′2,u∗)− α(w2,u∗)

= uT∗X(w′2 −w2) + g‖u∗‖(‖w′2‖ − ‖w2‖) + (ψ(w′2,u∗)− ψ(w2,u∗))

≤ (‖X‖2 + |g|) ‖u∗‖︸ ︷︷ ︸
≤R2

‖w′2 −w2‖︸ ︷︷ ︸
≤δ

+ |ψ(w′2,u∗)− ψ(w2,u∗)|︸ ︷︷ ︸
≤ε

≤ (‖X‖2 + |g|)R2δ + ε.

From this, we have that

P
(

min
w∈Sw

max
u∈Su

α(w,u) ≥ c
)
≥ P

(
min
w∈Sδw

max
u∈Sδu

α(w,u) ≥ c+ (‖X‖2 + |g|)R2δ + ε

)
. (27)

Using standard concentration results on Gaussians, it is shown in Lemma B.0.2 that for all t > 0,

P(‖X‖2 + |g| ≤
√
n+
√
d+ 1 + t) ≥ 1− 2 exp(−t2/4).

This, when combined with (27) yileds:

P
(

min
w∈Sw

max
u∈Su

α(w,u) ≥ c
)
≥ P

(
min
w∈Sδw

max
u∈Sδu

α(w,u) ≥ c+ (
√
d+
√
n+ 1 + t)R2δ + ε

)
− 2e−t

2/4.

(28)

Similarly,

min
w∈Sδw

max
u∈Sδu

β(w,u)− min
w∈Sw

max
u∈Su

β(w,u) ≥ min
w∈Sδw

max
u∈Sδu

β(w,u)− min
w∈Sδw

max
u∈Su

β(w,u) =: β(w1,u1)− β(w2,u2)

≥ β(w1,u1)− max
u∈Su

β(w1,u) =: β(w1,u1)− β(w1,u∗)

≥ β(w1,u
′
∗)− β(w1,u∗)

= ‖w1‖gT (u′∗ − u∗) + (‖u′∗‖ − ‖u∗‖)hTw1 + (ψ(w1,u
′
∗)− ψ(w1,u∗))

≥ −(‖g‖+ ‖h‖) ‖w1‖︸ ︷︷ ︸
≤R1

‖u′∗ − u∗‖︸ ︷︷ ︸
≤δ

− |ψ(w1,u
′
∗)− ψ(w1,u∗)|︸ ︷︷ ︸
≤ε

≥ −(‖g‖+ ‖h‖)R1δ − ε.

Thus,

P
(

min
w∈Sw

max
u∈Su

β(w,u) ≥ c+ (‖g‖+ ‖h‖)R1δ + ε

)
≤ P

(
min
w∈Sδw

max
u∈Sδu

β(w,u) ≥ c
)
,
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and a further application of Lemma B.0.2 shows that for all t > 0:

P
(

min
w∈Sw

max
u∈Su

β(w,u) ≥ c+ (
√
d+
√
n+ t)R2δ + ε

)
− 2e−t

2/4 ≤ P
(

min
w∈Sδw

max
u∈Sδu

β(w,u) ≥ c
)
,

(29)

Now, we can apply (26) in order to combine (28) and (29) to yield the following:

P
(

min
w∈Sw

max
u∈Su

α(w,u) ≥ c
)
≥

P
(

min
w∈Sw

max
u∈Su

β(w,u) ≥ c+ (
√
d+
√
n+ 1 + t)(R1 +R2)δ + 2ε

)
− 4e−t

2/4.

This holds for all ε > 0 and all t > 0. In particular, set t = δ−
1
2 and take the limit of the right-hand

side as ε→ 0. Then, t→∞ and we can of course choose δ → 0, which proves that

P
(

min
w∈Sw

max
u∈Su

α(w,u) ≥ c
)
≥ P

(
min
w∈Sw

max
u∈Su

β(w,u) > c

)
.

Appendix B. Auxiliary Results

Definition B.0.1 (Lipschitz) We say that a function f : Rd → R is Lipschitz with constant L or is
L-Lipschitz if |f(w)− f(u)| ≤ L‖w − u‖ for all w,u ∈ Rd.

Proposition B.0.1 (Gaussian Lipschitz concentration) (e.g.,(Boucheron et al., 2013, Theorem 5.6))
Let w ∈ Rd have entries i.i.d. N (0, 1) and f : Rd → R be L-Lipschitz. Then, each one of the
events {f(w) > Ef(w) + t} and {f(w) < Ef(w) − t} occurs with probability no greater than
exp

(
−t2/(2L2)

)
.

Lemma B.0.2 Let X ∈ Rn×d, g ∈ R, g ∈ Rn and h ∈ Rd have entries i.i.d. N (0, 1) and be
independent of each other. Then, for all t > 0, each one of the events

{‖X‖2 + |g| ≤
√
d+
√
n+ 1 + t} and {‖h‖2 + ‖g‖2 ≤

√
d+
√
n+ t}, (30)

holds with probability at least 1− 2 exp(−t2/4).

Proof A well-known non-asymptotic bound on the largest singular value of an n × d Gaussian
matrix shows (e.g. (Vershynin, 2010, Corollary 5.35)) that for all t > 0:

P
(
‖X‖2 >

√
n+
√
d+ t

)
≤ exp(−t2/2).

Also, ‖ · ‖2 is an 1-Lipschitz function and for a standard gaussian vector v ∈ Rd: E‖v‖2 ≤
√
d .

Applying Proposition B.0.1 we have that for all t > 0 the events {|g| > 1 + t}, {‖g‖2 >
√
n+ t}
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and {‖h‖2 >
√
d + t}, each one occurs with probability no larger than exp(−t2/2). Combining

those,

P
(
‖X‖2 + |g| ≤

√
d+
√
n+ 1 + t

)
≥ P

(
‖X‖2 ≤

√
d+
√
n+ t/2 , |g| ≤ 1 + t/2

)
≥ 1− P

(
‖X‖2 >

√
d+
√
n+ t/2

)
− P ( |g| > 1 + t/2)

≥ 1− 2 exp(−t2/4).

The proof of the second statement is identical and is omitted for brevity.

Lemma B.0.3 (Lipschitzness of the AO problem) Let Sw ⊂ Rd, Su ⊂ Rn be compact sets and
function φ : Rn × Rd → R:

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖2gTu + ‖u‖2hTw + ψ(w,u).

Further let R1 = maxw∈Sw ‖w‖2 and R2 = maxu∈Su ‖u‖2. Then, φ(g,h) is Lipschitz with
constant

√
2R1R2.

Proof Fix any two pairs (g1,h1) and (g2,h2) and let

(w2,u2) = arg min
w∈Sw

max
u∈Su

‖w‖gT2 u + ‖u‖hT2 w + ψ(w,u),

and
u∗ = arg max

u∈Su
‖w2‖gT1 u + ‖u‖hT1 w2 + ψ(w2,u).

Clearly,
φ(g1,h1) ≤ ‖w2‖gT1 u∗ + ‖u∗‖hT1 w2 + ψ(w2,u∗),

and
φ(g2,h2) ≥ ‖w2‖gT2 u∗ + ‖u∗‖hT2 w2 + ψ(w2,u∗),

Without loss of generality, assume φ(g1,h1) ≥ φ(g2,h2). Then,

φ(g1,h1)− φ(g2,h2) ≤ ‖w2‖gT1 u∗ + ‖u∗‖hT1 w2 + ψ(w2,u∗)− (‖w2‖gT2 u∗ + ‖u∗‖hT2 w2 + ψ(w2,u∗))

≤ ‖w2‖uT∗ (g1 − g2) + ‖u∗‖wT
2 (h1 − h2)

≤
√
‖w2‖2‖u∗‖2 + ‖u∗‖2‖w2‖2

√
‖g1 − g2‖2 + ‖h1 − h2‖2

≤ R1R2

√
2
√
‖g1 − g2‖2 + ‖h1 − h2‖2,

where the penultimate inequality follows from Cauchy-Schwarz.
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Appendix C. Proof of Theorem 3

For the proof of (12) and (13), we fix arbitrary d ∈ N and drop the superscript (d) to simplify
notation.

Proof of (12): As discussed inequality (12) is an almost direct consequence of Theorem 1. Yet we
need to get rid of the term “g‖w‖2‖u‖2” in (7) in Gordon’s Theorem 1. The argument is rather
simple but critical for the rest of the statements of Theorem 3. We will show that

P (Φ(G) ≤ c) ≤ 2P (Φ(G, g) ≥ c) . (31)

Once this is established, (12) follows directly after applying Theorem 1. To prove (31), fix G and
g < 0 and denote

f1(w,u) = uTGw + ψ(w,u) and f2(w,u) = uTGw + g‖w‖2‖u‖2 + ψ(w,u).

Clearly, f1(w,u) ≥ f2(w,u) for all (w,u) ∈ Sw × Su. We may then write,

min
w∈Sw

max
u∈Su

f1(w,u) = f1(w1,u1) ≥ f1(w1,u) for all u ∈ Su

≥ max
u∈Su

f2(w1,u) ≥ min
w∈Sw

max
u∈Su

f2(w,u).

This proves Φ(G) ≥ Φ(G, g), when g < 0. From this and from the independence of g and G, for
all c ∈ R:

P (Φ(G, g) ≤ c | g < 0) ≥ P (Φ(G) ≤ c | g < 0) = P(Φ(G) ≤ c).

When combined with g ∼ N (0, 1), the above yields the desired inequality (31):

P (Φ(G, g) ≤ c) =
1

2
P (Φ(G, g) ≤ c | g > 0) +

1

2
P (Φ(G, g) ≤ c | g < 0) ≥ 1

2
P(Φ(G) ≤ c).

Proof of (13): The additional convexity assumptions imposed in statement (ii) of the theorem are
critical for the proof of (13). By assumption, the sets Sw,Su are non-empty, compact and convex.
Furthermore, the function uTGw+ψ(w,u) is continuous, finite14 and convex-concave on Sw×Su.
Thus, we can apply the minimax result in (Rockafellar, 1997, Corollary 37.3.2) to exchange “min-
max” with a “max-min” in (10a)15:

Φ(G) = max
u∈Su

min
w∈Sw

uTGw + ψ(w,u).

It is convenient to rewrite the above as

−Φ(G) = min
u∈Su

max
w∈Sw

−uTGw − ψ(w,u).

Then, using the symmetry of G, we have that for any c ∈ R:

P (−Φ(G) ≤ c) = P
(

min
u∈Su

max
w∈Sw

{
uTGw − ψ(w,u)

}
≤ c
)
.

14. A continuous function on a compact set is bounded from Weierstrass extreme value theorem.
15. Flipping the order of min-max remains valid even under the weaker assumption of a quasi-convex-concave function

ψ, (Sion et al., 1958, Thm. 3.4). Hence, (13) holds in this case too by the same argument.
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Thus, we may apply16 statement (i) of Theorem 3 (with the roles of w and u flipped):

P (−Φ(G) < c) ≤ 2P
(

min
u∈Su

max
w∈Sw

{
‖u‖2hTw + ‖w‖2gTu− ψ(w,u)

}
≤ c
)

= 2P
(

min
u∈Su

max
w∈Sw

{
−‖u‖2hTw − ‖w‖2gTu− ψ(w,u)

}
≤ c
)
, (32)

where the last equation follows because of the symmetry of g and h. To continue, note that

min
u∈Su

max
w∈Sw

{
−‖u‖2hTw − ‖w‖2gTu− ψ(w,u)

}
= −max

u∈Su
min
w∈Sw

{
‖u‖2hTw + ‖w‖2gTu + ψ(w,u)

}
,

and further apply the minimax inequality (Rockafellar, 1997, Lemma 36.1) which requires that for
all g,h

max
u∈Su

min
w∈Sw

{
‖w‖2gTu + ‖u‖2hTw + ψ(w,u)

}
≤ min

w∈Sw
max
u∈Su

{
‖w‖2gTu + ‖u‖2hTw + ψ(w,u)

}
:= φ(g,h).

These, when combined with (32), give P (−Φ(G) < c) ≤ 2P (−φ(g,h) ≤ c) . Apply this for c =
−(µ+ t) and combine with (12) for c = µ− t, to conclude with (13) as desired.

Proof of (14): We start with some notation that simplifies the exposition. In what follows, w is

always constrained to belong to the set S(d)
w ; we simply write minw instead of min

w∈S(d)
w

. We will

say that a sequence of events E(d) holds/occurs with probability approaching (w.p.a.) 0 (or 1), if
limd→∞ P(E(d)) = 0, (or 1). Denote

`(η) := {α | |α− α∗| > η}.

We will prove that for all η > 0, the event ‖w(d)
Φ (G)‖ ∈ `(η) holds w.p.a. 1.

Consider the function Υ(d) : S(d)
w → R:

Υ(d)(w;G) = max
u∈S(d)

u

uTGw + ψ(w,u).

Observe that Φ(d)(G) = minw Υ(d)(w;G) = Υ(d)(w
(d)
Φ (G);G). It is not hard to see that it

suffices to prove that for all η > 0 there exists δ := δ(η) > 0 such that

min
‖w‖∈`(η)

Υ(d)(w;G) < min
w

Υ(d)(w;G) + δ (33)

occurs w.p.a. 0.
In what follows, fix any η > 0. Proving (33) takes the following two steps: (i) upper bound

min
w∈S(d)

w
Υ(d)(w;G), and (ii) lower bound min‖w‖∈`(η) Υ(d)(w;G).

Step 1: Fix some ε1 > 0 and consider the following event

E(d)(ε1) = {min
w

Υ(d)(w;G) > κ∗ + ε1}. (34)

16. Observe that the signs of uTGw, gTu and hTw do not matter because of the assumed symmetry in the distributions
of G,g and h.
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Then, we may use statement (ii) of the theorem (cf. (13)) to show that

P(E(d)(ε1)) = P(Φ(d)(G) > κ∗ + ε1) ≤ 2P(φ(d)(g,h) ≥ κ∗ + ε1)

But, φ(d)(g,h)
P−→ κ∗ by hypothesis of the theorem. Therefore, E(d) occurs w.p.a. 0.

Step 2: Fix some ε2 > 0 and consider the following event:

H(ε2) := { min
‖w‖∈`(η)

Υ(d)(w;G) < κ∗ + ε2}. (35)

Using statement (i) of the theorem (cf. (13)) we have

P(H(ε2)) ≤ 2P( min
‖w‖∈`(η)

Υ(d)(w;G) ≤ κ∗ + ε2). (36)

We will upper bound the probability on the right hand side by conditioning on the event

{‖w(d)
φ (g,h)‖ /∈ `(η/2)},

which occurs w.p.a. 1, by assumption. In this event, it is not hard to see that

‖w‖ ∈ `(η)⇒ |‖w‖ − ‖w(d)
φ (g,h)‖| ≥ η/2.

That is, conditioned on E(d), the probability in (36) is further upper bounded by

P( min
|‖w‖−‖w(d)

φ (g,h)‖|≥η/2
Υ(d)(w;G) ≤ κ∗ + ε2 ). (37)

We will condition once more, only this time it will be on the event

{φ(d)(g,h) ≥ κ∗ − ε2/2},

which occurs w.p.a. 1, by assumption. In this event, the probability in (37) is further upper bounded
by

P( min
|‖w‖−‖w(d)

φ (g,h)‖|≥η/2
Υ(d)(w;G) ≤ φ(d)(g,h) + ε2/2 ). (38)

Finally, we condition on the event

{Υ(d)(w;G) ≥ φ(d)(g,h) + τ(‖w‖ − ‖w(d)
φ (g,h)‖)2, ∀w ∈ Sw},

which also occurs w.p.a. 1, by assumption. In this event,

min
|‖w‖−‖w(d)

φ (g,h)‖|≥η/2
Υ(d)(w;G) ≥ φ(d)(g,h) + τ(η/2)2.

Thus, the probability in (37) is further upper bounded by

P( τ(η/2)2 ≤ ε2/2 ), (39)
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which is of course a deterministic event. To sum up, following the chain of inequalities implied by
(36)-(39), we find that

P(H(ε2)) ≤ 2P( τ(η/2)2 ≤ ε2/2 ) + p(d)(ε2),

where p(d)(ε2) converges to 0 as d → ∞. In particular, H(ε2) occurs w.p.a. 0, for all ε2 such that
ε2 < 2τ(η/2)2.

We are now ready to conclude the proof. For any η > 0, choose ε2 := ε(η) := τ(η/2)2 > 0,
ε1 := ε2/2 and δ := ε2/4 > 0. Consider the events E(ε1) and H(ε2) as defined in (34) and (35),
respectively. For the particular choice of ε1, ε2 both events occur w.p.a. 0. Condition on both the
complements of these events. Then, the probability of the event in (33) is upper bounded by

P(κ∗ + ε2 < κ∗ + ε1 + δ) + p(d)(ε1, ε2) = P(2 < 1) + p(d)(ε1, ε2) = p(d)(ε1, ε2),

where p(d)(ε1, ε2) converges to 0 as d→∞. This concludes the proof.

Appendix D. Proof of Theorem 5

In this section, we complete the analysis of Section 3.3.2 and the proof of Theorem 5. Recall that
the (AO) problem of interest is given by (18), which we repeat here for convenience:

φ(g,h) := min
‖w‖≤Kw

max
‖u‖2≤1
s∈∂f(β0)

1√
d
{(‖w‖2g − ε)Tu− (‖u‖2h− λs)Tw}. (40)

In agreement with the notation of Theorem 3, let wφ := wφ(g,h) denote any minimizer of (40).
Also, as in Section 3.2.1, Kw is an (arbitrarily large) finite constant the value of which will be
fixed later in the proof. It was shown that (40) simplifies to the following optimization, which only
involves scalar variables:

φ(g,h) = min
0≤α≤Kw

max
0<β≤1

φ(α, β;g,h) :=
1√
d
{
√
α2 + σ2 ‖g‖2β − αβ · dist(h,

λ

β
∂f(β0))},

(41)

where, compared to (20) we have flipped the order of min-max: the objective is (strongly) convex in
α and concave in β. To conclude the latter, identify the second term as the perspective function of
the distance function which can be shown to be convex. Also, α in (41) plays the role of ‖w‖. Thus,
if we let α∗(g,h) denote the optimal above, then α∗(g,h) = ‖wφ(g,h)‖2. Next, we consider the
convergence properties of (41). From standard concentration inequalities of Lipschitz functions
(e.g. (Oymak et al., 2013, Lem. B.2)) it can be shown

‖g‖2√
d

P−→
√
δ and

dist(h, τ)√
d

P−→
√
D(τ), (42)

where, recall the definition of the Gaussian squared distanceD(τ) in (21). In particular, convergence
here is at an exponential rate. The objective function in (41) then converges point wise in α, β to

κ(α, β) := β
√
α2 + σ2

√
δ − αβ

√
D̄(λ/β). (43)
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For now, fix α. The (sequence of) objective functions in (43) are concave with respect to β. We
combine this with the fact that point-wise convergence in probability of convex functions implies
uniform convergence on compact subspaces ((Andersen and Gill, 1982, Cor. II.1)) to conclude that

max
0<β≤1

φ(α, β;g,h)
P−→ max

0<β≤1
κ(α, β). (44)

Now, we view the functions in the panel above as functions of α. The first (strictly, this is a sequence
of such functions over d) is convex in α, as the minima of convex functions. The latter is strongly
convex, thus, it has a unique minimizer, sayα∗. Thus, as in (Newey and McFadden, 1994, Thm. 2.7),

φ(g,h) = min
0≤α≤Kw

max
0<β≤1

φ(α, β;g,h)
P−→ κ∗ := min

0≤α≤Kw

max
0<β≤1

κ(α, β) (45)

and the minimizer of the former converges to the unique minimizer α∗ of the latter.
We calculate α∗ via analyzing the deterministic min-max optimization in the RHS of (45).

Start by flipping the order of min-max (everything is appropriately convex; in particular
√
D̄(τ) is

convex as the point wise limit of convex functions) and perform the optimization over α first. Also,
we ignore the constraint α ≤ Kw for the moment; we return to that once we have performed the
unconstrained minimization. Via direct differentiation, we find

α∗(β) = σ

√
D̄(λ/β)

δ − D̄(λ/β)
(46)

(In particular, this requires β such that δ > D̄(λ/β).) Thus,

κ(α∗(β), β) = σβ
√
δ − D̄(λ/β).

Differentiating this with respect to β and using (23), gives

∂κ

∂β
=

σ√
δ − D̄(λ/β)

(
δ − D̄(λ/β)− C̄(λ/β)

)
. (47)

Recall the assumption of the theorem that δ > D̄(λ̂). Here, we prove the result for the underde-
termined case where δ < 1. The overdetermined case follows easily along the same arguments.
First, if λ ≤ λcrit such that λ̂ = λcrit, then β∗ = λ/λcrit ≤ 1 makes (47) zero (by definition of

λcrit) and from (46), α∗ = σ
√

D̄(λcrit)
δ−D̄(λcrit)

(this is well defined by assumption δ > D̄(λcrit)). Next,

if λ > λcrit (but such that δ > D̄(λ)), the derivative in (47) is non-negative at β = 1 (see (Oymak
et al., 2013, Lem. 8.3)). From concavity, this implies optimality of β∗ = 1. Substituting in (46),

gives α∗ = σ
√

D̄(λ)
δ−D̄(λ)

. To conclude, if D̄(λ̂) < δ < 1, the minimizer α∗ of the unconstrained
(disregarding α ≤ Kw) optimization in (44) is

α∗ = σ

√
D̄(λ̂)

δ − D̄(λ̂)
. (48)

Finally, we may now choose a value for Kw as promised. Setting, Kw = 2α∗, does not change the
optimal. Combining these with Theorem 3–(iii), we have shown (under the assumptions of Theorem
5) that in the limit of d→∞, any minimizer ŵ of

min
‖w‖≤2α∗

‖Xw − ε‖2 + λ max
s∈∂f(β0)

sTw, (49)
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Figure 1: Illustration of the prediction of Theorem 5 for sparse and low-rank recovery. Plots of the
NSE in high-SNR as a function of the regularizer parameter λ. Each simulation point
represents an average over 50 realizations of X, ε,B0. In both cases the noise variance is
set to σ2 = 10−5. (a) d = 1500, n = 750, k = ρd = 150, (b)

√
d = 45, n = 0.6d, r = 6.

is such that ‖ŵ‖2
P−→ α∗ > 0. Using standard convexity argument, the conclusion remains un-

changed for the original LASSO problem, i.e. the one without the (artificial) constraint on w. This
completes the proof.

D.1. Empirical Simulations

For completeness, we include two plots that illustrate the accuracy of Theorem 5 via numerical sim-
ulations. For more figures please refer to Oymak et al. (2013). Also, see Thrampoulidis and Hassibi
(2014); Thrampoulidis et al. (2015a,b); Thrampoulidis and Hassibi (2015) for corresponding evi-
dence regarding error predictions for other Regression Optimization problems.

D.1.1. SPARSE RECOVERY

Assume sparse signal β0 ∈ Rd with normalized sparsity level ρ ∈ (0, 1), i.e. only ρ · d of its entries
are non-zero. Consider solving the LASSO with `1-regularization:

β̂ = min
β
‖y −Xβ‖2 + λ‖β‖1.

It can be easily shown (e.g. (Oymak et al., 2013, App. H)) that:

D̄(τ) = ρ(1 + τ)2 + (1− ρ)(2(1 + τ2)Q(τ)−
√

2/πτe−
τ2

2 )

C̄(τ) = −ρτ2 + (1− ρ)(2τ2Q(τ)−
√

2/πτe−
τ2

2 ), (50)

where Q denotes the standard Q-function. With these expressions, we can numerically evaluate the
formula of Theorem 3. An instance is shown in Figure 1(a), where the NSE is plotted as function of
the regularizer parameter λ. To obtain the empirical points on the plot, we solve LASSO using CVX.
The noise variance was chosen small enough to approximate σ2 → 0. (In particular, σ2 = 10−5

and ‖β0‖2 = 1). The prediction accuracy of Theorem 5 is clear.
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D.1.2. LOW-RANK RECOVERY

Consider a low rank matrix B0 ∈ R
√
d×
√
d. Then, β0 = vec(B0) is the vector representation of B0

and X is a Gaussian linear map R
√
d×
√
d → Rn. We solve,

min
B∈Rd×d

‖y −X · vec(B)‖+ λ
√
d‖B‖?.

where y = X · vec(B0) + ε. Observe that we have appropriately normalized the regularizer (i.e.
f(B) =

√
d‖B‖∗). This is necessary to satisfy the condition of Theorem 5 that D(τ)/d be constant

independent of d. Please see (Oymak et al., 2013, Sec. H2) for explicit expressions of D(τ), C(τ).
Simulation results are shown in Figure 1(b). In the simulations we generate B0 as follows: we pick
i.i.d. standard normal matrices U,V ∈ Rd×r and set B0 = UVT

‖UVT ‖F
which ensures B0 is unit norm

and rank r.

Appendix E. Sketching Linear Regression or Sparsity in a Dictionary

We consider two problems that differ from the classical Regression Optimization setup considered
in the main body of the paper, and, briefly discuss how Theorem 3 could prove useful for their
analysis. In a first scenario, suppose β0 is a structured sparse signal, D is a large deterministic
matrix, and, we observe Dβ0 + ε, Pilanci and Wainwright (2014). Alternatively, β0 may be a
sparse representation of the signal Dβ0 under a dictionary D, Candès et al. (2011). In the first
case, instead of solving the LASSO with observations y = Dβ0 + ε, one can reduce the problem
dimensionality by multiplying both sides with a Gaussian matrix Rn×d. In the latter case, we can
consider estimation of the sparse features from a few linear observations of Dβ0. It is desirable to
give guarantees for this new problem which takes the following variation form of the LASSO:

ŵSLR = arg min
w

1

2
‖G(Dw + ε)‖2 + λf(β0 + w).

To predict the behavior of the residual ŵSLR one would need to analyze the corresponding (AO)
problem, which takes the form

φSLR(g,h) = min
w

1

2
(‖g‖‖Dw + ε‖+ hT (Dw + ε))2 + f(β0 + w).
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