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Abstract
We consider emphatic temporal-difference learning algorithms for policy evaluation in discounted
Markov decision processes with finite spaces. Such algorithms were recently proposed by Sutton,
Mahmood, and White (2015) as an improved solution to the problem of divergence of off-policy
temporal-difference learning with linear function approximation. We present in this paper the first
convergence proofs for two emphatic algorithms, ETD(λ) and ELSTD(λ). We prove, under general
off-policy conditions, the convergence in L1 for ELSTD(λ) iterates, and the almost sure conver-
gence of the approximate value functions calculated by both algorithms using a single infinitely
long trajectory. Our analysis involves new techniques with applications beyond emphatic algo-
rithms leading, for example, to the first proof that standard TD(λ) also converges under off-policy
training for λ sufficiently large.
Keywords: Markov decision processes; approximate policy evaluation; reinforcement learning;
temporal difference methods; importance sampling; stochastic approximation; convergence

1. Introduction

We consider discounted finite-spaces Markov decision processes (MDPs) and the problem of learn-
ing an approximate value function for a given policy from off-policy data, that is, from data due to
a different policy. The first policy is called the target policy and the second is called the behavior
policy. For example, one may want to learn value functions for many target policies in parallel from
one (exploratory) behavior; this requires off-policy learning.

We focus on temporal-difference (TD) methods with linear function approximation (Sutton,
1988). Such methods are typically convergent when the target and behavior policies are the same
(the on-policy case), but not in the off-policy case (Tsitsiklis and Van Roy, 1997). This difficulty is
intrinsic to sampling states according to an arbitrary policy.1 Gradient-based or least squares-based
approaches have been used to avoid this difficulty.2

Recently, Sutton, Mahmood, and White (2015) proposed a new approach to address this issue
more directly. They introduced an emphatic TD(λ) algorithm, or ETD(λ) as we call it here. The
approach is related to the early work on episodic off-policy TD(λ) (Precup et al., 2001), and is
based on the idea of re-weighting the states when forming the eligibility traces in TD(λ), so that the
weights reflect the occupation frequencies of the target policy rather than the behavior policy. The
result of this weighting scheme is that the “mean updates” associated with ETD(λ) now involve a
negative definite matrix, similar to the convergent on-policy TD algorithms. This is a salient feature
of the emphatic TD method.

1. See the papers (Baird, 1995; Tsitsiklis and Van Roy, 1997; Sutton et al., 2015) and the books (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998) for related examples and discussion.

2. See e.g., (Maei, 2011; Bertsekas and Yu, 2009; Geist and Scherrer, 2014; Dann et al., 2014).
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The purpose of this paper is to investigate the convergence properties of ETD(λ) and its least-
squares version, ELSTD(λ). Under general conditions, we show that (see Theorems 2.1, 2.2):

(i) for stepsizes decreasing as t−c, c ∈ (1/2, 1], the matrix and vector iterates generated by
ELSTD(λ) converge in L1 to the desired limits, which define a projected Bellman equation;

(ii) for stepsizes decreasing as t−1, both algorithms generate approximate value functions that
converge almost surely to the desired solution of an associated projected Bellman equation.

These results show that the new emphatic TD algorithms are sound for off-policy learning.
Regarding proof techniques, we note that although the “mean updates” of ETD(λ) involve a

negative definite matrix, it is still difficult to directly apply results from stochastic approximation
theory to establish rigorously the association between the “mean updates” and the ETD(λ) iterates,
thereby obtaining the desired convergence. The stability criterion of (Borkar and Meyn, 2000) (see
also (Borkar, 2008, Chap. 3)) and the “natural averaging” argument in (Borkar, 2008, Chap. 6) seem
suitable, but they require a certain tightness condition that is hard to verify in the general off-policy
learning setting where the variances of the trace iterates can grow to infinity with time.3 The analysis
of (Tsitsiklis and Van Roy, 1997) has a strong condition (Condition (6), p. 683, in particular), which
is difficult to satisfy unless the trace iterates are uniformly bounded. But in general, this would
impose a strong restriction on the behavior policy (cf. Yu, 2012, Prop. 3.1, Footnote 3, and the
discussion in p. 3320-3322).

For regular off-policy LSTD(λ) and TD(λ) (Bertsekas and Yu, 2009), it has been shown by Yu
(2012) that the associated joint process of states and trace iterates exhibit useful properties, by which
convergence results for LSTD(λ) can be derived. Subsequently, the results can be used to furnish
the conditions of a convergence theorem from stochastic approximation theory (Kushner and Yin,
2003) and yield convergence results for TD(λ). In this paper we will take the proof approach used
in (Yu, 2012). We note, however, that most of the intermediate results needed in our case require
different and more involved proofs, due to the complexity of the emphatic TD method. Furthermore,
we will give a new argument to prove the almost sure convergence of ETD(λ), which applies also
to the regular off-policy TD(λ) of (Bertsekas and Yu, 2009) for λ near 1. This improves a result of
(Yu, 2012), which only dealt with a constrained version of TD(λ) that restricts the iterates to lie in
a bounded set.

This paper is organized as follows. In Section 2 we formulate the approximate policy evaluation
problem, and we describe the ETD(λ) and ELSTD(λ) algorithms, and the approximate Bellman
equations they aim to solve. We also state our main convergence results in this section. In Section 3
we prove our convergence theorem for ELSTD(λ), and prepare results needed for analyzing ETD(λ)
with a “mean ODE”4 method. In Section 4 we prove our convergence theorem for ETD(λ). Due to
space limit, several long proofs and related results are given in Appendices A-C. (The full analysis
can be found in our arXiv report (2015).)

2. Emphatic TD Algorithms: ETD(λ) and ELSTD(λ)

2.1. A Policy Evaluation Problem in Off-Policy Learning

Let S = {1, . . . , N} be the state space, and letA be a finite set of actions. We assume, without loss
of generality, that for every state, all actions are feasible. If we take action a ∈ A at state s ∈ S, the

3. Related examples can be found in (Glynn and Iglehart, 1989; Randhawa and Juneja, 2004; Sutton et al., 2015).
4. ODE stands for ordinary differential equation.
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system moves from state s to state s′ with probability p(s′ | s, a), and we receive a random reward
with mean r(s, a, s′) and bounded variance, according to a probability distribution q(· | s, a, s′).

We are interested in evaluating the performance of a given stationary policy5 π, the target policy,
without knowledge of the MDP model. The evaluation is to be done by using just observations of
state transitions and rewards, while following a stationary policy πo 6= π, the behavior policy.

Starting from time t = 0, applying π would generate a sequence of rewards R0, R1, . . .. The
performance of π will be measured in terms of the expected total rewards attained under π up to
a random termination time τ ≥ 1 that depends on the states in a Markovian way. In particular, if
at time t ≥ 1, the state is s and termination has not occurred yet, then the probability of τ = t
(terminating at time t) is 1− γ(s), for a given parameter γ(s) ∈ [0, 1].

Let Pπ denote the transition matrix of the Markov chain on S induced by π. Let Γ denote the
N × N diagonal matrix with diagonal entries γ(s), s ∈ S. Denote by π(a | s) and πo(a | s) the
probability of taking action a at state s under the policy π and πo, respectively.

Assumption 2.1 (Conditions on the target and behavior policies)
(i) The target policy π is such that (I − PπΓ)−1 exists (equivalently, termination occurs with

probability 1 under π, for any initial state).
(ii) The behavior policy πo induces an irreducible Markov chain on S , and moreover, for all

(s, a) ∈ S ×A, πo(a | s) > 0 if π(a | s) > 0.

Under Assumption 2.1(i), we define the value function of the target policy π by vπ : S → R,
vπ(s) = Eπ

[∑τ−1
t=0 Rt

∣∣∣S0 = s
]
, where Eπ denotes expectation with respect to the probability

distribution of the process of states, actions and rewards, (St, At, Rt), t ≥ 0, induced by the policy
π. Let rπ be the expected one-stage reward function under π; i.e., rπ(s) = Eπ

[
R0 | S0 = s

]
for

s ∈ S. Then the desired function vπ can be seen to satisfy uniquely the Bellman equation6

vπ = rπ + PπΓ vπ, i.e., vπ = (I − PπΓ)−1rπ.

2.2. Algorithms

We consider computing vπ with the ETD(λ) algorithm (Sutton et al., 2015) and its least-squares
version, ELSTD(λ), using linear function approximation, while following the behavior policy πo.
Let E ⊂ RN be the approximation subspace of dimension n, and let Φ be an N × n matrix whose
columns form a basis of E. The approximation problem is to find a parameter vector θ ∈ Rn such
that v = Φθ ∈ E approximates vπ well.

We express v = Φθ as v(s) = φ(s)>θ, s ∈ S, where the superscript > stands for transpose,
and φ(s) ∈ Rn is the transposed s-th row of Φ and represents the “features” of state s. Like stan-
dard TD(λ), if a transition (s, s′) occurs with reward r′, ETD(λ) and ELSTD(λ) use the “temporal
difference” term, r′ + γ(s′)φ(s′)>θ − φ(s)>θ, to adjust the parameter θ for the approximate value
function. Also like standard TD(λ), these algorithms aim to solve a projected (single-step or multi-
step) Bellman equation; but we shall defer the discussion of this until after describing the ETD(λ)
algorithm.

5. A stationary policy is a decision rule that specifies the probability of taking action a at state s for every s ∈ S.
6. One can verify this Bellman equation directly. It also follows from the standard MDP theory (see e.g., Puterman,

1994), as by definition vπ here can be related to a value function in a discounted MDP where the discount factors
depend on state transitions, similar to discounted semi-Markov decision processes.
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We focus on a general form of the ETD(λ) algorithm, which uses state-dependent λ values
specified by a function λ : S → [0, 1]. Inputs to the algorithm are the states, actions and rewards,
{(St, At, Rt), t ≥ 0}, generated under the behavior policy πo, where Rt is the random reward
received upon the transition from state St to St+1 with action At. The algorithm can access the
following functions, in addition to the features φ(s):

(i) γ : S → [0, 1], which specifies the termination probabilities (or equivalently, the state-
dependent discount factors) that define vπ, as described earlier;

(ii) λ : S → [0, 1], which determines the single or multi-step Bellman equation for the algorithm
[cf. the subsequent Eqs. (2.5)-(2.6)];

(iii) ρ : S × A → R+ given by ρ(s, a) = π(a | s)/πo(a | s) (with 0/0 = 0), which gives the
likelihood ratios for action probabilities that can be used to compensate for sampling states
and actions according to the behavior policy πo instead of the target policy π;

(iv) i : S → R+, which gives the algorithm additional flexibility to weigh states according to the
degree of “interest” indicated by i(s).

The ETD(λ) algorithm does the following. For each t ≥ 0, let αt ∈ (0, 1] be a stepsize parame-
ter, and to simplify notation, let

ρt = ρ(St, At), γt = γ(St), λt = λ(St).

ETD(λ) calculates recursively θt ∈ Rn, t ≥ 0, according to

θt+1 = θt + αt et · ρt
(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
)
, (2.1)

where et ∈ Rn (called the “eligibility trace”) is calculated together with two nonnegative scalar
iterates (Ft,Mt) according to:7

Ft = γt ρt−1 Ft−1 + i(St), (2.2)

Mt = λt i(St) + (1− λt)Ft, (2.3)

et = λt γt ρt−1 et−1 +Mt φ(St). (2.4)

For t = 0, (e0, F0, θ0) are given as an initial condition of the algorithm.
We recognize that the iteration (2.1) has the same form as standard TD, but the trace et is

calculated differently, involving an “emphasis” weight Mt on the state St, which itself evolves
along with the iterate Ft, called the “follow-on” trace. If Mt is always set to 1 regardless of Ft and
i(·), then the iteration (2.1) reduces to the standard TD(λ) in the case where γ and λ are constants.

To explain at a high level what ETD(λ) aims to achieve with the weighting scheme (2.2)-(2.4),
let us discuss the approximate Bellman equation it aims to solve. Associated with ETD(λ) is a
generalized Bellman equation of which vπ is the unique solution (Sutton, 1995):8

v = rλπ,γ + P λπ,γ v. (2.5)

Here P λπ,γ is an N × N substochastic matrix, and rλπ,γ ∈ RN is a vector of expected total rewards
attained by π up to some random time depending on the functions γ and λ, given by

P λπ,γ = I − (I − PπΓΛ)−1 (I − PπΓ), rλπ,γ = (I − PπΓΛ)−1 rπ, (2.6)

7. For insights about ETD(λ), see (Sutton et al., 2015; Mahmood et al., 2015). Our definition (2.4) of {et} differs
slightly from its original definition, but the two are equivalent; ours appears to be more convenient for our analysis.

8. For lack of space, we do not explain the details of this Bellman equation, which can be found in the early work
(Sutton, 1995; Sutton and Barto, 1998) and the recent work (Sutton et al., 2015).
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where Λ is a diagonal matrix with diagonal entries λ(s), s ∈ S. ETD(λ) aims to solve a projected
version of the Bellman equation (2.5) (see Sutton et al., 2015):

v = Π
(
rλπ,γ + P λπ,γ v

)
, v ∈ E, ⇐⇒ Cθ + b = 0, θ ∈ Rn. (2.7)

In the above, Π is the projection onto E with respect to a weighted Euclidean norm or seminorm.
The weights that define this norm also define the diagonal entries of a diagonal matrix M̄ , and are
given by

diag(M̄) = d>πo,i(I − P λπ,γ)−1, with dπo,i ∈ RN , dπo,i(s) = dπo(s) · i(s), s ∈ S, (2.8)

where dπo(s) > 0 denotes the steady state probability of state s for the behavior policy πo, under
Assumption 2.1(ii). For the corresponding linear equation in the θ-space in Eq. (2.7),

C = −Φ>M̄ (I − P λπ,γ) Φ, b = Φ>M̄ rλπ,γ . (2.9)

Important for the convergence of ETD(λ) is the negative definiteness of C. It can be shown
that under Assumption 2.1, C is negative definite whenever C is nonsingular.9 By comparison, if
we set Mt = 1 regardless of Ft and i(·), the weights that define the projection norm and diag(M̄)
would simply become dπo , the same as in the regular off-policy TD(λ). If we set Mt = i(s), then
the weights are given by dπo,i. Neither of these cases guarantees C to be negative definite, unless
λ is sufficiently close to 1. Having the desirable negative definiteness property of C is one of the
motivations for introducing the weighting scheme (2.2)-(2.4) in ETD(λ) (Sutton et al., 2015).

For the convergence analysis in this paper, we shall assume:

Assumption 2.2 (Nonsingularity condition) The matrix C given in Eq. (2.9) is nonsingular.

We remark that for ETD(λ) under Assumption 2.1, C is always negative semidefinite (Sutton
et al., 2015) (cf. our Prop. C.1, Appendix C), so the nonsingularity condition above is equivalent to
C being negative definite, as noted earlier. This condition is fairly mild and allows i(s) = 0 for some
states s. Specifically, as we prove in Appendix C, Assumption 2.2 is equivalent to a condition on the
approximation subspace (Prop. C.2), which requires merely that the set of feature vectors of those
states with positive emphasis weights contains n linearly independent vectors (cf. Remark C.2).
Moreover, this requirement can be fulfilled easily without knowledge of the model (see Cor. C.1,
Remark C.2). We also note that when C is negative definite, the projection Π in Eq. (2.7) is well-
defined (with respect to a seminorm if in Eq. (2.8) some diagonal entries of M̄ equal zero), the
projected Bellman equation (2.7) has a unique solution, and bounds on the approximation error of
ETD(λ) can be derived using the approach of Scherrer (2010). (For details of this discussion, see
Remark C.1 in Appendix C.)

The ELSTD(λ) algorithm aims to solve the same projected Bellman equation (2.7) as ETD(λ).
ELSTD(λ) calculates iteratively an n× n matrix Ct and a vector bt ∈ Rn according to

Ct+1 = (1− αt)Ct + αt et · ρt
(
γt+1φ(St+1)> − φ(St)

>), (2.10)

bt+1 = (1− αt) bt + αt et · ρtRt, (2.11)

where the trace et is calculated according to Eqs. (2.2)-(2.4) as in ETD(λ). ELSTD(λ) sets θt =
−C−1

t bt, the solution to Ctθ + bt = 0, when Ct is invertible.
Like ETD(λ), without the weighting scheme (2.2)-(2.4), ELSTD(λ) would reduce essentially to

the regular LSTD(λ) (see e.g., (Boyan, 1999; Yu, 2012) for on-policy and off-policy LSTD(λ)).

9. The negative definiteness of C is proved for positive i(·) under Assumption 2.1 by Sutton et al. (2015), and their
result extends to nonnegative i(·), as long as C is nonsingular (see our Prop. C.1 in Appendix C).
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2.3. Convergence Results

We analyze ETD(λ) and ELSTD(λ) with diminishing stepsizes. Summarized below are their con-
vergence properties, which we will establish in the rest of this paper. In what follows, we denote
by ‖ · ‖ the infinity norm for both vectors and matrices (viewed as vectors). For different stepsize
conditions, our results will involve different convergence modes: convergence in L1,10 in probabil-
ity, or almost sure (a.s.) convergence (we write a.s.→ for “converges almost surely”). First, we state a
general stepsize condition that we will use.

Assumption 2.3 (Stepsize condition) The stepsize sequence {αt} is deterministic and eventually
nonincreasing, and satisfies αt ∈ (0, 1],

∑
t αt =∞,

∑
t α

2
t <∞.

Under the above condition we may take αt = t−c, c ∈ (1/2, 1]. However, stepsizes decreasing
as t−1 will be required in our almost sure convergence results; some cases will require αt = O(1/t)
with αt−αt+1

αt
= O(1/t).11 (For instance, αt = c1/(c2 + t) for some constants c1, c2 > 0.)

Our results are as follows. Let θ∗ denote the desired limit for ETD(λ):

θ∗ = −C−1b, for C, b defined by Eq. (2.9) under Assumptions 2.1, 2.2.

Theorem 2.1 (L1 and almost sure convergence of ELSTD(λ) Iterates)
Under Assumptions 2.1, 2.3, for any given initial (e0, F0, C0, b0), the sequence {(Ct, bt)} generated
by the ELSTD(λ) algorithm (2.10)-(2.11) converges in L1:

lim
t→∞

E
[∥∥Ct − C∥∥] = 0, lim

t→∞
E
[∥∥bt − b∥∥] = 0.

If in addition the stepsize is given by αt = 1/(t+ 1), then Ct
a.s.→ C, bt

a.s.→ b.

The preceding theorem yields immediately the convergence of the parameter sequence {θt}
generated by ELSTD(λ):

Corollary 2.1 (Convergence of ELSTD(λ)) Let Assumptions 2.1-2.3 hold. Let {θt} be generated
by the ELSTD(λ) algorithm (2.10)-(2.11) as θt = −C−1

t bt. Then for any given initial (e0, F0, C0, b0),
{θt} converges to θ∗ in probability; if in addition αt = 1/(t+ 1), then θt

a.s.→ θ∗.

Theorem 2.2 (Almost sure convergence of ETD(λ)) Let Assumptions 2.1-2.3 hold. Let {θt} be
generated by the ETD(λ) algorithm (2.1) with stepsizes satisfying αt = O(1/t) and αt−αt+1

αt
=

O(1/t). Then for any given initial (e0, F0, θ0), θt
a.s.→ θ∗.

Remark 2.1 (On stepsizes) We believe that the range of stepsizes for the a.s. convergence of
ELSTD(λ) can be enlarged. If additional conditions on the behavior policy are imposed to re-
strict the variances of the trace iterates, it should also be possible to enlarge the range of stepsizes
for ETD(λ). These topics, as well as the use of random stepsizes, are under active investigation.

Remark 2.2 (On variances) The preceding convergence results hold under almost minimal con-
ditions on the behavior policy (Assumption 2.1(ii)). However, unless we restrict sufficiently the
behavior policy (which is difficult to do without knowledge of the model, when γ 6< 1), the vari-
ances of the trace iterates can grow unboundedly (cf. Remark A.1), significantly affecting the speed
of convergence. This is a main difficulty in off-policy methods in general. Further research is
required to overcome it. For a recent work in this direction, see (Mahmood et al., 2014).

10. For vector-valued random variables X , Xt, t ≥ 0, by “{Xt} converges to X in L1” we mean E[‖Xt −X‖]
t→∞→ 0.

11. We write δt = O(1/t) for a scalar sequence {δt}, if for some c > 0, 0 ≤ δt ≤ c/t for all t.
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3. Properties of Trace Iterates and Convergence Analysis of ELSTD(λ)

In this section we analyze the trace iterates and convergence properties of ELSTD(λ) iterates. The
analysis not only leads to Theorem 2.1 on the convergence of ELSTD(λ), but also prepares the stage
for the subsequent ODE-based convergence proof for ETD(λ), by ensuring that “local averaging”
gives the desired “mean dynamics,” as will be seen in Section 4.

The structure of our analysis will be similar to that of (Yu, 2012) for regular off-policy LSTD(λ),
but the proofs at intermediate steps are new and more involved. Due to space limit, we will explain
only key proof arguments here and include some proofs in Appendix A. The full details of our
analysis can be found in our arXiv report (2015, Appendix A).

3.1. Properties of Trace Iterates

Let Zt = (St, At, et, Ft) for t ≥ 0; they form a Markov chain on S × A × Rn+1. First, we
observe several important properties of the trace iterates {(et, Ft)} and the Markov chain {Zt},
under Assumption 2.1:

(i) For any given initial (e0, F0), supt≥0 E
[∥∥(et, Ft)

∥∥] <∞. (See Prop. A.1.)

(ii) Let {(et, Ft)} and {(êt, F̂t)} be defined by the same recursion (2.2)-(2.4), using the same
state and action random variables, but with different initial conditions (e0, F0) 6= (ê0, F̂0).
Then Ft − F̂t

a.s.→ 0 and et − êt
a.s.→ 0 (the zero vector in Rn). (See Prop. A.2.)

(iii) We can approximate the traces (et, Ft), which depend on the entire history of past states and
actions, by similarly defined “truncated traces” (ẽt,K , F̃t,K) which depend on the most recent
2K states and actions only [cf. Eqs. (A.3)-(A.5)]. The expected approximation “error” can be
bounded uniformly in t, by a constant LK which decreases to 0 as K →∞. (See Prop. A.3.)

(iv) {Zt} is a weak Feller Markov chain12 and bounded in probability,13 and hence it has at least
one invariant probability measure.14

Furthermore, as we will show in Theorem 3.2 below, {Zt} has a unique invariant probability mea-
sure and is ergodic.

These properties suggest that despite the growing variances, the trace iterates are well-behaved.
Figure 1 shows how the convergence results of this section, to be introduced next, will depend on
these properties.

3.2. Main Results on L1 and Almost Sure Convergence

We formulate our convergence results in terms of a general recursion that can be specialized to
the ELSTD(λ) iteration. This generality is needed in order to make the results useful for other

12. A Markov chain {Xt} on a metric space is weak Feller if E[f(X1) | X0 = x] is continuous in x for every bounded
continuous function f on the state space (Meyn and Tweedie, 2009, Prop. 6.1.1(i)). Using this and the fact that
(e1, F1) depends continuously on (e0, F0) [cf. Eqs. (2.2)-(2.4)], the weak Feller property of {Zt} can be seen.

13. A Markov chain {Xt} on a topological space is bounded in probability if, for each initial state x and each ε > 0,
there exists a compact subset D of the state space such that lim inft→∞Px(Xt ∈ D) ≥ 1 − ε, where Px denotes
the probability of events conditional on X0 = x (Meyn and Tweedie, 2009, p. 142). In our case, since S and A are
finite, the property (i) above together with the Markov inequality implies that {Zt} is bounded in probability (cf. Yu,
2012, Lemma 3.4).

14. By (Meyn and Tweedie, 2009, Theorem 12.1.2(ii)), a weak Feller Markov chain bounded in probability has at least
one invariant probability measure. We mention that there is also an alternative, direct proof of the existence of an
invariant probability measure for {Zt}, which does not rely on the weak Feller property (Yu, 2015, Appendix A.6).
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Property (i)

Property (ii)

Property (iii) Properties (ii), (iv)

Theorem 3.1 Theorem 3.2(i)

Theorem 3.3

Theorem 3.2(ii) Proposition 3.1(i)

Proposition 3.1(ii)Property (ii)

Property (iii)

Theorem 3.2

Property (i)Theorems 3.1, 3.3 
Proposition 3.1 Theorem 4.1Theorem 2.1 Theorems 3.1, 3.3, 2.1 

Proposition 3.1(ii)
Theorem 2.2

Figure 1: Diagrams showing dependence relations between the results in this paper. “A → B”
means A is used in proving B.

proofs, specifically, for proving the uniqueness of the invariant probability measure of {Zt}, and
for establishing convergence conditions required by an ODE-based analysis for ETD(λ), as those
proofs will rely on the convergence properties of certain iterates that are different from ELSTD(λ).

We define the general recursion just mentioned as follows. Denote y = (e, F ); thus y ∈ Rn+1.
Consider a vector-valued function h : Rn+1×S ×A×S → Rm such that h(y, s, a, s′) is Lipschitz
continuous in y for each (s, a, s′); i.e., there exists some constant Lh such that for any y, ŷ ∈ Rn+1,∥∥h(y, s, a, s′)− h(ŷ, s, a, s′)

∥∥ ≤ Lh‖y − ŷ‖, ∀ (s, a, s′) ∈ S ×A× S. (3.1)

Given h, {Zt} and the stepsizes {αt}, we define a recursion as follows:

Gt+1 = (1− αt)Gt + αt h(Yt, St, At, St+1). (3.2)

The ELSTD(λ) iterates Ct and bt correspond to the following choices of h, respectively:

h1(y, s, a, s′) = e · ρ(s, a)
(
γ(s′)φ(s′)> − φ(s)>

)
, h2(y, s, a, s′) = e · ρ(s, a) r(s, a, s′). (3.3)

Here h1 is matrix-valued (we view it as an Rm-valued function with m = n × n), and h2 is Rn-
valued. As just mentioned, we will also need to consider other choices of h in our proofs later.

We first show that {Gt} converges in L1 to some constant vector. The proof (given in Ap-
pendix A.2) exploits the property (iii) of truncated traces mentioned earlier: this property allows us
to obtain the desired result by working with simple finite-state Markov chains.

Theorem 3.1 (L1-convergence of {Gt}) Let h be a vector-valued function satisfying the Lipschitz
condition (3.1), and let {Gt} be defined by the recursion (3.2), using the process {Zt}. Then under
Assumptions 2.1, 2.3, there exists a constant vector G∗ (independent of the stepsizes) such that for
any given initial Y0 = (e0, F0) and G0, limt→∞ E

[∥∥Gt −G∗∥∥] = 0.

Next we analyze the a.s. convergence of {Gt}, by using ergodicity properties of the infinite-
space Markov chain {Zt} that we establish first. For each initial condition Z0 = z, define the
occupation probability measures µz,t for t ≥ 1, by µz,t(B) = 1

t

∑t
k=1 1B(Zk) for any Borel subset

B of S×A×Rn+1, where 1B denotes the indicator function for the setB (i.e., 1B(x) = 1 if x ∈ B,
and 1B(x) = 0 otherwise). Let Eµ denote expectation with respect to the probability distribution of
the process {Zt} with µ as the initial distribution of Z0.
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Theorem 3.2 (Ergodicity of {Zt}) Under Assumption 2.1, the Markov chain {Zt} has a unique
invariant probability measure ζ, and moreover, the following hold:
(i) For each initial condition Z0 = z, the sequence {µz,t} of occupation measures converges
weakly15 to ζ, almost surely.
(ii) Eζ

[∥∥h(Z0, S1)
∥∥] <∞ for any function h satisfying the Lipschitz condition (3.1).

The preceding theorem follows from the properties of trace iterates given earlier and Theo-
rem 3.1 (cf. Figure 1). The proof is the same as the corresponding proofs of (Yu, 2012, Theorem
3.2 and Prop. 3.2) for the case of off-policy LSTD. In particular, to prove the uniqueness of the
invariant probability measure (which is not as easy to prove as the existence given in the property
(iv) earlier), we use the property (ii) and the convergence in L1 result given in Theorem 3.1.16

We can now show that {Gt} converges a.s. for stepsize αt = 1/(t+ 1), by using the preceding
results (cf. Figure 1), together with a strong law of large numbers for stationary processes (Doob,
1953, Chap. X, Theorem 2.1) (see also Meyn and Tweedie, 2009, Theorem 17.1.2). The proof is a
verbatim repetition of the proof of (Yu, 2012, Theorem 3.3) and is therefore omitted.

Theorem 3.3 (Almost sure convergence of {Gt}) Let h and {Gt} be as in Theorem 3.1, and let
the stepsize be αt = 1/(t+ 1). Then, under Assumption 2.1, for any given initial Y0 = (e0, F0) and
G0, Gt

a.s.→ G∗, where G∗ = Eζ
[
h(Y0, S0, A0, S1)

]
is the constant vector in Theorem 3.1.

Finally, we also need to analyze the cumulative effects of noise in the observed rewards Rt and
show that they diminish asymptotically. To this end, consider the following recursion: W0 = 0 and

Wt+1 = (1− αt)Wt + αt et ρt · ωt+1, t ≥ 0, (3.4)

where ωt+1 = Rt − r(St, At, St+1) are noise variables.

Proposition 3.1 (Effects of noise in random rewards) Under Assumptions 2.1, 2.3, for any given
initial (e0, F0), we have (i) E

[
‖Wt‖

]
→ 0; and (ii) if, in addition, the stepsize is αt = 1/(t + 1),

then Wt
a.s.→ 0.

The proof of the preceding proposition can be found in our arXiv report (2015, Appendix A.4).
The proof of part (i) uses the property (iii) of truncated traces, similarly to the proof of Theorem 3.1,
and the proof of part (ii) is similar to that of Theorem 3.3 (cf. Figure 1).

The convergence of ELSTD(λ) stated in Theorem 2.1 now follows from the preceding results
(cf. Figure 1). Specifically, we calculate the limit G∗ in Theorem 3.1 for the two functions h1, h2 in
Eq. (3.3), which are associated with the ELSTD(λ) iterates {Ct}, {bt}, respectively, and we show
that G∗ = C for h = h1 and G∗ = b for h = h2. We also write the iterates {bt} equivalently as
bt+1 = Gt+1 +Wt+1 with h = h2 in the definition of {Gt}. Then, the L1-convergence part of The-
orem 2.1 follows from Theorem 3.1 and Prop. 3.1(i), and the a.s. convergence part of Theorem 2.1
follows from Theorem 3.3 and Prop. 3.1(ii). (For further details, see Appendix A.3 and our arXiv
report (2015, Appendix A.5).)

15. For probability measures µ, µt, t ≥ 0, on a metric space X , {µt} is said to converge weakly to µ if for all bounded
continuous functions f on X ,

∫
fdµt →

∫
fdµ as t→∞ (Dudley, 2002, Chap. 9.3).

16. Theorem 3.1 is useful here because on the separable metric space S×A×Rn+1, bounded Lipschitz continuous func-
tions are convergence-determining for weak convergence of probability measures (Dudley, 2002, Theorem 11.3.3).
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4. Convergence Analysis of ETD(λ)

Recall that ETD(λ) calculates iteratively θt, t ≥ 0, according to

θt+1 = θt + αt et · ρt
(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
)
. (4.1)

Using the results of Section 3, we can now analyze its convergence by applying a “mean ODE”
method from stochastic approximation theory (Kushner and Yin, 2003).

Denoting ω̃t+1 = ρt (Rt − r(St, At, St+1)), let us write the iteration (4.1) equivalently as

θt+1 = θt + αt h(θt, ξt) + αt et · ω̃t+1, (4.2)

where ξt = (et, St, At, St+1) and h : Rn × Rn × S ×A× S → Rn is given by

h(θ, ξ) = e · ρ(s, a)
(
r(s, a, s′) + γ(s′)φ(s′)>θ − φ(s)>θ

)
, for ξ = (e, s, a, s′). (4.3)

We will apply (Kushner and Yin, 2003, Theorem 6.1.1) to analyze the convergence of {θt} generated
by (4.1). The “mean ODE” associated with ETD(λ) (4.1) is

ẋ = h̄(x), where h̄(x) = Cx+ b. (4.4)

When C is negative definite, the above ODE has a unique bounded (constant) solution x(·) ≡ θ∗ =
−C−1b on the time interval (−∞,+∞), and θ∗ is globally asymptotically stable for (4.4) in the
sense of Liapunov (cf. Kushner and Clark, 1978, p. 23-24). (A Liapunov function in this case is
given by ‖θ − θ∗‖22, where ‖ · ‖2 denotes the Euclidean norm.)

However, the a.s. boundedness of {θt} is not easy to prove directly, which has prevented us from
getting the desired convergence θt

a.s.→ θ∗ from (Kushner and Yin, 2003, Theorem 6.1.1) directly.
For this reason, we analyze first a constrained version of (4.1) and establish its convergence. The
result will then help the convergence analysis of the unconstrained algorithm (4.1) in Section 4.2.

4.1. Convergence of Constrained ETD(λ)

Consider the following constrained ETD(λ) algorithm:

θt+1 = ΠB

(
θt + αt h(θt, ξt) + αt et · ω̃t+1

)
, (4.5)

where B is a closed ball in Rn with a sufficiently large radius r: B = {θ ∈ Rn | ‖θ‖2 ≤ r},
and ΠB is the Euclidean projection onto B. The “mean ODE” associated with the constrained
algorithm (4.5) is the projected ODE

ẋ = h̄(x) + z, z ∈ −NB(x), (4.6)

whereNB(x) is the normal cone ofB at x, and z is the boundary reflection term that cancels out the
component of h̄(x) inNB(x) and is the “minimal force” needed to keep the solution in B (Kushner
and Yin, 2003, Chap. 4.3). The negative definiteness of the matrixC implies that the projected ODE
(4.6) has no stationary points other than θ∗ if the radius of B is sufficiently large:

Lemma 4.1 Let c > 0 be such that x>Cx ≤ −c‖x‖22 for all x ∈ Rn. Suppose B has a radius
r > ‖b‖2/c. Then θ∗ lies in the interior of B, and the only solution x(t), t ∈ (−∞,+∞), of the
projected ODE (4.6) in B is x(·) ≡ θ∗.

10



ON CONVERGENCE OF EMPHATIC TEMPORAL-DIFFERENCE LEARNING

The proof of Lemma 4.1 is given in Appendix B. We now apply (Kushner and Yin, 2003,
Theorem 6.1.1) and Lemma 4.1 to prove the a.s. convergence of the constrained ETD(λ) as stated in
the theorem below. The proof is given in Appendix B, and it uses the results of Section 3 to verify
the conditions required by (Kushner and Yin, 2003, Theorem 6.1.1).

Theorem 4.1 (Almost sure convergence of constrained ETD(λ)) Let Assumptions 2.1-2.3 hold.
Let {θt} be the sequence generated by the constrained ETD(λ) algorithm (4.5) with stepsizes sat-
isfying αt = O(1/t) and αt−αt+1

αt
= O(1/t), and with the radius r of B exceeding the threshold

given in Lemma 4.1. Then, for any given initial (e0, F0, θ0), θt
a.s.→ θ∗.

4.2. Convergence of ETD(λ)

We now prove the convergence theorem, Theorem 2.2, for the unconstrained ETD(λ) algorithm by
using the convergence of the constrained algorithm we just established. In particular, we shall com-
pare the iterates generated by the unconstrained algorithm with those generated by the constrained
one, and show that the difference between them diminishes asymptotically with probability one.

Let B =
{
θ ∈ Rn | ‖θ‖2 ≤ r

}
with its radius r satisfying the condition of Lemma 4.1. Note

that to project θ onto B is simply to scale θ: ΠBθ = θ if ‖θ‖2 ≤ r; and ΠBθ = r · θ/‖θ‖2 if
‖θ‖2 > r. More concisely,

ΠBθ = η θ, where η = min{1, r/‖θ‖2}.

To simplify notation, define matrix Ht and vector gt by

Ht = et · ρt
(
γt+1 φ(St+1)− φ(St)

)>
, gt = et · ρtRt.

Let us write the constrained algorithm (4.5) equivalently as

θ̃t+1 = (I + αtHt) · ηt θ̃t + αt gt, (4.7)

where η0 = 1 and ηt = min{1, r/‖θ̃t‖2} for t ≥ 1. (For t ≥ 1, ηt θ̃t corresponds to the projected
iterate in (4.5), and θ̃t the iterate just before the projection.) The unconstrained algorithm (4.1) can
be equivalently written as

θt+1 = (I + αtHt) · θt + αt gt. (4.8)

Lemma 4.2 Under the conditions of Theorem 4.1, for any given initial (e0, F0), almost surely, the
sequence of matrices,

∏t
k≥t̄ (I + αkHk), t = t̄, t̄ + 1, . . ., converges to the n × n zero matrix as

t→∞, for all t̄ ≥ 0.

Proof It is sufficient to consider a given (arbitrary) vector y ∈ Rn and prove that for each initial
(e0, F0) and each t̄ ≥ 0,

∏t
k≥t̄ (I + αkHk) y

a.s.→ 0. To this end, consider generating the iterates
θ̃t̄, θ̃t̄+1, . . . , starting from time t̄ and θ̃t̄ = y, by using the constrained algorithm (4.7) as follows:

θ̃k+1 = (I + αkHk) · ηk θ̃k, k ≥ t̄.

In the above, we calculate (ek, Fk) and Hk as before starting from time 0 and the given initial
condition (e0, F0), and we have set gk = Rk = 0 for all k. Notice that since the stepsize sequence
{αt} satisfies the condition of Theorem 4.1, so does the stepsize sequence, αt̄+1, αt̄+2, . . .. Then,

11
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in view of the Markovian property of {(St, At, et, Ft)}, we can apply Theorem 4.1 to the above
iteration starting from time t̄ for each possible value of (et̄, Ft̄), thereby concluding that for the
given (e0, F0) and t̄, θ̃t

a.s.→ 0 (because Rk = 0 for all k and the solution to Cθ = 0 is 0). On the
other hand,

θ̃t+1 =
(∏t

k≥t̄ (I + αkHk)
)
·
(∏t

k≥t̄ ηk

)
· y. (4.9)

Since the solution 0 lies in the interior of B, if θ̃t → 0, then ηk = 1 for all k sufficiently large.
Thus the convergence θ̃t

a.s.→ 0 implies that as t → ∞,
∏t
k≥t̄ ηk converges a.s. to a strictly positive

number that depends on the sample path and the vector y. Consequently, from Eq. (4.9) and the
convergence θ̃t

a.s.→ 0, we obtain that
(∏t

k≥t̄ (I + αkHk)
)
y
a.s.→ 0 as t → ∞. Now this holds for

any given vector y, so by letting y be each column of the identity matrix, it follows that as t→∞,
the matrix

∏t
k≥t̄ (I + αkHk) converges a.s. to the zero matrix.

Finally, we prove the a.s. convergence of the unconstrained ETD(λ) as stated by Theorem 2.2:
Proof of Theorem 2.2 Let {θ̃t} be the iterates generated by the constrained algorithm (4.7) using
the same trajectory of states, actions and rewards that are used by the unconstrained algorithm (4.1)
to generate {θt}. By Theorem 4.1 and Lemma 4.2, there exists a set Ω1 of sample paths such that
Ω1 has probability one and on Ω1,

θ̃t → θ∗ and lim
t→0

∏t
k≥t̄ (I + αkHk) = 0n×n, ∀ t̄ ≥ 0,

where 0n×n denotes the n×n zero matrix. Consider each path in Ω1. By our choice of the constraint
set B, θ∗ lies in the interior of B (Lemma 4.1), so the convergence θ̃t → θ∗ implies the existence of
a path-dependent time t′ <∞ such that ηk = 1 for all k ≥ t′. Then

θ̃k+1 = (I + αkHk) · θ̃k + αk gk, ∀ k ≥ t′,

and consequently,

θk+1 − θ̃k+1 = (I + αkHk) ·
(
θk − θ̃k

)
, ∀ k ≥ t′,

θt+1 − θ̃t+1 =
(∏t

k≥t′ (I + αkHk)
)
·
(
θt′ − θ̃t′

)
, ∀ t ≥ t′. (4.10)

As t→∞, the matrix
∏t
k≥t′ (I + αkHk)→ 0n×n for the sample path under consideration. Thus,

from Eq. (4.10) we obtain θt − θ̃t → 0; since θ̃t → θ∗, this implies θt → θ∗.

Remark 4.1 (Almost sure convergence of regular off-policy TD(λ)) If λ is a constant sufficiently
close to 1, the matrix associated with the “mean updates” of the regular off-policy TD(λ) algorithm
is also negative definite (Bertsekas and Yu, 2009). In that case, (Yu, 2012, Prop. 4.1) established
the a.s. convergence but only for a constrained version of the algorithm, similar to our Theorem 4.1.
The proofs given in this subsection, combined with (Yu, 2012, Prop. 4.1), can be used to establish
the desired a.s. convergence for the unconstrained off-policy TD(λ) in that case.
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Appendix A. Some Proof Details for Section 3

We include in this appendix the following technical results and proofs for Section 3:
(i) formal statements of the properties of trace iterates which we mentioned in Section 3.1 and

used in many proofs;
(ii) the proof of Theorem 3.1, which concerns L1-convergence; and

(iii) the proof of Theorem 2.1 on the convergence of ELSTD(λ), which we outlined at the end of
Section 3.2.

We refer the readers to our arXiv report (2015, Appendix A) for the full details of our analysis, some
of which have been left out in this paper for lack of space.
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A.1. Properties of the Trace Iterates {(et, Ft)}

Throughout this subsection, Assumption 2.1 on the target and behavior policies will be in force and
will not be mentioned explicitly. Recall that {Zt} with Zt = (St, At, et, Ft) denotes the Markov
chain on the joint space S ×A× Rn+1 of states, actions and traces, and it is a weak Feller Markov
chain (cf. Footnote 12). As explained in Section 3.1, since S andA are finite, the follow proposition
implies that {Zt} is bounded in probability and hence, by its weak Feller property, has at least one
invariant probability measure. This proposition is the property (i) mentioned in Section 3.1. We
prove it by a direct calculation, the details of which can be found in (Yu, 2015, Appendix A.2).

Proposition A.1 For any given initial (e0, F0), supt≥0 E
[∥∥(et, Ft)

∥∥] <∞.

The following result is the property (ii) mentioned in Section 3.1. It is useful in several proofs;
in particular, it is used in proving that {Zt} has a unique invariant probability measure.

Let (êt, F̂t), t ≥ 1, be defined by the same recursion (2.2)-(2.4) that defines (et, Ft), using the
same state and action random variables, but with a different initial condition (ê0, F̂0). Let 0 denote
the zero vector in Rn.

Proposition A.2 For any two given initial conditions (e0, F0) and (ê0, F̂0),

Ft − F̂t
a.s.→ 0, et − êt

a.s.→ 0.

The proof of the preceding proposition is given in (Yu, 2015, Appendix A.2). The proof
uses, among others, convergence theorems for nonnegative supermartingales and random processes
(Neveu, 1975).

The property (iii) mentioned in Section 3.1 concerns approximating the trace iterates (et, Ft) by
truncated traces that depend on a fixed number of the most recent states and actions only. To define
the truncated traces, we first express the traces et, Ft, by using their definitions (2.2)-(2.4), as

Ft = F0 ·
(
ρ0γ1 · · · ρt−1γt

)
+

t∑
k=1

i(Sk) ·
(
ρkγk+1 · · · ρt−1γt

)
, (A.1)

et = e0 ·
(
β1 · · ·βt

)
+

t∑
k=1

Mk · φ(Sk) ·
(
βk+1 · · ·βt

)
, (A.2)

where βk = ρk−1γkλk (introduced to simplify notation), and

Mk = λk i(Sk) + (1− λk)Fk.

We consider now the truncated traces Yt,K = (ẽt,K , F̃t,K), defined for each integer K ≥ 1 as

Yt,K = (et, Ft) for t ≤ K,

and for t ≥ K + 1,

F̃t,K =
t∑

k=t−K
i(Sk) ·

(
ρkγk+1 · · · ρt−1γt

)
, (A.3)

M̃t,K = λt i(St) + (1− λt)F̃t,K , (A.4)

ẽt,K =
t∑

k=t−K
M̃k,K · φ(Sk) ·

(
βk+1 · · ·βt

)
. (A.5)
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Denote the original traces by Yt = (et, Ft) (which can be expressed as in Eqs. (A.1)-(A.2)). We
have the following result, in which the notation “LK ↓ 0” means that LK decreases monotonically
to 0 as K →∞, and in which Z0 = (S0, A0, e0, F0) as we recall:

Proposition A.3
(i) For any given initial Y0 = (e0, F0), there exist constants LK ,K ≥ 1, with LK ↓ 0, such that

E
[∥∥Yt − Yt,K∥∥] ≤ LK , ∀ t ≥ 0.

(ii) There exist constants LK ,K ≥ 1, independent of the given initial value of Z0, such that
LK ↓ 0 and

E
[∥∥Yt,K′ − Yt,K∥∥] ≤ LK , ∀K ′ ≥ K, t > 2K ′.

The proof of Prop. A.3 can be found in (Yu, 2015, Appendix A.2). We use this proposition
subsequently to prove Theorem 3.1: it allows us to work with simple finite-space Markov chains,
instead of working with the infinite-space Markov chain {Zt} directly.

Before we proceed further, let us make another remark.

Remark A.1 (On the behavior of trace iterates) From the properties of {(et, Ft)} given above
and the ergodicity of the Markov chain {(St, At, et, Ft)} shown in Theorem 3.2, we see that these
trace iterates are well-behaved. On the other hand, like in regular off-policy algorithms, these
iterates can be unbounded almost surely and their variances can grow to infinity with time. There
are no contradictions here. To illustrate this point, let us consider a simple example with just 1 state
and 2 actions, S = {1},A = {a1, a2}, where all actions result in a self-transition at state 1. Let
π(a1 | 1) = 1 for the target policy π, and let πo(a1 | 1) = q < 1 for the behavior policy πo. Let the
discount factor be a constant γ < 1. Then for all t,

E[ γ2
t ρ

2
t−1 | Ft−1 ] = γ2/q.

Suppose γ2/q > 1. Then even with i(1) = 0, if F0 > 0, the definition Ft = γtρt−1Ft−1 implies
that

E[F 2
t ] = E

[
E[ γ2

t ρ
2
t−1 | Ft−1 ] · F 2

t−1

]
= (γ2/q)t · F 2

0 →∞,

yet since i(1) = 0, {Ft} is also a supermartingale converging to 0 a.s. (Yu, 2015, Lemma A.1). For
the case i(1) > 0, again E[F 2

t ]→∞ if γ2/q > 1, and by (Yu, 2012, Prop. 3.1) the sequence {Ft}
is almost surely unbounded if γ/q > 1, yet {Ft} is bounded in probability in the sense described
by Prop. A.1.

As mentioned earlier in Remark 2.2, it can be desirable to restrict the behavior policy so that
the variances of the trace iterates do not grow to infinity. In the simple example above, this can be
easily arranged. In the general case, however, if the state-dependent discount factor γ(·) can take
the value 1 for some states, then without knowledge of the MDP model, to sufficiently restrict the
behavior policy seems to be a difficult task.

A.2. Proof of Theorem 3.1

For convenience, we restate Theorem 3.1 here. Recall that the theorem concerns the recursion

Gt+1 = (1− αt)Gt + αt h(Yt, St, At, St+1),
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where Yt = (et, Ft), and the function h is Lipschitz continuous in y: for some constant Lh,∥∥h(y, s, a, s′)− h(ŷ, s, a, s′)
∥∥ ≤ Lh‖y − ŷ‖, ∀ y, ŷ ∈ Rn+1, ∀ (s, a, s′) ∈ S ×A× S.

Theorem 3.1 (L1-convergence of {Gt}) Let h be a vector-valued function satisfying the Lipschitz
condition (3.1), and let {Gt} be defined by the recursion (3.2), using the process {Zt}. Then under
Assumptions 2.1, 2.3, there exists a constant vector G∗ (independent of the stepsizes) such that for
any given initial Y0 = (e0, F0) and G0, limt→∞ E

[∥∥Gt −G∗∥∥] = 0.

Proof The proof proceeds in three steps:
(i) For each K ≥ 1, we consider the truncated traces Yt,K = (ẽt,K , F̃t,K), t = 0, 1, . . ., defined by
Eqs. (A.3)-(A.5). Correspondingly, we define iterates G̃0,K = G0 and

G̃t+1,K = (1− αt) G̃t,K + αt h(Yt,K , St, At, St+1).

For each t, Yt,K is a function of (St−2K , At−2K , . . . , St), so h(Yt,K , St, At, St+1) can be viewed
as a function of Xt = (St−2K , At−2K , . . . , St+1), where {Xt} is a finite state Markov chain with
a single recurrent class by Assumption 2.1(ii). Then, with E0 denoting the expectation under the
stationary distribution of the Markov chain {(St, At)}, we have, by a result from stochastic approx-
imation theory (Borkar, 2008, Chap. 6, Theorem 7 and Cor. 8), that under Assumption 2.3 on the
stepsizes,

G̃t,K
a.s.→ G∗K , where G∗K = E0

[
h(Yk,K , Sk, Ak, Sk+1)

]
∀ k > 2K. (A.6)

Clearly, the vector G∗K does not depend on the initial condition (Y0, G0) and the stepsizes {αt}.
Since for all t, ‖G̃t,K‖ ≤ L for some constant L < ∞, we also have by the bounded convergence
theorem

lim
t→∞

E
[∥∥G̃t,K −G∗K∥∥] = 0. (A.7)

(ii) We show that as K → ∞, G∗K converges to some vector G∗. For any K ′ > K, using the
Lipschitz property of h and Prop. A.3(ii), we have that for k > 2K ′,∥∥G∗K′ −G∗K∥∥ =

∥∥E0

[
h
(
Yk,K′ , Sk, Ak, Sk+1

)
− h
(
Yk,K , Sk, Ak, Sk+1

)]∥∥
≤ Lh E0

[∥∥Yk,K′ − Yk,K∥∥] ≤ Lh LK ,
where LK is some constant with LK ↓ 0 as K →∞. This shows that {G∗K} is a Cauchy sequence
and hence converges to some G∗.
(iii) We establish the theorem by bounding the differences between Gt and G̃t,K for an increasing
K. For each K,

lim sup
t→∞

E
[∥∥Gt −G∗∥∥] ≤ lim sup

t→∞
E
[∥∥Gt − G̃t,K∥∥]+ lim sup

t→∞
E
[∥∥G̃t,K −G∗K∥∥]+

∥∥G∗K −G∗∥∥.
In the right-hand side, the second term equals 0 by Eq. (A.7), and the last term converges to 0 as
K →∞, as we just showed in step (ii). Consider now the first term. Since

Gt+1 − G̃t+1,K = (1− αt)
(
Gt − G̃t,K

)
+ αt

(
h(Yt, St, At, St+1)− h(Yt,K , St, At, St+1)

)
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and
∥∥h(Yt, St, At, St+1)−h(Yt,K , St, At, St+1)

∥∥ ≤ Lh‖Yt−Yt,K‖ by the Lipschitz property of h,
we have

E
[∥∥Gt+1 − G̃t+1,K

∥∥] ≤ (1− αt)E
[∥∥Gt − G̃t,K∥∥]+ αtLhE

[
‖Yt − Yt,K‖

]
≤ (1− αt)E

[∥∥Gt − G̃t,K∥∥]+ αtLhLK , (A.8)

where the second inequality follows from Prop. A.3(i), which gives the constants LK ,K ≥ 1, with
LK ↓ 0. For each K, in view of Assumption 2.3 on the stepsize, the inequality (A.8) implies that

lim sup
t→∞

E
[∥∥Gt − G̃t,K∥∥] ≤ LhLK .

Then, since LK ↓ 0, letting K go to infinity in the right-hand side of the preceding inequality, it
follows that limt→∞ E

[∥∥Gt −G∗∥∥] = 0.

A.3. Proof of Theorem 2.1 on the Convergence of ELSTD(λ)

The proof proceeds by calculating the limit G∗ in Theorem 3.1 for the two functions h1, h2 in
Eq. (3.3): with y = (e, F ) ∈ Rn+1,

h1(y, s, a, s′) = e · ρ(s, a)
(
γ(s′)φ(s′)> − φ(s)>

)
, h2(y, s, a, s′) = e · ρ(s, a) r(s, a, s′),

which are associated with the ELSTD(λ) iterates Ct, bt, respectively. Specifically, based on the
proof of Theorem 3.1, we first calculate for each K, the limit G∗K given in Eq. (A.6), which is
associated with the truncated traces (ẽt,K , F̃t,K). We then take K to∞ to get the expression of G∗

since G∗ = limK→∞G
∗
K , as shown in the step (ii) of the proof of Theorem 3.1. The details of this

calculation are given in our arXiv report (2015, Appendix A.5); Lemma A.4 therein establishes that

G∗ = C for h = h1; G∗ = b for h = h2. (A.9)

Then with h = h1, Theorem 3.1 yields the L1-convergence of {Ct} to C, and Theorem 3.3 yields
Ct

a.s.→ C for stepsizes αt = 1/(t+ 1).
For the iterates {bt} [cf. Eq. (2.11)], we also need to take care of the noise in the rewards Rt, by

using Prop. 3.1. Specifically, with W0 = 0, let

ωt+1 = Rt − r(St, At, St+1), Wt+1 = (1− αt)Wt + αt et ρt · ωt+1, t ≥ 0,

[cf. Eq. (3.4)]. By definition,

bt+1 = (1− αt) bt + αt et · ρtRt = (1− αt) bt + αt et · ρt
(
r(St, At, St+1) + ωt+1

)
,

so the iteration for {bt} can be equivalently expressed as

bt+1 = Gt+1 +Wt+1,

whereGt+1 is given by the recursion (3.2) with h = h2 andG0 = b0, andWt+1 is as defined above.
Then by Theorem 3.1, Eq. (A.9) and Prop. 3.1(i), we have

lim
t→∞

E
[∥∥bt − b∥∥] ≤ lim

t→∞
E
[∥∥Gt −G∗∥∥]+ lim

t→∞
E
[∥∥Wt

∥∥] = 0.
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This proves the L1-convergence of {bt} to b. Similarly, its a.s. convergence in the second part of
Theorem 2.1 follows from Theorem 3.3, Eq. (A.9) and Prop. 3.1(ii) as

Gt
a.s.→ G∗ = b and Wt

a.s.→ 0 =⇒ bt = Gt +Wt
a.s.→ b.

This completes the proof of Theorem 2.1.

Appendix B. Proofs for Section 4

In this appendix we prove Lemma 4.1 and Theorem 4.1 for the constrained ETD(λ) algorithm (4.5).
We will restate both theorems for convenience.

Recall that the constrained ETD(λ) calculates θt, t ≥ 0, all restricted to be in a closed ball with
radius r, B = {θ ∈ Rn | ‖θ‖2 ≤ r}, according to

θt+1 = ΠB

(
θt + αt h(θt, ξt) + αt et · ω̃t+1

)
,

where ω̃t+1 = ρt
(
Rt−r(St, At, St+1)

)
is noise, ξt = (et, St, At, St+1), and the function h is given

by Eq. (4.3) as

h(θ, ξ) = e · ρ(s, a)
(
r(s, a, s′) + γ(s′)φ(s′)>θ − φ(s)>θ

)
, for ξ = (e, s, a, s′).

The “mean ODE” associated with this algorithm is the projected ODE (4.6):

ẋ = h̄(x) + z, z ∈ −NB(x),

where h̄(x) = Cx + b, NB(x) is the normal cone of B at x, and z is the boundary reflection term
that keeps the solution in B (Kushner and Yin, 2003). The solution of h̄(x) = 0 is denoted θ∗; i.e.,
θ∗ = −C−1b.

Lemma 4.1 Let c > 0 be such that x>Cx ≤ −c‖x‖22 for all x ∈ Rn. Suppose B has a radius
r > ‖b‖2/c. Then θ∗ lies in the interior of B, and the only solution x(t), t ∈ (−∞,+∞), of the
projected ODE (4.6) in B is x(·) ≡ θ∗.

Proof By the definition of θ∗, Cθ∗ + b = 0. Therefore,

0 = 〈θ∗, Cθ∗ + b〉 = 〈θ∗, Cθ∗〉+ 〈θ∗, b〉 ≤ −c‖θ∗‖22 + ‖b‖2‖θ∗‖2,

which implies ‖θ∗‖2 ≤ b‖2/c < r, i.e., θ∗ lies in the interior of B.
For a point x on the boundary of B, ‖x‖2 = r and the normal cone NB(x) = {ax | a ≥ 0}.

Since r > ‖b‖2/c, we have

〈x, h̄(x)〉 = 〈x,Cx〉+ 〈x, b〉 ≤ −c‖x‖22 + ‖x‖2‖b‖2 = r (−c r + ‖b‖2) < 0.

This shows that for any x on the boundary of B, h̄(x) points inside B and hence at x, the boundary
reflection term z ∈ −NB(x) that keeps the solution in B is the zero vector. Consequently, any
solution of the projected ODE (4.6) in B is a solution of the ODE (4.4), which is x(·) ≡ θ∗.

Next we prove Theorem 4.1.
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Theorem 4.1 (Almost sure convergence of constrained ETD(λ)) Let Assumptions 2.1-2.3 hold.
Let {θt} be the sequence generated by the constrained ETD(λ) algorithm (4.5) with stepsizes sat-
isfying αt = O(1/t) and αt−αt+1

αt
= O(1/t), and with the radius r of B exceeding the threshold

given in Lemma 4.1. Then, for any given initial (e0, F0, θ0), θt
a.s.→ θ∗.

Proof The desired conclusions will follow immediately from (Kushner and Yin, 2003, Theorem
6.1.1) and Lemma 4.1, if we can show that the conditions of (Kushner and Yin, 2003, Theorem
6.1.1) are met. Relevant here are the conditions A.6.1.1-A.6.1.4 and A.6.1.6-A.6.1.7 in (Kushner
and Yin, 2003, p. 165). We first adapt these six conditions to our problem, and by using stronger
forms of the conditions A.6.1.6-A.6.1.7 given in (Kushner and Yin, 2003, Eq. (6.1.10), p. 166), we
obtain the conditions (i)-(vi) below.

The first two conditions are for the functions h, h̄ [cf. Eqs. (4.3), (4.4)] and the noise {ω̃t}:
(i) supt≥0 E

[
‖h(θt, ξt) + et · ω̃t+1‖

]
<∞.

(ii) h̄(θ) is continuous, and h(θ, ξ) is continuous in θ for each ξ.
Condition (i) is satisfied here. Indeed, we have supt≥0 E

[
‖h(θt, ξt)‖

]
< ∞, in view of Prop. A.1,

the Lipschitz continuity of h in e, and the fact that ‖θt‖2 ≤ r for all t by the definition of the
constrained algorithm. Since the rewards Rt have bounded variances by assumption and the noise
variable ω̃t+1 = ρt

(
Rt − r(St, At, St+1)

)
by definition, we can bound E

[
|ω̃t+1| | Ft

]
by some

constant for all t, where Ft = σ(S0, A0, . . . , St+1), and consequently, we also have supt≥0 E
[
‖et ·

ω̃t+1‖
]
<∞ by Prop. A.1. Hence condition (i) holds. Condition (ii) is also clearly satisfied here.

The four remaining conditions to be introduced are of the same type and relate to the asymptotic
rate of change conditions introduced by (Kushner and Clark, 1978). These conditions can guarantee
that the effects caused by the noises ω̃t+1 or by the discrepancies between h and h̄ asymptotically
“average out” so that the desired convergence can take place.

For any real T ′ > 0, define integerm(T ′) = min{t ≥ 0 |
∑t

k=0 αk > T ′}. Conditions (iii)-(vi)
below are required to hold for each a ≥ 0 and some T > 0 (here a and T are real numbers):

(iii) For each θ,

lim
t→∞

P

sup
j≥t

max
0≤T ′≤T

∥∥∥∥∥∥
m(jT+T ′)−1∑
k=m(jT )

αk

(
h(θ, ξk)− h̄(θ)

)∥∥∥∥∥∥ ≥ a
 = 0. (B.1)

(iv)

lim
t→∞

P

sup
j≥t

max
0≤T ′≤T

∥∥∥∥∥∥
m(jT+T ′)−1∑
k=m(jT )

αk ek · ω̃k+1

∥∥∥∥∥∥ ≥ a
 = 0. (B.2)

(v) There exist nonnegative measurable functions g1(θ), g2(ξ) such that

‖h(θ, ξ)‖ ≤ g1(θ) g2(ξ),

where g1 is bounded on each bounded set of θ, and g2 satisfies that supt≥0 E
[
g2(ξt)

]
< ∞

and

lim
t→∞

P

sup
j≥t

max
0≤T ′≤T

∣∣∣∣∣∣
m(jT+T ′)−1∑
k=m(jT )

αk

(
g2(ξk)− E

[
g2(ξk)

])∣∣∣∣∣∣ ≥ a
 = 0. (B.3)
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(vi) There exist nonnegative measurable functions g3(θ), g4(ξ) such that for each θ, θ′,

‖h(θ, ξ)− h(θ′, ξ)‖ ≤ g3(θ − θ′) g4(ξ),

where g3 is bounded on each bounded set of θ, with g3(θ)→ 0 as θ → 0, and g4 satisfies that
supt≥0 E

[
g4(ξt)

]
<∞ and

lim
t→∞

P

sup
j≥t

max
0≤T ′≤T

∣∣∣∣∣∣
m(jT+T ′)−1∑
k=m(jT )

αk

(
g4(ξk)− E

[
g4(ξk)

])∣∣∣∣∣∣ ≥ a
 = 0. (B.4)

One method given in (Kushner and Yin, 2003, Chap. 6.2, p. 170-171) of verifying the conditions
(B.1)-(B.4) above is to show that a strong law of large numbers hold for the processes involved. In
particular, let ψk represent h(θ, ξk)− h̄(θ) for condition (iii), ek · ω̃k+1 for condition (iv), g2(ξk)−
E
[
g2(ξk)

]
for condition (v), and g4(ξk)− E

[
g4(ξk)

]
for condition (vi). If

1

t+ 1

t∑
k=0

ψk
a.s.→ 0 (B.5)

for the respective {ψk}, then the conditions (B.1)-(B.4) hold for stepsizes satisfying αt = O(1/t)
and αt−αt+1

αt
= O(1/t) (see Kushner and Yin, 2003, Example 6.1, p. 171).

We now apply the convergence results given earlier in this paper to show that the desired con-
vergence (B.5) holds for the processes involved in conditions (iii)-(vi). In particular, for each fixed
θ, the almost sure convergence part of Theorem 2.1 implies that

1

t+ 1

t∑
k=0

h(θ, ξk)
a.s.→ Eζ

[
h(θ, ξ0)

]
= h̄(θ).

Thus, condition (iii) holds, as just discussed. By Prop. 3.1(ii), 1
t+1

∑t
k=0 ek · ω̃k+1

a.s.→ 0, so
condition (iv) is also met.

We verify now conditions (v)-(vi). For condition (v), we take g1(θ) = ‖θ‖ + 1, and we bound
the function h by

‖h(θ, ξ)‖ ≤
(
‖θ‖+ 1

)
g2(ξ), where g2(ξ) = L‖e‖,

and L > 0 is some constant. (This bound can be verified directly using the expression of h and the
fact that the sets S and A are finite.) Similarly, for condition (vi), we take g3(θ) = ‖θ‖, and we
bound the change in h(θ, ξ) in terms of the change in θ as follows: for any θ, θ′ ∈ Rn,∥∥h(θ, ξ)− h(θ′, ξ)

∥∥ ≤ ‖θ − θ′‖ g4(ξ), where g4(ξ) = L′‖e‖,

and L′ > 0 is some constant. Now the functions g2, g4 are Lipschitz continuous in e. Hence, for
j = 2, 4, it follows from Prop. A.1 that supt≥0 E

[
gj(ξt)

]
< ∞, and it follows from Theorems 3.3

and 3.1 that

1

t+ 1

t∑
k=0

gj(ξk)
a.s.→ Eζ

[
gj(ξ0)

]
, and

1

t+ 1

t∑
k=0

E
[
gj(ξk)

]
→ Eζ

[
gj(ξ0)

]
, as t→∞.
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The preceding two relations imply the desired convergence:

1

t+ 1

t∑
k=0

(
gj(ξk)− E

[
gj(ξk)

]) a.s.→ 0, j = 2, 4.

This shows that conditions (v)-(vi) are met.
The theorem now follows by combining (Kushner and Yin, 2003, Theorem 6.1.1) with the char-

acterization of the solution of the projected ODE (4.6) given by Lemma 4.1, using the fact that under
Assumptions 2.1 and 2.2, the matrix C is negative definite (Prop. C.1).

Appendix C. Negative Definiteness of the Matrix C

In this appendix we prove a necessary and sufficient condition (Prop. C.2 below) for the matrix C
associated with ETD(λ) to be negative definite. Recall from Eqs. (2.8)-(2.9) that

C = −Φ> M̄(I − P λπ,γ) Φ

where Φ is the feature matrix with full column rank, P λπ,γ is a substochatic matrix, and M̄ is a
nonnegative diagonal matrix with its diagonal, diag(M̄), given by

diag(M̄) = d>πo,i(I − P λπ,γ)−1, d>πo,i =
(
dπo(1) i(1), . . . , dπo(N) i(N)

)
.

Here Assumption 2.1 is in force and ensures that (I − P λπ,γ)−1 exists and dπo(s) > 0 for all s ∈ S.
The negative definiteness of C is important for the a.s. convergence of ETD(λ). It is known to

hold if i(s) > 0 for all s ∈ S (Sutton et al., 2015). In general, C is always negative semidefinite for
nonnegative i(·), and thus C is negative definite whenever it is nonsingular.

In what follows, we first include a proof of the fact just mentioned, for completeness (see
Prop. C.1). We then give explicitly a condition on the approximation subspace which we will prove
to be equivalent to the nonsingularity/negative definiteness of C (Prop. C.2). We also show, by
specializing this subspace condition, that if those states s of interest (i.e., i(s) > 0) are represented
by features φ(s) that are rich enough, then C can be made negative definite, without knowledge
of the model (See Cor. C.1, Remark C.2). In addition, we discuss the connection of this subspace
condition to seminorm projections, and show that when C is nonsingular, the ETD(λ) solution can
be viewed as the solution of a projected Bellman equation involving a seminorm projection (see
Remark C.1).

C.1. Preliminaries

First, recall that the matrix C is said to be negative definite if there exists c > 0 such that

y>Cy ≤ −c ‖y‖22, ∀ y ∈ Rn,

and negative semidefinite if c = 0 in the preceding inequality. The negative definiteness of C is
equivalent to that of the symmetric matrix

C + C> = −Φ>
(
M̄(I − P λπ,γ) + (I − P λπ,γ)>M̄

)
Φ.
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Similarly to (Sutton, 1988; Sutton et al., 2015), our analysis will focus on the N × N symmetric
matrix

G = M̄(I −Q) + (I −Q)>M̄

for the substochastic matrix Q = P λπ,γ and the nonnegative diagonal matrix M̄ as given above. We
will use a theorem from (Varga, 2000, Cor. 1.22, p. 23), according to which a symmetric real matrix
with positive diagonal entries is positive definite if it is strictly diagonally dominant or irreducibly
diagonally dominant. Note that by definition, G is irreducibly diagonally dominant if G is irre-
ducible17 and satisfies the following diagonally dominant conditions for every row of G, with strict
inequality holding for at least one row:

|Gss| ≥
∑
s̄ 6=s
|Gss̄|, s = 1, . . . , N,

whereas G is strictly diagonally dominant if it satisfies the above inequalities strictly for all rows.
We now give a proof of the fact about the relation between the nonsingularity and the negative

definiteness of C mentioned at the beginning. This result is due to (Sutton et al., 2015).
Regarding notation, in the proofs below, for v ∈ RN , we write v(s) for the s-th entry of v, and

for an expression H that results in a vector in RN , we write (H)(s) for the s-th entry of that vector.
For an expression H that results in an N ×N matrix, we write [H]ss̄ for its (s, s̄)-th element. We
write 0 for a zero vector in any Euclidean space.

Proposition C.1 Let Assumption 2.1 hold. Then, C is negative definite if C is nonsingular.

Proof We show first that if i(s) > 0 for all s ∈ S, then G is strictly diagonally dominant, and hence
positive definite; and that if i(s) ≥ 0 for all s ∈ S, then G is positive semidefinite.

Let J = {s ∈ S | i(s) = 0}. Suppose J = ∅. By definition M̄ss =
(
d>πo,i(I − Q)−1

)
(s).

Using this together with the fact that Q is substochastic, by a direct calculation as in (Sutton et al.,
2015), we have that for each s ∈ S,

Gss −
∑
s̄ 6=s
|Gss̄| = M̄ss ·

(
1−

N∑
s̄=1

Qss̄

)
+

N∑
s̄=1

M̄s̄s̄ ·
[
I −Q

]
s̄s

(C.1)

≥ 0 +
(
d>πo,i(I −Q)−1 · (I −Q)

)
(s)

= 0 + dπo,i(s) (C.2)

> 0,

where in the last strict inequality, we used the fact that i(s) > 0 implies dπo,i(s) > 0 under
Assumption 2.1(ii). This shows thatG is strictly diagonally dominant with positive diagonal entries,
and hence positive definite by (Varga, 2000, Cor. 1.22).

Consider now the case J 6= ∅. For all s ∈ J , perturb i(s) to δ > 0, and denote by Gδ the
matrix G corresponding to the perturbed i(·). Then Gδ is positive definite by the preceding proof.
So for the original G, by continuity, G = limδ→0Gδ is positive semidefinite. It then follows that
the matrix Φ>GΦ = −C −C> is positive semidefinite. Hence C is negative semidefinite; but C is
nonsingular by assumption, so C must be negative definite.

17. A symmetric matrix G is irreducible if it corresponds to a connected (undirected) graph when the indices are viewed
as the nodes of the graph, and the nonzero entries of G are viewed as edges of the graph.
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C.2. Main Result

We now give the main result of this section. It expresses the nonsingularity condition onC explicitly
in terms of a condition on the approximation subspace E (the column space of Φ).

Proposition C.2 Let Assumption 2.1 hold, and let J0 = {s ∈ S | M̄ss = 0}. Suppose the
approximation subspace E ⊂ RN is such that

v ∈ E and v(s) = 0, ∀ s 6∈ J0 =⇒ v = 0. (C.3)

Then the matrix C is negative definite. Furthermore, C is nonsingular if and only if the condi-
tion (C.3) holds.

The corollary below gives a sufficient condition (C.4) for C being negative definite, which can
be fulfilled without knowledge of the model, as we will elaborate in Remark C.2. This corollary
is a direct consequence of the preceding proposition, and follows from the observation that since
i(s) > 0 implies M̄ss > 0, the condition (C.4) implies the condition (C.3) in Prop. C.2.

Corollary C.1 Let Assumption 2.1 hold, and let J = {s ∈ S | i(s) = 0}. Suppose the approxi-
mation subspace E ⊂ RN is such that

v ∈ E and v(s) = 0, ∀ s 6∈ J =⇒ v = 0. (C.4)

Then the matrix C is negative definite.

We now proceed to prove Prop. C.2. Roughly speaking, the method of proof is to decompose
the matrixG into irreducible diagonal blocks and use, among others, the theorem (Varga, 2000, Cor.
1.22, p. 23) on irreducibly diagonally dominant matrices mentioned earlier.

In the two technical lemmas that follow, we let the matrixG and the nonnegative diagonal matrix
M̄ take a slightly more general form:

G = M̄(I −Q) +
(
M̄(I −Q)

)>
, diag(M̄) = d>πo,i (I −Q)−1,

where Q is a substochastic matrix (not necessarily P λπ,γ), and dπo,i is a nonnegative vector (for
notational simplicity, we keep using dπo,i instead of introducing new notation).

Lemma C.1 Suppose the matrix (I − Q) is invertible. Then the s-th diagonal entry M̄ss = 0 if
and only if the s-th row and s-th column of G contain all zeros.

Proof We have G = M̄(I −Q) +
(
M̄(I −Q)

)>. Suppose s is a state with M̄ss 6= 0. Then the s-th
row of the matrix M(I −Q) is nonzero (because the s-th row of I −Q is nonzero, given that (I −
Q)−1 exists). The nonzero entries of this row cannot be canceled out by the corresponding entries
from the s-th row of

(
M̄(I − Q)

)>, because Q is a substochastic matrix and M̄ is nonnegative.
Therefore, the s-th row of G must also be nonzero. This proves the “if” part.

For the “only if” part, suppose s is a state with M̄ss = 0. Then the s-th row of the matrix
M̄(I −Q) contains all zeros, so, since G = M̄(I −Q) +

(
M̄(I −Q)

)> and is symmetric, to prove
the “only if” part, we only need to show that the s-th column of M̄(I − Q) is a zero column. We
prove this by contradiction.
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Suppose for some state s̄ 6= s, the (s̄, s)-entry of the matrix M̄(I −Q) is nonzero. Then using
the definition of M̄s̄s̄, this entry can be expressed as

Ms̄s̄ ·
[
I −Q

]
s̄s

= −
(
d>πo,i (I −Q)−1

)
(s̄) ·Qs̄s 6= 0,

which, in view of the equality (I −Q)−1 =
∑

k≥0Q
k and the nonnegativity of Q, implies that(

d>πo,iQ
k
)
(s̄) ·Qs̄s > 0 for some k ≥ 0.

This in turn implies that for the state s,(
d>πo,iQ

k
)
(s) > 0 for some k ≥ 0,

and hence
M̄ss =

(
d>πo,i (I −Q)−1

)
(s) ≥

(
d>πo,iQ

k
)
(s) > 0,

contradicting the assumption M̄ss = 0. Thus the s-th column of M̄(I−Q) must be a zero column.

Lemma C.2 Suppose that the matrix (I − Q) is invertible and the matrix G is irreducible. Then
the diagonal entries of M̄ must be positive, and G is irreducibly diagonally dominant with positive
diagonal entries, and hence positive definite.

Proof If s is a state with M̄ss = 0, by Lemma C.1, the s-th row and s-th column ofG would contain
all zeros, which cannot happen if G is irreducible. Thus M̄ss > 0 for all s ∈ S.

We have calculated in the proof of Prop. C.1 [cf. Eqs. (C.1)-(C.2)] that for nonnegative i(·),

Gss −
∑
s̄ 6=s
|Gss̄| = M̄ss ·

(
1−

N∑
s̄=1

Qss̄

)
+

N∑
s̄=1

M̄s̄s̄ ·
[
I −Q

]
s̄s
≥ 0

for all rows s. The strict inequality Gss −
∑

s̄ 6=s |Gss̄| > 0 must hold for some s. To see this,
note that the invertibility of (I − Q) implies that 1 −

∑N
s̄=1Qss̄ > 0 for some s, which together

with M̄ss > 0 implies that the first term in the right-hand side above, M̄ss ·
(

1−
∑N

s̄=1Qss̄

)
,

must be positive for at least one row s, whereas the second term in the right-hand side above equals
dπo,i(s) ≥ 0 [cf. Eqs. (C.1)-(C.2)]. Since G is irreducible by assumption, this proves that G is
irreducibly diagonally dominant.

Finally, since Q is substochastic and (I −Q)−1 exists, the diagonals of I −Q must be positive.
The diagonals of M̄ are also positive, as proved earlier. Thus the diagonal entries Gss > 0 for all
rows s. It then follows from (Varga, 2000, Cor. 1.22) that G is positive definite.

We are now ready to prove Prop. C.2. Regarding notation, in the proof, if G1, G2, . . . , GL are
L square matrices (which can have different sizes), we will write diag

(
G1, G2, . . . , GL

)
for the

block-diagonal matrix that has Gk as its k-th diagonal block. However, for a single square matrix
G1, we will keep using diag(G1) to mean the diagonal of G1.

Proof of Prop. C.2 By Assumption 2.1(i), (I − PπΓ)−1 exists, which implies that for the sub-
stochastic matrix Q = P λπ,γ [cf. Eq. (2.6)], (I −Q)−1 also exists. So the matrices M̄ , C and G are
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well defined. By reordering the states if necessary, we can arrange G into a block-diagonal matrix
with L blocks,

G = diag
(
G(1), . . . , G(L−1), G(L)

)
(C.5)

such that:
(i) for each ` = 1, . . . , L− 1, the `th-block G(`) is irreducible; and

(ii) the L-th block G(L) is a zero matrix (if G does not have a zero block, we will treat G(L) as a
matrix of size zero, and this will not affect the proof below).

Note that by Lemma C.1, the row/column indices associated with the zero block G(L) are exactly
those in the set

J0 = {s ∈ S | M̄ss = 0}.

Since the condition (C.3) rules out the case J0 = S, G cannot be a zero matrix, so it must have at
least one irreducible block.

We prove next that the matrix Q has the following structure, matching the block-diagonal struc-
ture of G:

Q =


Q(1)

Q(2)

HH
Q(L−1)

∗ ∗ · · · ∗ ∗

 (C.6)

where the blocks Q(`), ` ≤ L − 1, on the diagonal correspond to the blocks G(`), ` ≤ L − 1, on
the diagonal of G, the unmarked blocks contain all zeros, and the ∗-blocks can have both zeros and
positive entries.

To prove Eq. (C.6) by contradiction, suppose it does not hold. This means that there must exist
two states s 6= s̄ with Qss̄ > 0, but the entry Qss̄ lies inside an unmarked block of the matrix on
the right-hand side of Eq. (C.6). This position of Qss̄ implies Gss̄ = 0, which is possible only if
M̄ss = 0 (otherwise, Qss̄ 6= 0 would force Gss̄ 6= 0). But if M̄ss = 0, s ∈ J0, which is the set of
indices associated with the last zero block, as shown earlier. Consequently, the entry Qss̄ cannot lie
inside an unmarked block as we assumed. This contradiction proves that Eq. (C.6) must hold.

From the structure of Q shown in (C.6), it follows that (I −Q)−1 has the same structure:

(
I −Q

)−1
=


(
I −Q(1)

)−1 (
I −Q(2)

)−1

HH (
I −Q(L−1)

)−1

∗ ∗ · · · ∗ ∗

 . (C.7)

Since G = M̄(I − Q) + (I − Q)>M̄ , Eqs. (C.5), (C.6) and (C.7) together imply that for each
` ≤ L− 1, the matrix G(`) can be expressed as

G(`) = M̄ (`)
(
I −Q(`)

)
+
(
I −Q(`)

)>
M̄ (`),

where M̄ (`) is the `-th diagonal block in the corresponding decomposition of M̄ as

M̄ = diag
(
M̄ (1), . . . , M̄ (L)

)
,
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and if we decompose the vector dπo,i similarly as dπo,i =
(
d

(1)
πo,i, . . . , d

(L)
πo,i

)
, then for each ` ≤ L−1,

the diagonal block M̄ (`) has its diagonal entries given by

diag
(
M̄ (`)

)
=
(
d

(`)
πo,i

)>(
I −Q(`)

)−1
, ` ≤ L− 1.

In the above expression, we also used the fact d(L)
πo,i = 0, which is implied by M̄ (L) being a zero

matrix (which we showed at the beginning of this proof).18

We now apply Lemma C.2 to each irreducible block G(`), ` ≤ L − 1 (with M̄ = M̄ (`) and
Q = Q(`), a substochastic matrix). This yields that each of these G(`) is positive definite, and
consequently, the block-diagonal matrix

Ĝ = diag
(
G(1), . . . , G(L−1)

)
is positive definite.

Finally, we prove the statement of the proposition. For the block-diagonal decomposition of G
as G = diag(Ĝ,G(L)), write a point y ∈ RN correspondingly as y = (y1, y0). I.e., the indices
of the components of y0 are those in J0 = {s ∈ S | M̄ss = 0}, and the dimension of y1 is
N̂ = N − |J0|.

Since Ĝ is positive definite, there exists some c > 0 such that

y1
>Ĝ y1 ≥ c ‖y1‖22, ∀ y1 ∈ RN̂ . (C.8)

Consider a point y = (y1, y0) ∈ E with y1 = 0. Then y0 = 0 by the assumption (C.3). Since E is
a subspace, this implies that there exists some constant δ > 0 such that

inf
y∈E, ‖y‖2=1

‖y1‖2 ≥ δ. (C.9)

Using Eqs. (C.8)-(C.9), we have

inf
y∈E, ‖y‖2=1

y>Gy = inf
y∈E, ‖y‖2=1

y1
>Ĝ y1 ≥ inf

y∈E, ‖y‖2=1
c ‖y1‖22 ≥ c δ2 > 0. (C.10)

SinceE is the column space of Φ and Φ has linearly independent columns by definition, the inequal-
ity (C.10) establishes that the matrix Φ>GΦ = −C − C> is positive definite, and consequently, C
is negative definite.

The preceding proof also shows that C is nonsingular if the condition (C.3) holds. To complete
the proof, let us assume that the condition (C.3) does not hold and show that C must be singular.
Let y = (y1, y0) ∈ E be such that y1 = 0 and y0 6= 0. Then since G(L) is a zero block, y>Gy = 0,
which implies that the matrix Φ>GΦ = −C − C> is singular. If C were nonsingular, then by
Prop. C.1, −C − C> would be positive definite and hence nonsingular, a contradiction. Therefore,
C must be singular.

Finally, we make two remarks on the conditions (C.3) and (C.4) in Prop. C.2 and Cor. C.1.

18. Using the expression (I − Q)−1 =
∑
k≥0Q

k, it can be seen from the definition of M̄ss that M̄ss ≥ dπo,i(s).
Therefore, M̄ss = 0 implies that dπo,i(s) = 0.
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Remark C.1 (Seminorm projection) Using seminorm projections to formulate the projected Bell-
man equations associated with TD methods is introduced in (Yu and Bertsekas, 2012). There, con-
ditions of the form (C.3) or (C.4) are used to define a projection on the approximation subspace
with respect to a seminorm. We can use this formulation here to interpret the solution of ETD(λ)
and ELSTD(λ). Specifically, define a weighted Euclidean seminorm ‖ · ‖M̄ on RN , using diag(M̄)
as the weights, as

‖v‖2M̄ =
∑

s∈S M̄ss · v(s)2.

Condition (C.3) ensures that the projection ΠM̄ onto E with respect to the seminorm ‖ · ‖M̄ is
well-defined and has the matrix representation

ΠM̄ = Φ
(
Φ>M̄Φ

)−1
Φ>M̄

(cf. Yu and Bertsekas, 2012, Sec. 2.1). So by Prop. C.2 and the convergence results of this paper,
when C is nonsingular, ETD(λ) and ELSTD(λ) solve in the limit the projected Bellman equation

v = ΠM̄

(
rλπ,γ + P λπ,γ v

)
.

The relation between the solution v = Φθ∗ of this equation and the desired value function vπ, in
particular, the approximation error, can be analyzed then, using the oblique projection viewpoint
(Scherrer, 2010) (for details, see also (Yu and Bertsekas, 2012)).

Remark C.2 (Equivalent conditions in terms of features) The condition (C.3) can be paraphrased
in terms of the features φ(s) as follows:

∀ s ∈ S with M̄ss = 0, φ(s) ∈ span
{
φ(s̄)

∣∣ s̄ ∈ S and M̄s̄s̄ > 0
}

; (C.11)

namely, from those states with positive emphasis weights M̄s̄s̄ > 0, n linearly independent feature
vectors can be found. Similarly, the condition (C.4) can be paraphrased as:

∀ s ∈ S with i(s) = 0, φ(s) ∈ span
{
φ(s̄)

∣∣ s̄ ∈ S and i(s̄) > 0
}

; (C.12)

namely, from the states with positive interest weights, n linearly independent feature vectors can be
found. This shows that even without knowing Pπ and M̄ , by designing a rich enough set of features
for states of interest beforehand, we can ensure the sufficient condition (C.4) for the nonsingularity
and negative definiteness of the matrix C.

Conditions like (C.11), (C.12) [or equivalently, (C.3), (C.4)] are naturally satisfied in the case
where the approximate values of the policy π at certain states (e.g., those states s with M̄ss =
0 or i(s) = 0) are interpolated or extrapolated from the approximate values of π at some other
“representative” states, based on the “proximity” of the former states to the representative ones.
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