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Abstract
We consider the problem of estimating occurrence rates of rare events for extremely sparse
data using pre-existing hierarchies and selected features to perform inference along multiple
dimensions. In particular, we focus on the problem of estimating click rates for {Advertiser,
Publisher, User} tuples where both the Advertisers and the Publishers are organized as
hierarchies that capture broad contextual information at different levels of granularities.
Typically, the click rates are low and the coverage of the hierarchies and dimensions is
sparse. To overcome these difficulties, we decompose the joint prior of the three-dimensional
Click-Through-Rate (CTR) using tensor decomposition and propose a Multidimensional
Hierarchical Bayesian framework (abbreviated as MadHab). We set up a specific framework
of each dimension to model dimension-specific characteristics. More specifically, we consider
the hierarchical beta process prior for the Advertiser dimension and for the Publisher
dimension respectively and a feature-dependent mixture model for the User dimension.
Besides the centralized implementation, we propose a distributed algorithm through Spark
for inference which make the model highly scalable and suited for large scale data mining
applications. We demonstrate that on a real world ads campaign platform our framework
can effectively discriminate extremely rare events in terms of their click propensity.

Keywords: Display Advertising, Hierarchical Beta Process Prior, Dependent Mixture
Modeling, Spark.

1. Introduction

Display Advertising has been the subject of rigorous research with extremely fast devel-
opment during the past decade. The area has generated billions of revenue, originated
hundreds of scientific papers and patents, seen a broad variety of implementations, yet
the accuracy of prediction technologies leaves much to be desired. The expected revenue
from displaying each ad is a function of both the bid price and the Click-Through-Rate
(CTR). Sponsored search advertising, contextual advertising, display advertising, and real-
time bidding auctions have all relied heavily on the ability of learned models to predict
ad CTR accurately, quickly and reliably. Note that CTR prediction is not only related
to web publishers’ revenue but users’ experience and advertisers’ payment, because this
influences ranking, filtering, placement and pricing of ads. Campaign performance directly
depends on how well the CTR can be estimated, whereas the performance optimization can
be considered as the problem of accurately estimating CTR. If these quantities are over-
estimated, bid prices will always be higher than what they should be, the advertiser will
waste campaign budget on less valuable impressions; on the other hand, if these quantities
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are underestimated, the advertiser will miss high-value impressions that may have led to ac-
tions and the campaign will under deliver. That is why CTR prediction plays an important
role in the multi-faceted advertising business.

Our work is motivated by the challenges from a world leading advertising platform,
YAM+ (Yahoo! Advertising Manager Plus), which is the flagship of Yahoo!’s program-
matic ad buying application suite. YAM+ offers efficient Real-Time Bidding (RTB) buying
platforms and provides access to Yahoo! and third party inventories. YAM+ capitalizes
on relevant billions of user data that has an incomparable breadth, precision and targeting
history. Such data access allows us to find and target users across all available inventories
including mobile devices. The unparalleled reach across global multi-area exchanges, all
major advertisers and an enormous repository of user data facilitates YAM+’s deployment
and supports campaign management that capitalizes on maximizing ad campaign’s reach,
relevance and exposure frequency. To this end, YAM+ relies on incredible user reach, on
accuracy of targeting and prediction analytics, on effectiveness of real-time bidding algo-
rithms. However, it is a big challenge to set up a flexible complete model framework that
consistently integrates information from different dimensions.

Here we focus on the following challenges. First, CTR generally ranges from 0.001%
to 0.5%, which is highly skewed towards the non-clicked class with very high variances.
Predictions of CTR for ads are generally based on machine learning or statistical models
trained by using the past click data. Examples of such models are logistic regression (Cheng
and Cantú-Paz, 2010; Cheng et al., 2012), probit regression (Graepel et al., 2010), and
boosted trees (Dave and Varma, 2010; Trofimov et al., 2012).

Second, the complexity of Display Advertising is the huge event space, whose data
hierarchies can be expressed as {Advertiser, Publisher, User}. Previous work predominantly
describes separate efforts focused on just Advertiser (Menon et al., 2011), or Publisher
(Tagami et al., 2013), or User (Agichtein et al., 2006; Richardson et al., 2007), with an
integrated multi-dimensional framework being too large and too complex to handle. In our
work we consider hierarchical models with various resolutions for all three dimensions using
tensor decomposition and discuss how to construct an effective integrated framework that
performs inference across all dimensions.

Third, however the dataset we use here is sparse, the amount of data we collect is still
extremely large. Therefore, apart from designing a suitable model which captures the data
generation process accurately, we need to design a scalable algorithm which can consume
the date at the scale we have and fits the model parameters efficiently. For this reason, after
proposing our model, we introduce a novel distributed Marcov Chain Monte Carlo (MCMC)
sampler relying on in-memory distributed computation engine GraphX (Xin et al., 2013)
and Spark (Zaharia et al., 2012).

To the best of our knowledge, we are the first effort to tackle the problem of CTR pre-
diction in such a complete framework. In other words, we encapsulate multiple hierarhicies
and dimensions into a unified Bayesian framework. It is also the first time to deploy such
a multidimensional hierarchical Bayesian framework on Spark through GraphX. The main
advantage is that it allows key information to be shared among the different resolutions and
levels.

1.1. Our Contributions

The main contributions of this paper can be summarized as follows:
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1. For the first time, in the context of computational advertising, we studied problems
where multiple resolutions as well as multiple dimensions may exhibit different degrees
of relatedness, and for such problems we consistently integrate information across
{Advertiser, Publisher, User};

2. We propose a multidimensional hierarchical Bayesian framework, MadHab, which
adaptively learns various multi-resolution relatedness and multi-dimension consis-
tency;

3. We also propose a scalable distributed algorithm for inference that applies graph-
parallel processing to provide posterior sampling from the whole dataset, namely
MadHab-Spark;

4. We carry out extensive analysis of the model and the proposed algorithms focusing
on both the performance and the scalability aspects.

The paper is organized as follows. In Section 2, we briefly review the related work.
The dynamic hierarchical Bayesian framework is proposed in Section 3, followed by two
algorithm descriptions, which are the centralized MCMC algorithm and the distributed one
in popular scalable computational environments on Spark through GraphX in Section 4.
Section 5 compares with state-of-the-art methods on real data sets. Finally, we conclude
the paper in Section 6.

2. Related Work

With the scale of the data as large as our problem, subset-based communication-free par-
allel MCMC methods are crucial. There are currently three main directions to accelerate
computations. First one is to parallelize computation of the likelihood at each MCMC it-
eration (Agarwal and Duchi, 2012). Under conditional independence, calculations can be
conducted separately for mini-batches of data stored on different machines, with results fed
back to a central processor. The bottleneck for this approach is to require communications
within each iteration, which limits the overall speed. Second strategy focuses on using
random mini-batches of data to accelerate expensive gradient calculations in Langevin and
Hamiltonian Monte Carlo algorithms through stochastic approximation (Welling and Teh,
2011). Third direction is to partition the data into mini-batches and run MCMC indepen-
dently without communications and then combine the chains to mimic draws from the full
data posterior distribution (Wang and Dunson, 2014; Scott et al., 2013; Neiswanger et al.,
2013). The last direction is obviously more realistic in a very complex Bayesian framework
and we will parallelize this algorithm by extending Wang and Dunson (2014).

We selected the Spark (Zaharia et al., 2012) distributed computational environment to
implement the proposed algorithms. The Spark framework introduces a richer computa-
tional model which supports the in-memory iterative computations as well. Both systems
are highly scalable and widely used in the industry.

3. Dynamic Hierarchical Bayesian Framework

3.1. Notations

Figure 1 illustrates the hierarchical multidimensional structure for the {Advertiser, Pub-
lisher, User}. Note that this figure does not represent Yam+’s data taxonomy and it is
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Figure 1: Hierarchical Structure for Ads Campaign Platform

mainly provided for illustration and clarification for the presentation. For example, each
ad in the campaign platform can be considered as belonging to an advertising campaign,
which in its turn belongs to an advertiser. Similarly, Publisher dimension also embeds such
hierarchy: several pages may belong to one publisher and the publisher itself may belong
to some category based on its main content. Users can also be segmented hierarchically.
Assuming for the advertiser dimension, a(i, j, k, l) stands for the cluster belonging to the
ith advertiser, jth campaign, kth line and lth ad. Similarly for the publisher dimension,
p(i, j, k, l) stands for the cluster belonging to the ith publisher, jth domain, kth subdomain
and lth page. u(i) stands for the ith cluster of the user.

3.2. Model Formulation

We are considering the following general model:

ya(i,j,k,l),p(i,j,k,l),u(i) ∼ Bernoulli
(
qa(i,j,k,l),p(i,j,k,l),u(i)

)
, (1)

where q = {qa(i,j,k,l),p(i,j,k,l),u(i)} is the probability table representing the underlying click
probabilities for the tuple of {Advertiser, Publisher, User} and ya(i,j,k,l),p(i,j,k,l),u(i) is the ac-
tion that has been taken, e.g., click or no-click. We model the probability table qa(i,j,k,l),p(i,j,k,l),u(i)
using the following beta distribution and decompose the prior probabilities through rank-
one tensor decomposition (Savicky and Vomlel, 2005) to explicitly model the latent CTR
distributions from each dimension:

Beta
(
cqqa(i,j,k,l)qp(i,j,k,l,t)qu(i), cq(1− qa(i,j,k,l)qp(i,j,k,l,t)qu(i))

)
,

where qa(i,j,k,l) is the marginal CTR for the Advertiser dimension, and similarly qp(i,j,k,l,t)
and qu(i) are marginal probabilities for the Publisher and User dimensions. More specifically,
we model the prior marginal probabilities of Advertisers, Publishers and Users as follows.

Advertisers and Publishers There are usually millions of advertisers and a few hun-
dred publishers and the main difficulty in such simultaneous rate estimation is the paucity
of data and absence of events at fine resolution. Hence rate estimates obtained indepen-
dently for each cell are often unreliable and noisy. When data is hierarchical, borrowing
strength from aggregates across multiple resolutions often leads to estimates with a good
bias-variance trade-off. We extend the hierarchical Beta priors (Zhou et al., 2011) to per-
form such borrowing. In general, a “small sample size correction” obtained by properly
pooling information across different data aggregates provides better estimates.

36



Spark Bayesian

Instead of choosing the hyper parameters directly for the hierarchical Beta priors, one
can choose a central point (mean or mode) and some measure of the spread for the prior
distribution. For the prior mean, one can consider the average CTR on different levels,
that is the long-term frequency of the observed event of interest: set α/(α + β) to be the
empirical CTR, where α and β are the corresponding shape parameters for the Beta priors.
For the binary variables, this sample mean coincides with the frequency that the event
happens in the sample. The choice of the spread is more difficult since sample variance of
the observations is not a good choice, especially if the prior distribution is highly skewed.
An alternative is to estimate how many extra ensemble members c′ the prior information is
worth. To conclude, we formulate the hierarchical beta prior for such hierarchical structure
as following:

qai,j,k,l ∼ Beta
(
c3qai,j,k , c3(1− qai,j,k)

)
,

qai,j,k ∼ Beta
(
c2qai,j , c2(1− qai,j )

)
,

qai,j ∼ Beta
(
c1qai , c1(1− qai)

)
, (2)

qai ∼ Beta
(
c0qa, c0(1− qa)

)
.

We estimate the marginal probabilities of Advertisers at multiple resolutions, ai stands for
the ith Advertiser, ai,j stands for the jth campaign belonging to the ith Advertiser, ai,j,k
stands for the kth line belonging to the jth campaign and ai,j,k,l denotes the lth ads in the
hierarchical tree structures, which are determined by existing hierarchies. These have been
created and constantly refined by domain experts; they are well understood and routinely
used in applications. Apart from the ease of interpretability, there are other advantages in
using such hierarchies. First, they provide a natural and intuitive framework to analyze
CTRs at multiple scales, from coarser to successively finer resolutions. The hierarchical Beta
prior is expected to induce correlations in CTRs among siblings at each resolution. Also, at
coarser resolutions, aggregation induced by the hierarchical Beta prior helps in combating
data sparseness and providing reliable estimates for rare events. Note that aggregation
can substantially reduce variance but is likely to incur bias. However, if the hierarchy
is informative and siblings are homogeneous, the variance reduction will far outweigh the
increase in bias. Similar hierarchical set up holds for Publishers dimensions.

Users Agichtein et al. (2006) showed that incorporating user behavior data can signifi-
cantly improve the ordering of top results in reality, Richardson et al. (2007) also employed
logistic regression to predict the CTR for newly created ads, using dimension-specific fea-
tures. We denote xu(i) the corresponding user features from cluster u(i) and use the following
mixture to capture the user variabilities (Zaman et al., 2014):

logit(qu(i)) ∼ Normal
(
x′u(i)βu(i), U

2
i

)
, (3)

(βu(i), U
2
i ) ∼

J∑
j=1

πjNormal-Inverse-Gamma(β∗j , U
∗
j ),

where (β∗j , U
∗
j ) are cluster-specific parameters and πj is the weights for the jth cluster. We can

rewrite the above formulation as following:

logit(qi) ∼ Normal
(
x′u(i)βu(i), U

2
i

)
,

{βu(i), U2
i }|(Zi = j) ∼ Normal-IG(β∗j , U

∗
j ;β0,Ω0, γ1, γ2)

U∗j ∼ IG(γ1, γ2), β∗j ∼ Normal(β0,Ω0), Ω0 ∼ Inverse-Wishart(γ0, I0)

Zi ∼ MultiNormial(π), π = {π1, . . . , πJ}, π ∼ Dirichlet(θ), θ = {θ1, . . . , θJ}, (4)
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where IG(γ1, γ2) stands for inverse gamma distribution with shape and scale parameter
γ1 and γ2, (β0,Ω0) are prior mean and covariance for the latent cluster mean β∗j , (γ0, I0)
are the degree of freedom and scale matrix for Ω0, θs are prior parameters for the Dirichlet
distributions. We choose non-informative priors for the above set up, e.g., β0 is an 0 vector
and Ω0 is a diagonal matrix with 103 in the diagonals and θs are chosen to be 1. After the
learning, we will further segment the users based on the latent marginal CTR distribution
for the user dimension.

3.3. Model Calibration

One of most important paradigms in display advertising is to predict well calibrated prob-
abilities; good accuracy or area under the Receiver Operating Characteristic (ROC) curve
are not sufficient. In this scenario, campaign performance directly depends on how well the
CTR can be estimated and the performance optimization can be considered as the problem
of accurately estimating CTR. If these quantities are overestimated, bid prices will always
be higher than what they should be, the advertiser will waste campaign budget on less valu-
able impressions; on the other hand, if these quantities are underestimated, the advertiser
will miss high-value impressions that might have led to actions and the campaign will under
deliver. In Niculescu-Mizil and Caruana (2005a) and Niculescu-Mizil and Caruana (2005b)
they qualitatively examine what kinds of distortions these calibration methods are suitable
for and quantitatively examine how much data they need to be effective.

However, we show in the following sections that no calibration is needed for a Bayesian
framework (e.g., forecasts follow a Bernoulli distribution) which corresponds to a linear
calibration of the relative frequencies. Graepel et al. (2010) also empirically showed their
Bayesian framework adPredictor does not need calibration. For the sake of simplicity,
assuming that p(yt|pt) ∼ Bernoulli(pt). Denote p(pt|It) the posterior distribution of pt and
It accounts for all left parameters and observed information related to parameter pt. The
predictive distribution of p(yt|It) then can be calculated as following:

p(yt|It) =

∫
p(yt|It, pt)p(pt|It)dpt =

∫
p(yt|pt)p(pt|It)dpt =

∫
pytt (1− pt)(1− yt)p(pt|It)dpt

=

{ ∫
ptp(pt|It)dpt if yt = 1∫

(1− pt)p(pt|It)dpt if yt = 0
=

{ ∫
E(pt|It) if yt = 1

1−
∫
E(pt|It) if yt = 0

Thus yt|It ∼ Bernoulli(E(pt|It)) and Pr(yt = 1|It) = E(pt|It). So the estimated pt is the
corresponding latent CTR.

4. The Proposed Algorithm

To simplify the description of the algorithm updates, we assume that there are only two
levels for the Advertiser dimension and Publisher dimension respectively, however, it is
easily extended for multi-level hierarchies.

4.1. Markov Chain Monte Carlo

We use the following Markov Chain Monte Carlo algorithm to update unknown parameters:

Top Level Decomposition Updates
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1. Denote Nai,j ,pt number of impressions for a specific user and update qai,j ,pt,ui through:

Beta

(∑
i,j,pt

(yai,j ,pt,ui) + cqqai,jqptqui , Nai,j ,pt −
∑
i,j,pt

(yai,j ,pt,ui) + cq(1− qai,jqptqui)

)
(5)

Similarly, Nai,j ,ui stands for number of impressions for a specific publisher and update
a specific Publisher through:

Beta

(∑
i,j,ui

(yai,j ,pt,ui) + cqqai,jqptqui , Nai,j ,ui −
∑
i,j,ui

(yai,j ,pt,ui) + cq(1− qai,jqptqui)

)
(6)

For a specific Advertiser layer through:

Beta

(∑
pt,ui

(yai,j ,pt,ui) + cqqai,jqptqui , Npt,ui −
∑
pt,ui

(yai,j ,pt,ui) + cq(1− qai,jqptqui)

)
(7)

Advertisers and Publishers Dimension Updates

2. The posterior distribution of Advertiser probability qai,j is proportional to

f(qai,j | · · · ) ∝
( ∏

pt,ui

(
qaijptui

1− qaijptui

)cqqptqui

)qaij
× qc1qai−1aij

(
1− qaij

)c1(1−qai )−1. (8)

which cannot be directly sampled from using a closed form posterior distribution.
Alternatively, we use the following slice sampling (Damlen1 et al., 2002) by introducing
auxiliary variables ua and va:

ua ∼ unif(0, q
c1qai−1
aij ), va ∼ unif(0,

(
1− qaij

)c1(1−qai )−1)
and then draw qaij from the following truncated exponential distribution:

Exp

( ∏
pt,ui

(
1− qaijptui

qaijptui

)cqqptqui

)
I(qaij ), (9)

where I(qaij ) represents the range derived from (9).

3. Similarly, the posterior distribution of qai is proportional to:∏
j

q
c1qai−1
ai,j (1− qai,j )c1(1−qai )−1 × qc0q0−1ai (1− qai)c0(1−q0)−1

∝
(∏

j

( qai,j
1− qai,j

))qai
× qc0q0−1ai (1− qai)c0(1−q0)−1

and will be updated through slice sampling as well. Updates for Publishers dimension
proceed similarly.

Users Dimension Updates

39



Ormandi Yang Lu

4. The posterior distribution for qui is proportional to

f(qui | · · · ) ∝
∏
aij ,pt

[( qaijptui

1− qaijptui

)cqqaij qpt]qui exp

{
−

(
log(

qui
1−qui

)− x′ui
βZi

)2
2U2

Zi

}
(10)

We use Metropolis-Hastings Method to update qui and our proposal distribution is
g(qui |q∗ui

) = Beta(cuq
∗
ui
, cu(1 − q∗ui

)), where q∗ui
is the update from the last iteration.

We accept the new qui with the following probability:

f(qui)g(q∗ui
|qui)

f(q∗ui
)g(qui |q∗ui

)
(11)

5. The posterior distribution of β∗j is as following:

∏
Zi=j,i=1,...,N

exp
{
−

(log(
qui

1−qui
)− x′iβ

∗
j )2

2U2
j

}
× exp{−

(β∗j − β0)′Ω
−1
0 (β∗j − β0)
2

} (12)

And we update β∗j through multivariate normal with mean:

( ∑
Zi=j,i=1,...,N

xix
′
i

U2
j

+ Ω−1j

)−1 × ( ∑
Zi=j

xi log(
qui

1−qui
)

U2
j

+ Ω−1j β0
)

(13)

and the covariance matrix: ( ∑
Zi=j,i=1,...,N

xix
′
i

U2
j

+ Ω−10

)−1
(14)

6. The posterior distribution of Uj is proportional to:

∏
Zi=j,i=1,...,N

exp
{
−

(log(
qui

1−qui
)− x′iβ

∗
j )2

2U2
j

}
× U2(α+1)

i exp{− γ

U2
j

} (15)

We update U2
j through

U2
j ∼ IG

(
α+

∑
I(Zi == j)

2
, γ +

1

2

∑
Zi=j

(
log(

qui

1− qui

)− x′iβ
∗
j )2
)

7. Update Zi is updated through the multinormial distribution with π∗j with the con-

straint that
∑J

j=1 π
∗
j = 1

π∗j ∝ πj lognormal(qui ;x
′
iβ
∗
j , U

2
j ) (16)

8. πj is updated through

π ∼ Dirichlet
( N∑
i=1

I(Zi == j) + θj
)

(17)

Based on the above discussion, the proposed algorithm is summarized in Algorithm 1.
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Algorithm 1 Batch Markov Chain Monte Carlo(MCMC) Algorithm

Require: yai,jptui , xp,t, xui , cq, c0:1, qa,Bt, σ
2, Qt, γ0 and θ

Ensure: the initial value for qai,j , qpi,j , qui , θ0, Z, β0 and Ω0

1: for i = 1 to Total number of iterations do
2: for ai,j do
3: for pt do
4: for ui do
5: Update qai,j ,pi,j ,ui through Beta distributions as in Item 1. Section 4 ;
6: Update qai,j and qai through truncated exponential distributions as in Item 2.

and Item 3. of Section 4;
7: Draw qpi,j and related parameters similarly to qai,j ;
8: Update related parameters for user variabilities through the mixture distribu-

tions in Item 5. to Item 8. of Section 4 .
9: end for

10: end for
11: end for
12: end for

4.2. Scalability

To be able to successfully apply the proposed model in real world application, we need to
design efficient distributed algorithm that “scales well”. That is, it can fit the parameters
of the model specified in Section 3.2 efficiently using vey large amount of data stored
distibutedly in some cluster arhitecture.

In this section, we propose a distributed algorithm for fitting the parameters of the
model specified in Section 3.2. We provide an analysis of the algorithm and compare
it to the centralized algorithm presented in Algorithm 1 and a Map-Reduce-based naive
distributed implementation, detailed later in Sec. 5.2, in terms of accuracy, speed and
scalability. However, it is important to note that, from the viewpoint of the scalability, the
centrailized algorithm can be seen as a hypothetical algorithm; since it is not possible to
run this algorithm at large scale.

4.2.1. The Distributed Implementation

The real challenge of the large scale distributed model building is often that, and this is
true in the case of our model too, the size of the model itself is too large to be stored on a
single machine. One possible solution to tackle the problem is to decompose the problem
into smaller sub-problems, and then apply multiple machines to solve the sub-problems
independently, then combine the solutions of the sub-problems to obtain an approximation
of the original problems.

Another approach is to find a way to distribute the model and data across multiple
machine in a way that a large portion of the computation corresponding to the model
building can be performed parallel (maximizing the use of multiple machines) while the
synchronization between machines (model components) should be rare or asynchronous.
This is a different approach than the one mentioned above; since here parallel executions
of “local operations” on model components with lightweight or no (asynchronous) sync
between them leads to “global convergence”.
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Our distributed algorithm, called MadHab-Spark, addresses the problem of model fitting
by adopting the second approach above. The distributed representation of algorithm relies
on the fact that the MCMC updates, defined in Section 4.1, of a particular node depends
only on the nodes located in the Markov blanket of the given node in the Bayesian Network
representation of the model (Murphy, 2012). Hence, the posterior updating algorithms of
two or more nodes can be executed independently and parallel assuming that, they are
distant from each other in the Bayesian network.

This observation leads to the following distributed algorithm implemented using the
distributed graph computational API called GraphX (Xin et al., 2013, 2014) running on
the top distributed framework Spark (Zaharia et al., 2012):

• Input: The algorithm receives a general description of the model in the form of prop-
erty graph which describes the model as a Bayesian network, i.e. a directed acyclic
graph (DAG), and binds the observations to data pieces stored in the distributed file
system HDFS.

• Initialization: As a first step, the algorithm builds the in-memory model structure
by creating a distributed property graph (Xin et al., 2013), called the blanket graph,
loads the data into the observation nodes of the model and initializes the remaining
nodes.

• Processing: The algorithm runs the posterior update algorithms defined in Section 4.1
on each Markov blanket as a distributed graph node program and spread the updated
values along the blanket edges within Gather-Apply-Scatter (Xin et al., 2013) cycles
iteratively.

In the algorithm description above, the referred blanket graph is a DAG G = (V,E)
created from the Bayesian Network representation of the model presented in Figure 2.
Each Markov blanket of the original model is represented as a blanket node v ∈ V in the
blanket graph. Moreover, we introduce a directed blanket edge between two blanket nodes
v and w if and only if there is an edge running in the original model between the Bayesian
network nodes assigned to v and w respectively.

The initialization of the different type of nodes is as follows: (1) the observation nodes
(the one associated with data) receives the their values from the data, (2) the prior nodes
(the one without incoming edges in Fig. 2) receives their predefined values coming as part
of the input, and (3) the initial values of the stochastic nodes are drawn as random value
according to the distribution associated with them using the parent values as parameters.

It is easy to see that the above edge definition of the blanket graph exactly describes the
computational dependencies between the Markov blankets. Hence, the above mentioned
algorithm computes exactly the same output as the centralized algorithm. As a corollary,
the performance of the algorithm is independent from the number of worker machines (unlike
in the case of our second baseline detailed in the Section 5.1). Also, one can note that the
above defined algorithm is independent from the specified model and one can easily adapt
the algorithm to different models. However, the scalability of the algorithm depends on the
structure of the blanket graph, meaning that applying it on different model structures may
lead to different scalability results.
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q0

c0

qp,t xp,t

. . . θt−1 θt

... ξt εt

0̄ Qt 0̄ σ2
0

c1

qi

c2

qi,j

qi,j,k y

q quc

xu Zu

π

δ0

βl U2
l

β0 ω0 α0 γ0

∀n ∈ N

∀p ∈ P

∀t ∈ T

∀u ∈ U

∀k ∈ K

∀j ∈ J

∀i ∈ I
∀l ∈ L

Figure 2: A slightly simplified Bayesian Network representation of the model. Here q is a
shorthand of qi,j,k,p,t,u and y is a shorthand of yi,j,k,p,t,u,n. The value of θt depends
on its value from the previous iteration. This is denoted by the arrow from θt−1.

5. Experiments

In this section, we first describe the features, data sets and baseline algorithms used in the
experimental evaluations. Then, we carry out extensive evaluations and present the experi-
mental results using the world leading advertising platform YAM+ to show the effectiveness
of the proposed framework MadHab.

5.1. Experimental Setup

We have collected the data of one running campaign with life cycle spanning from 01/19/2015
till 03/31/2015. This campaign has multiple lines with each line consisting of several ads.
Each line has its specific targeting criteria with allocated budgets. The campaign itself
has a setup cost-per-click (CPC) goal and is bidding with a dynamical click-per-impression
(CPM) pricing type. If a CPC goal is set up, then the optimal bid price can be determined
from the expected cost-per-impression, which is equal to the CTR for this impression mul-
tiplied by the CPC goal (Chen et al., 2011). On average, the dataset contains 8 million
instances daily with 134 selected features from the different resolutions for Advertisers,
Publishers and Users.

The campaigns are running on YAM+, which is a Demand Side Platform (DSP). YAM+
provides the capabilities to do the real-time bidding for the advertiser on both Yahoo! and
3rd party inventories. The platform’s goal is to maximize its campaigns performance. It is
roughly 100ms before a time-out for DSP to decide which ad to bid and how much to bid for
an incoming ad call. And, the predictive models need to be executed multiple times (once
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for each eligible ad) before this time-out threshold. Furthermore, in this environment, there
are significant variances on daily actively running campaigns as well as supplied inventories.
So, it requires the model to be able to run very fast and also automatically adapt to the
external changes by itself.

5.2. Baseline Algorithms

To evaluate the algorithm MadHab, we introduced several baseline algorithms. The first
one, is the centralized algorithm introduced in Algorithm 1. This cannot be considered as
a distributed algorithm. We use the provided performance as a reference.

The further baseline algorithms utilize the Map-Reduce framework. We applied the
popular regularized Generalized linear model using Lasso (Tibshirani, 1996) and Elastic
Net (Zou and Hastie, 2005) on the 3 dimensions {Advertiser, Publisher, User} independently
with and without calibration (Niculescu-Mizil and Caruana, 2005b) implemented on the top
of the Map-Reduce framework.

The next baseline algorithm, called MadHab-MapReduce, is a straightforward dis-
tributed implementation of our model on the top of the Map-Reduce framework. The
main idea of the algorithm is as follows. Each mapper machine in the system is responsible
for handling a subset Xi of the whole dataset. Each of them applies independent MCMC
sampling from the subset posterior density (i.e from p(θ|Xi)). Because of the nature of the
distributed framework Map-Reduce, these subset samplers run in parallel. Then, the subset
samples are combined by the only one reducer which computes the Weierstrass transforma-
tion (Wang and Dunson, 2014). This implementation can be seen as a highly parallelized
approximation of the batch MCMC algorithm.

The clear advantage of this baseline algorithm is that it is simple and fits well to the
widely used Map-Reduce framework. However, the performance-scalability trade-off of the
algorithm, as we will show empirically in the Section 5.3, heavily depends on the number
of mappers applied. When the number of mappers is too few, we cannot parallelize enough
the execution to get a scalable algorithm; on the other hand when it is too large, the dataset
Xi per mapper is too small to be able to build an efficient sub-model. As we discussed in
Section 4.2.1, the proposed algorithm MadHab does not have this restriction.

5.3. Click Prediction Analysis for Ads

Using the above introduced database and applying baseline algorithms defined in the pre-
vious subsection, we experimented in the following scenarios:

1. Regularized Generalized Linear Model using Lasso (Tibshirani, 1996) Elastic Net (Zou
and Hastie, 2005) with calibration through isotonic regression (Niculescu-Mizil and
Caruana, 2005b);

2. MadHab-MapReduce without calibration;

3. MadHab-Spark without calibration.

We also tested the sensitivity of the performances of algorithm 1 to 3 on different
number of mappers, ranging from 80 to 10000. To quantify the quality of the ranking that
results from different algorithms according to the predicted probability, we compare the
algorithms’ areas under the ROC curve (or AUC). Results are listed in Figure 3 (LHS).
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Figure 3: Performance and processing time comparison

As we can see, when the number of mappers increase, the related accuracies decrease. In
general, Lasso achieves the worst performances and Elastic Net performs better compared
to Lasso. Elastic Net is a better choice when features are correlated and the 134 features
selected from the different resolutions of the different hierarchies are somewhat correlated
with each. MadHab-MapReduce achieves the 2nd best, however, the performances still
get worse as the number of mappers increase. MadHab-Spark is ranked the best over the
four algorithms. We also show the average time per iteration of the different algorithms in
Figure 3 (RHS). Here clearly the algorithm MadHab is the most preferable choice.

5.4. Score Calibration

In this part, we explore the influence of dataset imbalance on the model performance for
the campaign. As we have pointed out, we use the AUC as the performance metric. We
show in Section 3.3 that it is important for the model calibration for generalized linear
model through either Lasso or Elastic Net and theoretically showed that for the Bayesian
framework, calibration is not needed. The resulted CTR scores for Lasso and Elastic Net are
plotted in the left part of Figure 4. However, they are located far from the underlying true
CTR which is around 0.4% on average. The scale of the logistic regression output scores
are quite sensitive to the imbalance ratio of the data as illustrated. After the calibration,
the scores coincide with the actual campaign CTR rates (see the right part of Figure 4). It
is also clear that MadHab does not need the calibration.

6. Conclusions

In this paper we dealt with the problem of CTR prediction in the context of display ad-
vertising. We proposed a novel hierarchical Bayesian framework which models the problem
along multiple dimensions and with various resolutions jointly. In addition, we developed a
highly scalable distributed algorithm for performing inference in this model framework on
Spark through the framework GraphX.

Our main conclusion is that the proposed model achieves a significant improvement
in terms of prediction performance, while the computational complexity of the parameter
inference can be kept at a manageable level by applying the proposed algorithms in a
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Figure 4: CTR Scores with and without calibration

suitable distributed environment. These two facts confirm that it is worth modeling complex
problems, like the CTR prediction, at the original level of complexity by applying e.g. the
flexible Bayesian modeling framework within the suitable computational environments.
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