
JMLR: Workshop and Conference Proceedings 41:81–96, 2015 BIGMINE 2015

Shared Execution of Clustering Tasks

Padmashree Ravindra paravin@microsoft.com
Microsoft Corporation, USA

Rajeev Gupta grajeev@in.ibm.com
IBM Research, India

Kemafor Anyanwu kogan@ncsu.edu

North Carolina State University, USA

Editors: Wei Fan, Albert Bifet, Qiang Yang and Philip Yu

Abstract

Clustering is a central problem in non-relational data analysis, with k-means being the most
popular clustering technique. In various scenarios, it may be necessary to perform clustering
over the same input data multiple times – with different values of k, different clustering
attributes, or different initial centroids – before arriving at the final solution. In this paper,
we propose algorithms for parallel execution of multiple runs of k-means clustering in a
way that achieves substantial savings of IO and processing resources. Proposed algorithms
can easily be implemented over Hadoop/MapReduce, Spark, etc., with savings in map and
reduce phases. Extensive performance evaluation using real-world datasets show that the
proposed algorithms result in up to 40% savings in response times when compared to other
optimization techniques proposed in literature as well as open-source implementations. The
algorithms scale well with increasing data sizes, values of k, and number of clustering tasks.

1. Introduction

Clustering is a key data mining task, widely used (Aggarwal and Reddy, 2013) in many
fields, including social network analysis, customer segmentation, and biological data anal-
ysis. The goal of a clustering task is to partition the data into interesting groups based on
similarity of their characteristics, e.g., purchasing patterns of customers or interests of Twit-
ter users. k -means is the most popular clustering technique, due to its simplicity and wide
applicability. A popular heuristic for k -means clustering is the Lloyd’s algorithm (Lloyd,
1982), that consists of two primary steps:

1) Assignment step: assign each data point to the closest of k clusters based on a user-
specified distance metric.

2) Recalculation step: re-calculate each cluster center based on the set of data points
assigned to that cluster.

The above two steps are repeated (Lloyd’s iteration) sequentially until the algorithm
converges, i.e., k final clusters are generated. The k -means clustering process typically
involves running the algorithm multiple times with different values of k, different clustering
attributes, different initial centroids, etc. Consider a scenario where a business analyst
wants to cluster customers based on their age, income, interest in sports, and general health.
A cluster analysis based on these attributes can be used to devise customized marketing

c© 2015 P. Ravindra, R. Gupta & K. Anyanwu.

Ravindra Gupta Anyanwu

strategies to cater to the needs of specific groups of people such as healthy and interested
in sports, senior citizens interested in specific fitness programs, etc. The analyst may try
out different cluster sizes (values of k) and different clustering attributes such as:

T1: CLUSTER users INTO k=2 ON { age, income, bloodPressure, sportsInterest }
T2: CLUSTER users INTO k=4 ON { age, income, bloodPressure, sportsInterest }
T3: CLUSTER users INTO k=2 ON { age, sportsInterest }

Task T1 clusters users into 2 groups based on age, income, blood pressure, and sports
interest, whereas T2 clusters them into 4 groups (same attributes). T3 clusters users based on
a different set of attributes. After analyzing the clustering results, the analyst can decide
on reasonable groupings based on the density of clusters, cluster sizes, and convergence
criteria, and run more tasks with different input parameters. Results for the three tasks are
completely different, providing different views of the same data, one of the main motivations
for multi-clustering solutions1. Typically, multiple runs of clustering with different criteria
are executed sequentially. In this paper, we consider scenarios where a number of such
trial-error iterations can be performed in parallel, specifically using distributed algorithms
that enable sharing of assignment and recalculation steps across clustering tasks.

1.1. Large Scale k-means Clustering

Large scale clustering solutions can be supported by leveraging various distributed data pro-
cessing platforms (Bialecki et al.; Isard et al., 2007; Zaharia et al., 2010). Apache Hadoop2,
the most popular open-source distributed data processing framework, allows easy scale-
out processing on large clusters of cheap commodity hardware in a fault-tolerant manner.
Hadoop implements the MapReduce (Dean and Ghemawat, 2004) programming model,
which allows users to encode computational tasks as map-reduce function pairs, that are
executed in parallel across a number of machines. Input data is stored in the Hadoop
Distributed File System (HDFS). During processing, chunks of data are processed by slave
processes called mappers, which execute a user-defined map function on each input data
record. Mappers emit key-value pairs that are sorted and partitioned based on keys. The
partitioned data records are temporarily stored in the local disk of mappers. Reducers fetch
their assigned partitions from the mappers, sort the records based on keys, and invoke a
user-defined reduce function on each key partition. Though, in this paper, we illustrate
implementations of the clustering solutions using Hadoop MapReduce, the algorithms can
benefit from various aspects provided by systems such as Apache Spark (Zaharia et al.,
2010), e.g., main-memory processing, user-controlled process execution, etc.

Let us consider the implementation of a k-means clustering task on Hadoop MapReduce
and the associated IO and processing costs. Each Lloyd iteration, involving assignment and
recalculation steps of a k-means clustering task can be implemented as a MapReduce job
(referred as NoShare in Section 4), as given in literature (Pais and Rong, 2011): For each
data point, mappers extract the clustering attributes, assign the data point to the nearest
cluster based on a user-defined distance metric, and emit the identifier of the closest cluster
(clusId) as the key, and the data point as the value. Reducers aggregate data points

1. http://dme.rwth-aachen.de/en/DMCS
2. https://hadoop.apache.org/

82

http://dme.rwth-aachen.de/en/DMCS
https://hadoop.apache.org/

ShareClustering

belonging to the same cluster i.e., same clusId, and recalculate centroids. The new set
of centroids are written into HDFS. A driver program of the k -means clustering task runs
the map-reduce functions iteratively while monitoring the convergence of data clusters.
Example convergence criteria include maximum number of iterations, a threshold over the
sum of distances between centroids of consecutive iterations, etc.

Each MapReduce iteration incurs HDFS read IO cost, processing cost for the assignment
phase, data shuffling cost involving local disk writes, network cost to transfer data points
to reducers, processing cost to recalculate centroids, and HDFS write IO costs. In our
example scenario, multiple iterations of each of the clustering tasks T1, T2, and T3, are
executed sequentially, compounding the overall costs. Furthermore, the three tasks read
the same input data (redundant scans) and perform similar processing in the assignment-
recalculation steps, which may be avoidable.

1.2. Contributions and Outline

Several techniques have been proposed to reduce costs of MapReduce-based processing by
reducing the length of MapReduce execution workflows (Afrati and Ullman, 2010; Abouzeid
et al., 2009; Lee et al., 2011), sharing scans and computations across MapReduce jobs (Nykiel
et al., 2010; Wang et al., 2011) and reusing intermediate data for iterative data analysis
tasks (Bu et al., 2010). An important question to be answered is, Can these techniques be
applied without understanding the semantics of the underlying operations? There is some
existing work that considers relational operations (Nykiel et al., 2010). Are the same prin-
ciples applicable to non-relational operations? In this paper, we use specific characteristics
of k -means clustering to guide shared execution of multiple clustering tasks. Ours is the
first work considering optimizations across multiple clustering tasks. While there exist
some extensions of Hadoop for iterative tasks (Bu et al., 2010) and incremental computa-
tions (Bhatotia et al., 2011), we use clustering semantics to propose optimizations across
clustering tasks. Specifically we make the following contributions:

• We identify cost-sharing opportunities that benefit use-cases requiring multiple runs
of clustering with different criteria, e.g., value of k or clustering attributes.

• We propose a novel algorithm to improve performance of the assignment step when
executing multiple clustering tasks in parallel. The key idea is to use the assignment of
one clustering task to guide assignments in other clustering tasks without calculating
distances between a data point and all cluster centers.

• Distributed processing on platforms like Hadoop, involves network data transfer to
aggregate data points for the recalculation step. We propose an algorithm that allows
sharing of data transfers across multiple clustering tasks, thereby reducing the number
of intermediate map keys and reducer processing time.

• We present a comprehensive performance evaluation using two real-world astronomy
data sets and include comparison with a Mahout-based (Pais and Rong, 2011) im-
plementation of k -means clustering. Experiments demonstrate that the proposed
algorithms require half the response time compared to other MapReduce algorithms.

83

Ravindra Gupta Anyanwu

ClusterId Centroid

Cl1 0.27

Cl2 0.71

ClusterId Centroid

Cl3 0.1

Cl4 0.4

Cl5 0.6

Cl6 0.9

T1: Cluster A on A.c1 into K1=2

(0.45) Cl1_J1

individualAssign(0.45, ClusK1)
individualAssign(0.45, ClusK2)

(0.45) Cl4_J2

Mapper1

map()

Mappern

…

recalcCentroid(Cl1)

Cl1_J1 (0.45,…,0.18)

reduce() …

Reducerm

Cl1 0.33

(0.45, Cl4_J2) Cl1

collaborativeAssign
 (0.45, ClusK1, ClusK2)

Mapper1

map()

Mappern

…

Cl1 (<0.45, Cl4_J2>,…,<0.18, Cl3_J2>)

reduce() …

Reducerm

Cl1 0.33 Cl3 0.18|1
Cl4 0.96|3

Initial Centroids ClusK1

Initial Centroids ClusK2

ShareScan ShareClustering

T2: Cluster A on A.c1 into K2=4

(a) (b) (c)

Out1 Out1

Out2

recalcCentroid(Cl1)
partialRecalc(Cl4,..,Cl3)

Figure 1: (a) Clustering tasks T1 and T2 with initial centroids ClusK1 and ClusK2, Shared
execution of T1 and T2 using (b) ShareScan and (c) ShareClustering

Here is the organization of the paper: Section 2 describes the ShareScan algorithm for
sharing of scans across tasks based on Nykiel et al. (2010). Section 3 presents clustering-
specific algorithms that enable sharing of the assignment and recalculation steps across
tasks, implemented as the ShareClustering algorithm. Section 4 presents evaluation results,
followed by related work and concluding remarks in Section 5 and 6, respectively.

2. Sharing Scans Across Clustering Tasks

In this section, we describe how input data scans for multiple clustering tasks can be shared
(ShareScan) to avoid redundant data reads. Nykiel et al. (2010) present a case for sharing
scans across a number of relational GROUP BY queries. Consider m clustering tasks (identified
by taskId) over the same input data each with different values of k (k1, k2, ..., km) and
different sets of initial centroids (Clusk1 , Clusk2 ,...,Cluskm). Rather than executing the
tasks independently, a merged task can read the input data once and perform k-means
clustering as per requirements of different tasks. The mapper function of the merged task
extracts clustering attributes for each taskId, uses them to compute the closest cluster (one
for each taskId) and emits the taskId clusId as key with data point as value. Thus, each
data point leads to m emissions, one for each of the tasks. All the data corresponding to the
same taskId clusId are sent to the same reducer, which recalculates the cluster centroid.
The new cluster information with the recalculated centroid is written into a HDFS file
corresponding to taskId which can be used by the next Lloyd’s iteration. A driver program
runs these steps iteratively till all tasks converge.

Consider a set of initial clusters Clusk1 and Clusk2 in Figure 1(a), corresponding to
two tasks T1 (k1 = 2) and T2 (k2 = 4). Figure 1(b) illustrates the ShareScan algorithm.
Let individualAssign() be the function responsible for cluster assignment. Then, for a
data point (0.45), individualAssign() determines that the closest cluster for task T1 is
Cl1 ∈ Clusk1 (and Cl4 ∈ Clusk2 for task T2). Two map output records are generated with
keys Cl1 T1 and Cl4 T2, and assigned to reducers based on the composite key. Thus, each
reduce recalculates the centroid for some cluster across tasks.

To summarize, the ShareScan implementation shares data scans, while having indepen-
dent reducers (as taskId is part of the intermediate key). MapReduce’s Combiner function
can be used to pre-aggregate data points assigned to the same taskId clusId, to reduce

84

ShareClustering

data shuffling costs. Reducers recalculate centroids based on the pre-aggregated cluster
information. Shared scans and combiners are well-known optimizations that can improve
performance of distributed data processing. As we show in Section 4, a combination of
these techniques can lead to cost savings, e.g., a combiner implementation leads to 6% per-
formance improvement for a clustering task with k = 200. Clustering costs can be further
reduced by using semantics of k-means clustering as shown in the next section.

3. Shared Execution of Clustering Tasks

In the ShareScan algorithm, though the cluster assignment phase for multiple tasks is done
together by enabling scan-sharing, assignment of data points to clusters is done indepen-
dently. We present an algorithm for a collaborative cluster assignment that re-uses the
assignment information for one task to enable efficient assignment for other tasks. This al-
gorithm achieves cost sharing by reducing the number of intermediate keys, i.e., map output
of different tasks are aggregated, thus reducing the data transfer overhead. In combination,
the techniques allow sharing of computations across both map and reduce phases.

3.1. Collaborative Cluster Assignment

In this section, we present a collaborative technique for assignment of data points to cen-
troids of different clustering tasks with same set of clustering attributes. Specifically, we
present a geometric argument to the effect that, if a data point is assigned to a particular
centroid in task T1, the data point cannot be assigned to a set of centroids in a task T2.AssignClosest (dp, ClusK1)

 Distance (dp, Cl1.centroid)

…

 Distance (dp, Cln1.centroid)

AssignClosest (dp, ClusK2)

 Distance (dp, Cl1.centroid)

…

 Distance (dp, Cln2.centroid)

C1 L1 L2 L3

L1 - C1L1-C1L2 C1L1-C1L3

L2 C1L2-C1L1 - C1L2-C1L3

L3 C1L3-C1L1 C1L3-C1L2 -

D

P2

P1

S4

S3

S2

S1

P1S1 - P1D < S1D < P1S1 + P1D

P1S2 - P1D < S2D < P1S2 + P1D

S6

S6

? ?

Figure 2: Is S1D < S2D ?

Consider a data point D, and a set of initial centroids:
Clusk1 = {P1, P2} and Clusk2 = {S1, S2, ..., S6}, corr. to clus-
tering tasks T1 (k = 2) and T2 (k = 6), respectively. In ShareS-
can, individualAssign(D, Clusk1) calculates the distance of
D from centroids P1 and P2. Similarly, individualAssign(D,
Clusk2) calculates six distances (between D and centroids S1
to S6). In essence, while executingm k-means clustering tasks,
we calculate the distance of each data point D from

∑m
i=1(ki)

centroids. Such processing costs may not be negligible for
large values of k, large number of clustering tasks, and large
data sizes. The question we need to answer is, Can we reduce
the number of distance calculations per data point? Doing so can save cost per data point
and potentially reduce processing costs.

We denote distances between centroids Pi and Sj as PiSj . Assume that for task T1,
individualAssign(D, Clusk1) is already computed, i.e., distances P1D and P2D are avail-
able. Let S′ = Clusk2 denote the set of possible centroids in T2 that may be closest to D.
We now use distances between centroids in Clusk1 and Clusk2 , along with distances of the
data point with P1 and P2 (i.e., P1D and P2D), to eliminate centroids in S′ that cannot be
closest to D.

Consider points D, P1, S1, and S2 in Fig. 2. By triangle inequality3, we have:

P1S1 − P1D < S1D < P1S1 + P1D

3. Sum of lengths of any two sides of a triangle must be greater than length of the remaining side

85

Ravindra Gupta Anyanwu

P1S2 − P1D < S2D < P1S2 + P1D

Then, S1D < S2D if P1S1 + P1D < P1S2 − P1D, i.e., 2P1D < P1S2 − P1S1 = X112.

Values of Xijk can be calculated for each value of Pi, Sj , and Sk. These values can be
calculated once and compared with PiD for each data value. If we find that 2PiD is less
than Xi12 (elimination criteria), then S1D < S2D (D is closer to S1 than S2). Thus, S2
can never be closest to D and hence can be eliminated from the set of potential centroids S′.
Further, we can eliminate centroids based on any Xijk greater than Xi12. For example, if
Xi54 > Xi12, then Xi54 also meets the elimination criteria, and hence S4 can be eliminated.

Algorithm 1 shows the pseudocode for the proposed collaborative cluster assignment of
tasks with common input and clustering attributes. We designate one task as the primary
task whose cluster assignment is done first (without any help from other tasks). As part
of offline processing (lines 1-8), we pre-compute distances between centroids in the primary
task Clusprim and a secondary task Clussec, and the difference in their distances (Xijk in
line 3). For each value Xijk, we also pre-compute a list of centroids that can be eliminated
(lines 4-8). This list also includes centroids that can be eliminated by all values of Xij′k′

> Xijk. During data processing, we use the value of closest primary-task centroid clusIdp
in collaborativeAssign to find the smallest Xijk that meets the elimination criteria (lines
10-11), and retrieve the set of centroids that can be eliminated (lines 12-13). We then
calculate the closest centroid to D from remaining candidate centroids S′ (line 14).

3.2. Sharing Cluster Information

For a set of m clustering tasks, the intermediate map output and network transfer costs can
be reduced by sharing data references across tasks. Consider the illustration in Fig. 1(c).
Task T2’s cluster information can be embedded into task T1’s cluster information, in a way
that reduces the number of map output records. For a set of m clustering tasks, we now
have just 1 map output record per data point (as opposed to m in ShareScan).

Algorithm 2 provides the pseudocode for sharing cluster information, whose input is
the cluster information for m clustering tasks, represented as ClustaskId. We designate a
primary task and compute the closest cluster clusIdp for the data point (line 16). The
closest clusters corr. to each of the (m − 1) secondary tasks are computed and stored in
secClus (lines 17-19). The key of the map output is the cluster id of the primary task,
as shown in Fig. 1(c). Cluster information of secondary tasks (secClus) is encoded into
the value part of the map output. The map output is partitioned and assigned to reducers
based on the primary cluster clusIdP .

Recalculating Centroids: Since intermediate map output records are partitioned based
on the primary (task) centroids, each reduce has complete information about all data points
assigned to the same primary cluster. However, data points assigned to the same primary
cluster clusIdP , may belong to different secondary clusters, e.g., data points (0.45) and
(0.18) belong to the same primary cluster Cl1 in Fig. 1(c), but belong to different sec-
ondary clusters Cl4 and Cl3, respectively. Also, the cluster information for a secondary
task may be distributed across reducers, e.g., some data points belonging to secondary clus-
ter Cl4 may be assigned to a different primary cluster. Hence, it is only possible to partially
aggregate the data points for secondary tasks. Algorithm 3 shows the pseudocode for this

86

ShareClustering

Algorithm: Shared Execution of Clustering Tasks

//Offline Processing for Collaborative Cluster Assignment:

1 foreach Pi ∈ Clusprim do
2 foreach (Sj , Sk) ∈ Clussec do
3 Xijk ← (PiSk − PiSj);

4 DescX ← Sort X based on decreasing Xijk values;
5 elimList← null;
6 foreach Xijk ∈ DescX do
7 Add Sk to elimList;
8 elimMapi.put(Xijk, elimList);

Algorithm 1: Collaborative Cluster Assignment:

collaborativeAssign (Data point D, clusIdp, Clussec)
9 S′← Clussec;

10 ceilingV al← 2 * distance(D, clusIdp);
11 matchedXijk ← Smallest Xijk greater than ceilingV al;
12 elimList← elimMapi.get(matchedXijk);
13 S′ ← S′ − elimList;
14 clusIdS ← individualAssign(D, S′);

Algorithm 2: Sharing Cluster Information:

shareClusInfo (dataPoint, List of ClustaskId)
//ClustaskId: <clusId, centroid> for taskId

15 D ← extract clustering attributes from dataPoint;
16 clusIdp ← individualAssign(D, Clusprim);
17 foreach secondary task id sec do
18 clusIds ← collaborativeAssign(D, clusIdp, Clussec);
19 Add (sec clusIds, D, 1) to secClus;

//secClus: secondary task cluster info

20 return 〈clusIdp, secClus〉;
Algorithm 3: Updating Cluster Information:

updateClusInfo (clusIdp, List of < secClus >);
21 CntP ← 0 //taskId clusId denoted as tid cid
22 foreach <tid cid, sumD, cntD> ∈ secClus do
23 Aggrtid cid ← aggregate(sumD, Aggrtid cid);
24 Cnttid cid ← cntD + Cnttid cid;

25 foreach cluster id i in some secondary task sec do
26 Aggrp ← aggregate(Aggrsec i, Aggrp);
27 CntP ← aggregate(Cntsec i, Cntp);

28 centroidp ← recalcCentroid(Aggrp, Cntp);
29 foreach aggregated secondary task entry for tid cid do
30 PCtid cid ← partialRecalc(Aggrtid cid, Cnttid cid);

process. First, for each primary cluster, the secondary cluster information in secClus is
aggregated based on secondary task tid and cluster id cid (lines 22-24). Partial centroids
PCtid cid are calculated for each secondary task using this aggregated information. Aggre-
gates for the primary cluster can be computed based on data points assigned to any of the

87

Ravindra Gupta Anyanwu

secondary tasks (lines 25-27), which is then used to recalculate the centroid for the pri-
mary cluster (line 28). Once the partial centroids corr. to all secondary tasks are available,
the final centroids can be computed by aggregating the partial centroids. The proposed
algorithms were implemented using MapReduce, referred as ShareClustering for the rest
of this paper. In map, for each data point, we invoke shareClusInfo(), i.e., cluster assign-
ment of primary task using individualAssign() and assignment of secondary tasks using
collaborativeAssign(). In reduce, we aggregate the data points corresponding to a pri-
mary centroid, and call updateClusInfo() to re-calculate final primary centroids and partial
secondary centroids.

Selection of a Primary Task. Several factors impact the selection of a primary task.
Number of intermediate keys in ShareClustering equals the number of clusters in the primary
task. A primary task with very small k, leads to load balancing issues among reducers,
resulting in overall increase in execution time. If convergence conditions for all tasks are
specified wrt. number of iterations, one may select the one with maximum iterations as
the primary task. Another convergence criteria specifies a limit on residual sum of squares
(RSS) value of the clustering solution4, i.e., sum of squared distance of each data point from
its centroid. In such cases, one can estimate the relative number of iterations based on data
statistics and the convergence condition. More detailed analysis in Section 4.

Sharing Clustering Attributes. ShareClustering can easily be extended for tasks
with different clustering attributes. For example, clustering attributes for task T3 is a
subset of task T1’s attributes. In some cases, clustering attributes may form disjoint sets.
Our solution is to maintain a union of the clustering attributes, and calculate aggregates for
a particular task based on the relevant subset. A task whose clustering attributes have a
maximum overlap (or coincide) with the superset of attributes across tasks, is nominated as
the leading secondary task. A union of the required clustering attributes is extracted for each
data point, and is recorded with the entry of the leading secondary task. Relevant subsets
corresponding to other secondary tasks are extracted from this superset of attributes, while
calculating partial aggregates. A study on the selection of the leading secondary task is
included in Section 4.

4. Empirical Evaluation

We designed a set of experiments to evaluate the various features of our algorithm, such as
scalability with increasing number of clustering tasks, values of k, data sizes, and number of
clustering attributes. Cost analysis of the proposed algorithms is available in Appendix A.

Experiment Setup: Experiments were conducted on 10-node and 20-node Hadoop setups,
with each node being dual core Intel X86 machine with 2.33 GHz processor speed, 4GB
memory, and running Red Hat Linux. The software stack comprises of Hadoop-0.20.2 with
HDFS block size 256MB, replication factor 2, and heap-size for child threads set to 1024MB.
All results recorded were averaged over three trials.

Datasets: We used two real-world astronomy datasets that contain snapshots of particles
from a cosmological simulation5 of the Universe. Each record is a multi-dimensional vector
with 10 to 13 numeric attributes describing mass, velocity, temperature, etc. For evaluation,

4. http://nlp.stanford.edu/IR-book/html/htmledition/k-means-1.html
5. http://nuage.cs.washington.edu/benchmark/astro-nbody/

88

http://nlp.stanford.edu/IR-book/html/htmledition/k-means-1.html
http://nuage.cs.washington.edu/benchmark/astro-nbody/

ShareClustering

2 3 4 5
1000

1500

2000

2500

3000

3500

4000

4500

Number of tasks (with k=4)

R
es

po
ns

e
tim

e
in

 s
ec

s
Execution time for multiple tasks with k=4

NoShare
ShareScan
ShareClustering

(a) Cosmo-Dark, k=4,4,4,...(10-nodes)

2 3 4 5
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of tasks (with increasing value of k)

R
es

po
ns

e
tim

e
in

 s
ec

s

Execution time for multiple tasks with k=2,4,6,...

NoShare (10Nodes)
ShareScan (10Nodes)
ShareClustering (10Nodes)
NoShare (20Nodes)
ShareScan (20Nodes)
ShareClustering (20Nodes)

(b) Cosmo-Gas, k=2,4,6,...(10 vs.20-nodes)
Figure 3: Performance comparison with increasing number of clustering tasks

we use Cosmo-Dark and Cosmo-Gas datasets that correspond to snapshots of dark matter
and gas particles, respectively. As part of preprocessing, numeric column values of these
datasets were normalized using 0-1 normalization (Wang et al., 2009) to ensure that no
single column is dominant during clustering. Data sizes after normalization were 16GB for
Cosmo-Dark and 21.6GB and 128GB for the two Cosmo-Gas datasets. We also used a
synthetic (decision support) benchmark dataset, TPC-H, to corroborate our results (not
presented for lack of space).

We report performance using three iterations of clustering, i.e., three MapReduce jobs
with output as set of recalculated cluster centroids. We omit the last map-only job that
assigns data points to clusters. All results are with combiner implementation. The NoShare
implementation with combiner is similar to the k-means implementation in Mahout (de-
scribed in Section 1.1). We use k = (k1, k2,..) to represent values of k for multiple tasks,
where k1 represents the primary task for ShareClustering.

4.1. Scalability Analysis: Results and Discussion

In this section, we present a scalability study of ShareClustering with increasing values of
k, number of tasks, data sizes, and number of clustering attributes.

1) Increasing Number of Clustering Tasks. Fig. 3(a) shows execution times for
clustering tasks with k=4 but different initial centroids. For the first set with 2 tasks
k=(4,4), ShareClustering shows 37% performance gain over NoShare by enabling sharing of
assignment-recalculation steps. As we increase the number of clustering tasks to 5, ShareS-
can produces 5 tuples (one for each task) per data point while ShareClustering produces
one tuple (all secondary task information piggybacked with primary task information) per
data point. For this case, ShareClustering has a 59% gain over NoShare. Results confirm
that response times of ShareClustering increase much slowly when compared to cases where
data transfer and processing are not shared.

2) Varying Values of k. Fig. 3(b) shows evaluation on 10-node and 20-node Hadoop
setups, with increasing number of tasks, i.e., first set with 2 tasks k=(2,4) to last set
of 5 tasks with k=(2,4,6,8,10). Different values of k impact the number of map output

89

Ravindra Gupta Anyanwu

(40,60) (40,80) (40,100) (40,200) (60,200) (80,200) (100,200)
2000

2500

3000

3500

4000

4500

5000

5500

6000

Values of k

R
es

po
ns

e
tim

e
in

 s
ec

s
Comparison of algorithms with different values of k

NoShare
ShareScan
ShareClustering

(a) Two tasks with increasing k

(40,60) (40,60,80) (40,60,80,100) (40,60,80,100,200)
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Values of k

R
es

po
ns

e
tim

e
in

 s
ec

s

Comparison of algorithms with different values of k

NoShare
ShareScan
ShareClustering

(b) Increasing no. of tasks with increasing k
Figure 4: Study on impact of value of k (Cosmo-Gas, 24-nodes)

keys, e.g., for k=(2,4), ShareScan’s combiner will at most output 6 tuples per mapper,
whereas for k=(2,4,6,8,10), the number will be 30. In case of ShareClustering, same number
of tuples are produced per mapper but the size of tuple increases with the increase in
number of (secondary) clustering tasks. Results show that ShareClustering improves the
benefits of shared execution with a 15% gain over ShareScan for 2 tasks (40% over NoShare),
and 26% with 5 tasks (60% over NoShare), respectively. We repeated the above set of
experiments on a larger 20-node Hadoop setup to study how the proposed algorithms scale
out. The increase in the availability of compute nodes allows more parallel map processing
and reduces the time for input scans, map processing, and sorting. ShareClustering shows
consistent performance across the larger Hadoop setup.

3) Impact of k on Shared Execution. Fig. 4(a) shows results for workloads (x-
axis) with two tasks but with varying values of k (128GB Cosmo-Gas dataset). The first 4
tasks all have primary task with k=40, but with increasing values of k for secondary tasks.
This lets us zoom into the impact of k on the map output size. The per mapper output in
ShareScan increases with the increasing values of k i.e., number of tuples is at most 100,
120, 140, 240, resp. For ShareClustering, this value is at most 40 for all 4 workloads. For
the last 4 tasks with secondary task’s k=200 and varying k for primary task, the cluster
information for 200 secondary clusters are piggybacked across 40, 60, 80, and 100 clusters,
resp. Experiments show that our algorithms perform well even with large values of k, with
30-35% performance gain over NoShare. Fig. 4(b) shows additional results with increasing
number of tasks and larger k values. The benefit of ShareClustering becomes clear with the
last workload consisting of 5 tasks with k=(40,60,80,100,200), with almost 23% performance
gain over ShareScan.

4) Increasing Data Size. Fig. 5(a) shows a scalability study of the shared execution
algorithms with Cosmo-Gas simulation datasets with sizes 20GB and 126GB, resp, (with
20-node Hadoop). While the smaller dataset had approximately 147 million data points,
the larger dataset had about 900 million data points. Across data sizes, ShareCluster-
ing showed an increased performance improvement with increasing number of clustering
tasks. ShareClustering maintains a 8-13% performance gains over ShareScan for k=(2,4),
which increases to 12-22% for the last workload k=(2,4,6,8). Additional experiments using

90

ShareClustering

K=2,4 K=2,4,6 K=2,4,6,8
0

500

1000

1500

2000

2500

Number of tasks with different k

R
es

po
ns

e
tim

e
in

 s
ec

s
Execution time with large data sizes

ShareScan (20GB)
ShareScan (126GB)
ShareClustering (20GB)
ShareClustering (126GB)

(a)

2 4 6
0

500

1000

1500

2000

Number of clustering attributes

R
es

po
ns

e
tim

e
in

 s
ec

s

Varying number of clustering attrs for three tasks with k=4

NoShare
ShareScan
ShareClustering

(b)
Figure 5: Scalability Study with (a) Increasing size of data (Cosmo-Gas, 20-nodes) (b)
Varying number of clustering attributes for tasks k=(4,4,4) (Cosmo-Dark, 10-nodes)

larger synthetic benchmark dataset, TPC-H, showed corroborative evidence of scalability
of ShareClustering (omitted due to lack of space).

5) Varying Number of Clustering Attributes. Clustering on different subsets
of attributes provide different perspectives on the same data. Fig. 5(b) shows evaluation
results with increasing number of clustering attributes from 2 to 6, with time measured for
completing a set of three clustering tasks, each with k = 4 but different initial centroids
(Cosmo-Dark, 10-node Hadoop setup). As expected, all three algorithms have the least
response time for the first set with smallest number of attributes. Increase in number of
clustering attributes, impacts the size of map output for all three algorithms. Experiments
show the benefit of sharing map output and reduce processing for clustering over large
number of attributes (high multi-dimensionality). ShareClustering starts with 6% gain over
ShareScan for 2 attributes, and increases to 13% for 6 attributes.

4.2. Impact Analysis: Results and Discussion

1) Benefit of Collaborative Cluster Assignments. The impact of the collaborative
cluster assignment phase for the workloads in Fig. 4(a) is shown in Fig. 6. For each
workload, we show the number of distance calculations per data point for the primary and
secondary tasks, with and without the collaborative cluster assignment. On an average
we observe that collaborativeAssign is able to reduce 65-80% of secondary task distance
calculations using the primary task centroid information. From the last four workloads, we
observe that a higher value of k in primary task can help prune more secondary centroids.
However, the total distance calculations per data point is also affected by the primary
task’s k (additional details in Table 3). Though MapReduce costs are dominated by scan,
IO, and communication between different nodes, such algorithm-specific strategies can be
used to further reduce the clustering times. Analysis of collaborative cluster assignment for
workloads with increasing tasks (Fig. 4(b)) also showed up to 65% reductions in distance
calculations across secondary tasks. Though we considered eliminating secondary centroids
based on primary-secondary centroid distances, it may be possible to exploit distances
between secondary task centroids to further reduce distance calculations.

91

Ravindra Gupta Anyanwu

Values of k

N
um

be
r

of
 c

al
cu

la
tio

ns
/d

at
a

po
in

t
Reduction in number of distance calculations

(40,60) (40,80) (40,100) (40,200) (60,200) (80,200)(100,200)
0

50

100

150

200

250

300
Primary task
Secondary task
Primary task (collaborativeAssign)
Secondary task (collaborativeAssign)

Figure 6: Benefit of collaborative cluster assign-
ments (Cosmo-Gas, 24-nodes)

Table 1: Shared execution of clus-
tering Tasks with k-means++ (exe-
cution time in seconds)

Approach k=(2,4) k=(2,8)
NoShare
(random) 3936 4700
NoShare
(k-means++) 3097 3884
ShareClustering
(k-means++) 2628 3411

ABC ACB BAC BCA CAB CBA
275

280

285

290

295

300

305

Ordering of Tasks

R
es

po
ns

e
tim

e
in

 s
ec

s

(a) Same k

PQR PRQ QPR QRP RPQ RQP
370

375

380

385

390

395

400

Ordering of Tasks

R
es

po
ns

e
tim

e
in

 s
ec

s

(b) Varying k
Figure 7: Selection of primary and leading secondary tasks (Cosmo-Gas, 20-nodes)

2) Choice of Primary and Leading Secondary Tasks. In the case of workloads
with same set of clustering attributes, experiments showed that ShareClustering performs
consistently, independent of the choice of the primary task. In this section, we consider
tasks with different clustering attributes. Consider a workload with three tasks (all k=4):
Task A, Task B, and Task C with 4, 6, and 12 clustering attributes, resp. Fig. 7(a)
shows the response time for ShareClustering with different choice of primary and leading
secondary task (Cosmo-Gas, 20-node Hadoop setup). Notation ABC denotes that task A
is the primary task and task B is the leading secondary task. Recall that the entry for the
leading secondary task includes the superset of all clustering attributes. Experiments show
that tasks with clustering attributes with maximum overlap with the superset, should be
chosen as the primary and leading secondary tasks, e.g., 12 attributes of task C overlap with
the superset of attributes, and task B has the second maximum overlap. Orderings BCA
and CBA perform the best since the clustering attributes of a primary task are implicitly
encoded as part of the leading secondary task.

For workloads with different values of k, selection of the primary and leading secondary
task depends on the value of k and number of clustering attributes. Consider a workload
with three tasks: P (k=40), Q (k=10), and R (k=20) with 4, 6, and 12 clustering attributes,
resp. Average execution times for each iteration of the different orderings are represented in
Fig. 7(b) (Cosmo-Gas, 20-node Hadoop setup). If a task with high k is chosen as a leading

92

ShareClustering

secondary task, recording the superset of attributes with this entry adds overhead to the
intermediate writes and network transfer costs. Hence, we choose a task with maximum
overlap with the superset of attributes, but as low k value as possible. Results show that
the ordering QRP achieves the best performance, since task R has the maximum overlap
with the superset (12 attributes) and has a low k, when compared to task P . Also, task Q
with low k performs well as the primary task.

3) Benefit of Shared Execution with k-means++. We performed additional
experiments to study the impact of shared execution strategies with the use of another op-
timization technique, i.e., k-means++ (Arthur and Vassilvitskii, 2007) algorithm for initial-
ization of appropriate centroids to improve clustering quality. Table 1 shows a comparison
of execution times for NoShare and ShareClustering with randomly sampled centroids as
well as centroids chosen using the k-means++ algorithm. The reported execution time is the
total execution time till all tasks converge (maximum iteration = 10, convergence threshold
= 0.01). A subset of the data with ∼9 million data points were input to the k-means++
algorithm. For the task with k=2, the k-means++ centroids reduced the required number of
Lloyd’s iterations from 6 to 2. For individual tasks with k=4 and k=8, not much reduction
was achieved. In general, while techniques such as k-means++ reduce the required number
of iterations per task, the proposed shared execution strategies can be applied across tasks
to further enhance the performance improvement.

5. Related Work

Several optimization techniques have been proposed to reduce the length of MapReduce
workflows (Afrati and Ullman, 2010; Abouzeid et al., 2009; Lee et al., 2011) and share scans
and computations (Nykiel et al., 2010; Wang et al., 2011; Bu et al., 2010) to reduce the
IO and network transfer costs. As per MRShare (Nykiel et al., 2010), two tasks can share
map output if they have overlapping intermediate key-value pairs, which is applicable only
when two clustering tasks have common clusterIds and data points are assigned to the same
clusterId across tasks. However, ShareClustering can be applied to tasks with different map
output keys (different clusterIds) and values (subset of clustering attributes).

Data clustering problems have been objects of study for many years by data manage-
ment and data mining researchers (Zhang et al., 1996). Among the various algorithms
proposed for data clustering, k-means is by far the most used algorithm. Although we
have described our technique using Lloyd’s algorithm as the baseline, similar ideas can be
applied to other clustering techniques. Algorithms such as k-means++ (Arthur and Vas-
silvitskii, 2007) or its parallel version (Bahmani et al., 2012) that improve clusterings by
choosing appropriate initial centroids, can be used along with ShareClustering (as shown
in Section 4.2) to reduce the overall clustering time across multiple clustering tasks. Lv
et al. (2010) proposed a parallel k-means algorithm for clustering remote sensing images
using Hadoop. Apache Mahout6 is a library of machine learning algorithms for data clus-
tering, classification, and collaborative filtering on Hadoop. Mahout’s implementation of
k-means is similar to NoShare, and uses a mapper/combiner/reducer/driver flow to execute
the k-means algorithm. Ene et al. (2011) propose approximation algorithms for k-center
and k-median problems, that execute in constant number of MapReduce cycles, along with

6. http://mahout.apache.org/

93

http://mahout.apache.org/

Ravindra Gupta Anyanwu

an iterative sampling approach to reduce the size of input to the clustering algorithm. The
authors observed that the approximation did not work well for k-center algorithm due to its
sensitivity to sampling. Such sample-based clustering techniques can be integrated during
shared execution of tasks using our approach (possibly on a subset of attributes). Further,
since our algorithms scale well with increasing number of clustering tasks, it is a promising
direction to pursue when considering ensemble clustering and multi-clustering solutions.

There has been a lot of work on multi-query optimization, such as exploiting common
subexpressions (Zhou et al., 2007) in a set of relational queries to optimize query processing.
Shareable sub-expressions are determined from queries involving the same database table
and a transformation-based optimizer is used to rewrite queries in an optimized manner.
Our approach of sharing map and reduce processing, as well as map output, is generic
and can be extended to mixed workloads involving both relational (e.g., GROUP BY) and
non-relational (e.g.,clustering) operations.

6. Conclusion and Future work

In this paper, we considered sharing opportunities while executing large scale clustering
tasks. Specifically, we proposed algorithms that enable sharing of assignment and recal-
culation steps, while executing multiple k -means clustering tasks in parallel. Empirical
evaluation using real-world datasets show that the algorithms perform consistently with
varying values of k, clustering attributes, initial centroids, and scale well with increasing
number of clustering tasks. This is especially important for scenarios that involve clustering
of large datasets with unknown characteristics, requiring multiple iterations of trial and er-
ror with different clustering criteria. In future work, we will explore opportunities of shared
execution across relational and non-relational tasks.

Acknowledgements: We thank Dr. Prasan Roy for discussions during initial stages
of the work. Simulation Astro was graciously supplied by Tom Quinn and Fabio Governato
from Department of Astronomy at University of Washington.

References

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander Rasin.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Work-
loads. VLDB, 2009.

Foto N. Afrati and Jeffrey D. Ullman. Optimizing Joins in a MapReduce Environment. In EDBT,
2010.

Charu C Aggarwal and Chandan K Reddy. Data Clustering: Algorithms and Applications. CRC
Press, 2013.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proc. of
the 18th annual ACM-SIAM symposium on Discrete algorithms, 2007.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. Scal-
able k-means++. In VLDB, 2012.

P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini. Incoop: Mapreduce for incre-
mental computations. SOCC, 2011.

94

ShareClustering

A. Bialecki, M. Cafarella, D. Cutting, and O. O Malley. Hadoop: A Framework for Running
Applications on Large Clusters Built of Commodity Hardware.

Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: efficient iterative data
processing on large clusters. VLDB Endow., 3, 2010.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
OSDI, 2004.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In SIGKDD, 2011.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs
from sequential building blocks. ACM SIGOPS Operating Systems Review, 41(3), 2007.

Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He, and Xiaodong Zhang. Ysmart: Yet
another sql-to-mapreduce translator. In ICDCS, 2011.

S Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2),
1982.

Zhenhua Lv, Yingjie Hu, Haidong Zhong, Jianping Wu, Bo Li, and Hui Zhao. Parallel k-means
clustering of remote sensing images based on mapreduce. In Web Information Systems and Mining.
2010.

Tomasz Nykiel, Assaf Michalis, Chaitanya Mishra, George Kollios, and Nick Koudas. Mrshare:
Sharing across multiple queries in mapreduce. VLDB, 2010.

R. Pais and C. Rong. K-means Clustering in the Cloud – A Mahout Test. In WAINA, 2011.

Wei Wang, Svein Knapskog, and Sylvain Gomault. Attribute normalization in network intrusion
detection. ISPAN, 2009.

Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns. CoScan: Cooperative
Scan Sharing in the Cloud. In SOCC, 2011.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. In USENIX HotCloud, 2010.

T Zhang, R Ramakrishnan, and M Livny. Birch: An efficient data clustering method for very large
databases. In SIGMOD record, 1996.

Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang Lehner. Efficient exploita-
tion of similar subexpressions for query processing. In SIGMOD, 2007.

Appendix A. Analysis of Algorithms

For m k -means clustering tasks, let ki be the value of k for the ith task, and n be number of
data points. Assume clustering on d dimensions each of size δ, i.e., size of a data point is dδ.
Both map key and count are integers with size ξ. Table 2 summarizes assertions regarding
costs of the two algorithms. For the post-combiner analysis of ShareClustering, we assume
that on average, data points corr. to each primary task key (k1) will be distributed across

dkjk1 + 1e non-primary task clusters. Based on the above assertions, we summarize the cost
of MapReduce-based execution of ShareScan and ShareClustering. HDFS read / write costs
are similar for both algorithms and hence not considered for this comparison.

95

Ravindra Gupta Anyanwu

Table 2: Assertions regarding costs of algorithms

Assertion ShareScan ShareClustering
Pre-Combiner
A1: No. of map output keys m.n n
A2: Size of {key, value} pair (dδ + 2ξ) dδ + (m− 1) 2ξ + ξ
Intermediate data size mn(dδ + 2ξ) n(dδ + (m− 1)2ξ + ξ)
Post-Combiner
A3: No. of keys per mapper

∑
i ki k1

A4: Size of {key, value} pair (dδ + 2ξ) (ξ +
∑m

j=2 d
kj

k1
+ 1e(dδ + 2ξ))

Intermediate data size
∑

i ki(dδ + 2ξ) k1(ξ +
∑m

j=2 d
kj

k1
+ 1e(dδ + 2ξ))

Table 3: Distance calculations per data point in ShareClustering (Cosmo-Gas, 24-nodes)

Values Prim. Sec. α Savings Values Prim. Sec. α Savings
of k Task Tasks Value (%) of k Task Tasks Value (%)
(40,60) 40 60 0.66 39.69 (80,200) 80 200 0.82 58.88
(40,80) 40 80 0.69 46.66 (100,200) 100 200 0.85 56.67
(40,100) 40 100 0.72 51.52 (40,60,80) 40 140 0.68 53.09
(40,200) 40 200 0.74 61.42 (40,60,80,100) 40 240 0.68 58.43
(60,200) 60 200 0.79 61.10 (40,60,80,100,200) 40 440 0.69 63.86

Map processing: ShareScan computes distances wrt. all centroids in all m tasks, i.e.,∑m
i=1 ki distances per data point; ShareClustering computes: k1 + (1-α)

∑m
i=2 ki,

where the elimination factor α denotes the portion of secondary centroids that need
not be considered while calculating distances with a data point. Table 3 represents the
number of distance calculations per data point for the primary and secondary tasks,
the α value for ShareClustering, and the percentage savings in number of computations
when clustering multiple tasks using ShareClustering as opposed to ShareScan.

Intermediate data sort and shuffle: The local disk IO cost for sort and shuffle is a
function of log of intermediate data sizes (refer to assertion A2).It can be seen that
this cost will be much less for ShareClustering when compared to ShareScan.

Network data transfer: For tasks with the same set of clustering attributes, the inter-
mediate data size per mapper is

∑
i ki(dδ + 2ξ) for ShareScan. For ShareClustering,

this size can be approximated as
∑

i ki(dδ+ 2ξ)−k1(dδ+ ξ), i.e., the reduction equals
number of mappers multiplied by k1(dδ + ξ). For cases with varying clustering at-
tributes, more savings in network data transfer can be achieved by maximizing the
factor k1(dδ+ξ), i.e., selecting a primary task whose attributes have maximum overlap
with the superset of attributes.

Though ShareClustering requires additional processing to compute final centroids from
partial ones, the reduced number of distance calculations and intermediate map output due
to shared cluster information, achieve additional savings over ShareScan.

96

	Introduction
	Large Scale k-means Clustering
	Contributions and Outline

	Sharing Scans Across Clustering Tasks
	Shared Execution of Clustering Tasks
	Collaborative Cluster Assignment
	Sharing Cluster Information

	Empirical Evaluation
	Scalability Analysis: Results and Discussion
	Impact Analysis: Results and Discussion

	Related Work
	Conclusion and Future work
	Analysis of Algorithms

