JMLR: Workshop and Conference Proceedings 41:19-32, 2015 BIGMINE 2015

Anytime Concurrent Clustering of Multiple Streams with an
Indexing Tree

Zhinoos Razavi Hesabi ZHINOOS.RAZAVIQRMIT.EDU.AU
Timos Sellis TIMOS.SELLISQRMIT.EDU.AU
Xiuzhen Zhang XIUZHEN.ZHANG@QRMIT.EDU.AU

School of Computer Science and IT, RMIT University, Melbourne, Australia

Editors: Wei Fan, Albert Bifet, Qiang Yang and Philip Yu

Abstract

With the advancement of data generation technologies such as sensor networks, multiple
data streams are continuously generated. Clustering multiple data streams is challenging as
the requirement of clustering at anytime becomes more critical. We aim to cluster multiple
data streams concurrently and in this paper we report our work in progress. ClusTree is
an anytime clustering algorithm for a single stream. It uses a hierarchical tree structure
to index micro-clusters, which are summary statistics for streaming data objects. We
design a dynamic, concurrent indexing tree structure that extends the ClusTree structure
to achieve more granular micro clusters (summaries) of multiple streams at any time. We
devised algorithms to search, expand and update the hierarchical tree structure of storing
micro clusters concurrently, along with an algorithm for anytime concurrent clustering of
multiple streams. As this is work in progress, we plan to test our proposed algorithms,
on sensor data sets, and evaluate the space and time complexity of creating and accessing
micro-clusters. We will also evaluate the quality of clustering in terms of number of created
clusters and compare our technique with other approaches.

Keywords: Distributed data mining, clustering, stream mining, parallel processing

1. Introduction

Advanced technologies, such as sensor networks, social networks, medical applications and
so on produce data streams. Data streams are continuously arriving and these can be
translated to huge storage with limited processing time. It means that as data is produced,
it needs to be mined immediately in a single pass, to be able to answer client queries with
minimum response times [1]. In addition, memory for storing arriving data is limited;
hence data should be represented as a summary [2]. Even ignoring memory constraints,
accessing and maintaining compact data is still a challenge. Having an appropriate data
structure is a precondition to be able to accelerate the process of mining streaming data
due to memory/disk limitation. For example, Figure 1 illustrates that maintaining data
summaries in a tree data structure will minimize average and worst case time required
for mining operations (e.g. searching for a proper cluster to insert a new data object).
Moreover, data structures that can support dynamic updates as data arrives (insertions and
deletions, e.g. insertion of arriving data objects from stream into the data structure)are
preferred [3].

© 2015 Z.R. Hesabi, T. Sellis & X. Zhang.

HESABI SELLIS ZHANG

P - VR
T -

(a) Representation of (b) Tree representation
high dimensional fea- used in memory or on
ture space in 2D disk

Figure 1: The R-tree Family structure (Source: [3])

With advancement in data collection and generation technologies, such as sensor net-
works, we are now facing environments that are equipped with distributed computing nodes
that generate multiple streams rather than a single stream. Mining a single stream data is
challenging therefore mining multiple data streams becomes even more challenging. Some
studies have focused on clustering of multiple streams in a centralized fashion, while others
have focused on clustering multiple streams in a distributed model [4], [5]. In [6], dis-
tributed data mining algorithms, systems and applications are briefly reviewed. Although
many parallel and distributed clustering algorithms have been introduced for knowledge
discovery in very large data bases [7], [8], scalability of data stream mining algorithms has
reached its limitations therefore development of more parallel(concurrent) and distributed
mining algorithms is needed. To the best of our knowledge there is not yet any algorithm for
clustering multiple streams concurrently to speed up the process of clustering. Therefore,
we propose a new framework to cluster multiple streams through a concurrent index data
structure from the R-tree family [9].

We have extended the ClusTree algorithm [10] by replacing its data structure and access
method from single access to multiple access and removing the buffer used as the anytime
clustering feature. More specifically, this paper reports on our project’s contribution to
multiple data stream clustering. Firstly, we substituted single access method with a multiple
(concurrent) access method within the maintenance index data structure. Although there
are some constraints on concurrent access to the index data structure, we believe that
the concurrent clustering speeds up the process of clustering multiple streams, and creates
more clusters at any given time. Secondly, we reduced the space complexity of the ClusTree
algorithm by removing its buffers at each entry. Finally, we introduced a new framework
to cluster multiple streams (distributed streams) which can also be used for very fast single
streaming data.

Through our improvements, we insert data objects to the proper micro-clusters in near
real time, through concurrent access. Indeed, the anytime property of the ClusTree allows
for interruption of the insertion process when a new data object arrives. The buffered data
object should wait till a new data object arrives, then ride down the same subtree where

20

ANYTIME CONCURRENT CLUSTERING

the data object is buffered. Then, the new and the buffered data objects can descend
the tree. Additionally, waiting at the buffer's entry may cause the buffered data object
to become obsolete which consequently affects the quality of clustering. We also extract
intra-correlation aspects from multiple streams through concurrent access to achieve high
quality clusters.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3
provides some background on the ClusTree algorithm. Section 4 introduces our proposed
multiple stream clustering framework. Section 5 explains our concurrent clustering algo-
rithm in detail. We conclude the paper in Section 6 with a summary of key discussions.

2. Related Work

We do not aim to review all stream clustering methods, we focused on those that are
relevant to our research. We divide relevant works on stream clustering into single stream
and multiple stream (distributed) groups. We start with a brief introduction to single
stream clustering, continued with a few related studies on single stream clustering and
finished with reference to a few distributed clustering algorithms.

Stream clustering approaches include two phases : online and offline. The infinite
property of data stream and restricted memory make it impossible to store all incoming
data. Therefore, summary statistics of data is collected at the online phase, and then a
clustering algorithm is performed on obtained summaries at the offline phase. At the online
phase, micro-clusters are created to group and store summary information with similar
data locality, and these micro-clusters are accessed and maintained through a proper data
structure. Micro-clusters are stored away on a disk at a given time for a snapshot of data
following a pyramidal time frame to be able to recall summary statistics from various time
horizons. This provides further insights into the data through offline clustering.

BIRCH [11] is the pioneering work introducing Cluster Feature(CF') as a compact rep-
resentation of data. BIRCH is for clustering static data sets (whole data set) rather than
evolving data. ClueStream [12] introduced a micro-clustering technique and added some
additional information to the BIRCH algorithm in order to adapt with continuous ar-
riving data. This additional information is about timestamps of arriving data streams.
DenStream [13] was proposed on a density based two-phase stream clustering algorithm.
ClusTree [10] has been developed as the first, anytime clustering algorithm. The main
characteristic of ClusTree over other existing micro-clustering algorithms is its adaptability
with the speed of streams in an online model. We extended the idea of ClusTree making it
applicable to multiple streams. Many of these two-phase clustering algorithms are reviewed
in [14] in terms of number of parameters, cluster shape, data structure, window model and
outlier detection.

All the aforementioned algorithms are designed and developed to cluster a single data
stream. However, with the new generation of distributed data collection and multiple
streams acquisition, it is desirable to introduce more parallel and distributed stream min-
ing algorithms to tackle scalability and efficiency limitations of stream mining algorithms.
Although many studies have been conducted on distributed clustering algorithms in very
large, static data sets [15], [16], few studies have been reported on parallel and distributed
stream clustering [5], [17], [18], [4], [19], [20], [21], [22]. None of the above algo-

21

HESABI SELLIS ZHANG

rithms enable anytime concurrent clustering of multiple streams to speed up the process
of clustering or extract intra-inter correlations of multiple streams to achieve high quality
clusters.

3. The ClusTree Algorithm

ClusTree [10] is an anytime stream clustering algorithm which groups similar data into the
same cluster based on the micro-clustering technique. ClusTree stores N; number of data
objects, LS; their linear sum, and SS; their square sum in a cluster feature tuple CF (N
LS, SS) as summary statistics of data. It considers the age of the objects in order to
give higher weighting to more recent data. The CF tuples are enough to calculate mean,
variance and other required parameters for clustering. Then an index data structure from
the R-tree family is created to maintain CF's to speed up the process of accessing, inserting
and updating micro-clusters. In this way for an arriving data object, ClusTree descends the
tree based on minimum distance between CF's and the arrived data object, to insert the data
object into the closest micro-cluster at the leaf level within the given time. If a new data
object arrives while the current data object has not yet reached the leaf level to be inserted
to a proper micro-cluster within the given time, then its insertion process is interrupted.
The interrupted object is left in the buffer of an inner node; the tree is descended to find
a path for the new object. The buffered object has a chance to continue descending the
hierarchy if it has not been outdated up until a new data object arrives where its path to
descend the tree is the same as the buffered object. Therefore, the buffered object descends
the tree along with the new object as a hitchhiker to be inserted into the most similar micro-
cluster at the leaf level. Using the buffer makes ClusTree able to adapt with the speed of
data stream to insert data objects into the micro-clusters at any given time. Moreover,
ClusTree deals with high speed data stream by aggregating data objects at the top level of
the tree, then inserting aggregated objects into the proper micro-clusters.

Figure 2 [10] shows the inner entry and leaf entry in a ClusTree. Each entry in an inner
node stores CF' of objects and has a buffer to store CF's of interrupted objects which may
be empty. Additionally, each entry keeps a pointer to its child. Entry of each leaf node only
stores a CF of the object(s) it represents [10].

inner entry

LS,| 0755\ LS, (0755, . LAM _JLAM]
SRl =

LS| \ss, LSal, |55 EANUEN| NG

7SS, LAM _1LAN]
" e /
leaf entry SSd “:' | II:IIZ.:Z' |
Y A

Figure 2: Inner node and leaf node structure in ClusTree (Source: [10])

Figure 3 shows the overall algorithmic scheme of the ClusTree algorithm. The micro-
clusters are stored at particular moments in the stream, which are referred to as snapshots.
The offline macro-clustering algorithm will use these finer level micro-clusters in order to
create higher level clusters over specific time horizons.

22

ANYTIME CONCURRENT CLUSTERING

Snapshot at P v T e

CF CF CF CF CF CF

Leaf Level

, v o
MicroclusterMicroclustemiicro cluste Microcluste Microcluste Microcluster

v

Input for offline clustering (e.g. K-means)

Figure 3: A snapshot of micro-clusters in the ClusTree

The ClusTree algorithm is proposed to cluster a single data stream with varying inter-arrival
times. We have proposed a new algorithm based on the ClusTree to cluster multiple data
streams concurrently. We explain our proposed algorithm in detail in the next section.

4. Anytime Concurrent Multi-Stream Clustering using an Indexing Tree

Data streams are continuously produced and need to be analysed online. Moreover, multi-
stream applications demand higher anytime requirements due to streams arriving at any
time and with varying speeds. This continuously arriving data means huge storage require-
ments. Therefore, online multi-stream clustering is a twofold problem in terms of time and
space complexity. For space complexity, many studies have been conducted to represent
distribution of data in a compact way. The main idea is that instead of storing all incom-
ing objects, summary statistics of data objects will be stored to reduce storage problem.
Many techniques are proposed in the literature to achieve summary of data. One of these
techniques is called cluster feature vector which we use in our proposed algorithm to obtain
summaries of data objects. The other issue is related to accessing these summary statistics,
which is crucial in terms of time complexity. Therefore, choosing a proper data structure
plays an important role in maintaining and updating these summary statistics in memory.
In fact, these summaries are generated and maintained in a proper data structure in real
time, and then are stored away on a disk for further and future analysis called offline pro-
cessing. Hence, to achieve “extreme” anytime clustering, we propose to extend the ClusTree
structure to a concurrent hierarchical tree structure to index more granular micro-clusters.

Figure 4 shows a general view of our proposed framework in which each stream is as-
signed to one processor. All the processors have equal access to a shared memory. The
processors will create micro-clusters in memory in a parallel way through concurrency con-
trol. We expect to create more accurate micro-clusters with high granularity, in contrast
to serialized clustering of a single stream using the ClusTree. Granularity is considered
in terms of number of micro clusters. Intuitively, high accurate clusters will be created by

23

HESABI SELLIS ZHANG

Data stream Data stream Data stream

Shared Memory

Concurrent Clustering in
indexing Tree

Figure 4: Proposed concurrent clustering framework

extracting correlations among different data streams through concurrent clustering. Similar
data objects from different data streams have more chances to be grouped into the same
cluster compared with local clustering of individual streams with a decentralized model.

Like many optimization problems using a search tree to an obtain optimal solution, a tree
of micro-clusters is created in which clustering data objects is started from the root. The
children of the root are obtained by splitting the root into small clusters. The leaves of a
tree represent micro-clusters in a given time interval. The goal of this paper is to insert
data objects concurrently into their closest micro-clusters; optimal leaves, by using an index
search tree. The cost of searching the tree and adding a data object to the closest cluster is
O(log(n)), where n is the number of elements in the tree. Using a parallel algorithm with
concurrency control seams to increase the level of granularity and reduce the execution time
of creating micro-clusters. To achieve this, each processor can explore a set of subtrees to
reach proper micro-clusters. However, a tree is created during the exploration which means
that subtrees are not assigned to each processor in advance. Each processor will get the
unexplored nodes from a Global Data Structure(GDS) [23].

We propose to use a search tree that allows concurrent access to the GDS in the context
of parallel machine with shared memory in order to create and maintain high granularity
micro-clusters. Each processor will process clustering operations on the GDS, stored in
the shared memory. The main difficulty is to keep the GDS consistent, and to allow the
maximum level of concurrency. In the shared memory model, the GDS is stored in the shared
memory which can be accessed by each processor. The higher the access concurrency, the
higher the granularity of clustering. The main issue is the contention access to the data
structure. Mutual exclusion is performed to provide data consistency. We suggest using
a concurrent index structure from the R-tree family to create and maintain more micro
clusters with high accuracy from multiple streams.

The idea of creating micro-clusters at the leaf level, means that the algorithm can take
a snapshot and send the results to any offline clustering as with the ClusTree algorithm.
However, it should be emphasized that ClusTree is applied on a single stream in a serialized
model while our proposed algorithm is applied on multiple streams in a parallel model.

Figure 5 compares our proposed concurrent clustering of multiple streams with the
ClusTree algorithm.

24

ANYTIME CONCURRENT CLUSTERING

As described in Section 3, ClusTree uses a buffer for each entry of each node to do
anytime clustering. As an example of anytime clustering of ClusTree, suppose that data
object 1 arrives at timestamp t. Meanwhile data object 1 is descending the tree to find
the proper micro-cluster. Data object 2 arrives at timestamp t+1. The insertion of data
object 1 is interrupted in the middle of its path in the tree, for example at level i which
is not the leaf level. Data object 1 is added to the buffer's entry of node on level i. Then
data object 2 descends the tree. Data object 1 is waiting at the buffer to be picked up by
a new arriving data object. Data object 1 can be successfully inserted to an appropriate
micro-cluster, provided that data object 1 and the new arriving data object belong to the
same subtrees. Otherwise, data object 1 might be obsolete and deleted.

In our proposed concurrent clustering, as can be seen in Fig 5, arriving new data objects
do not interrupt the insertion process of the current data object, except when they need
to modify the same leaf node. In this situation, the leaf node will be write-locked and just
one of the data objects has access to this part of the shared memory. Therefore, intuitively,
data objects from multiple streams can descend the tree through different subtrees. In this
way, data objects have more opportunity to be added to the closest micro-clusters in near
real time.

Processor 1

QO OO

Data stream 1

Processor 2

=loleld,

Data stream 2

Data stream O O O O

MNode level leaf - 1

Entry

| v
|CF|CF CF || CFICFICF |I CF| CF|CF ICF|CF‘CF”CF|CF‘CFI

Snapshot at leaves level Snapshot at leaves level

Figure 5: Comparison of ClusTree (Left) and Proposed Concurrent Clustering (Right)

5. The Anytime Concurrent Clustering Algorithm

Our proposed clustering algorithm is based on using micro-clusters to present data distri-
bution in a compact way. Micro-clusters are broadly used in stream clustering to create and
maintain a summary of the current clustering. A micro-cluster stores summary statistics
of data objects as a cluster feature tuple CF' instead of storing all incoming objects. A
cluster feature tuple (N, LS, SS), has three components. N is the number of represented
objects, LS is the linear sum and SS is the squared sum of data objects. Maintaining
these summary statistics is enough to calculate mean, variance and other parameters such
as centroid and radius, as follows.

25

HESABI SELLIS ZHANG

7
Centroid: T4 = i:]lv
N N 2
> (@ -
. =1 j=1
Radius: R= |~
adius ~

Fach cluster feature represents a micro-cluster of similar data objects with the following
properties.

Additivity Property of CF: CF has the property of additivity which means if CF; =
(Nl,le,Ssl) and CF2 = (NQ,LSQ,SSQ) then CF:CF1+CF2 = (N1+N2,L51+LSQ,551+552).

Subtractive property of CF: CF has the subtractive property which means that if
CF:(N,LS,SS) and CF1 = (Nl,le,Ssl) then CF —CF1 = (N—Nl,LS—LShSS—Ssl).

These properties of cluster features are used when a cluster feature tuple requires an update.
As an example, when two micro-clusters are merged, the cluster feature of the merger is
calculated using additivity property.

We extend the ClusTree algorithm into a parallel model in order to cluster multiple streams
concurrently. We propose the use of a concurrent index structure from the R-tree family to
maintain cluster features in a hierarchical structure. As in all such tree structures, internal
nodes hold a set of entries between m and M (fanout) while the leaf nodes similarly store a
number of entries between 1 and L. Figure 6 shows the details of internal node's entries and
leaf node's entries of our proposed tree structure. An entry of an internal node contains [CF
(N, LS, SS), Child-ptr, LSN], where CF' is a cluster feature of data object(s), Child-ptr
is a pointer to its child node and LSN is a logical sequence number. CF' is calculated for
each dimension of the data object. For a d-dimensional data object, the linear square and
sum square are calculated for all d-dimensions. An entry in a leaf contains a cluster feature
of data object(s), and LSN.

Inner entry

(N, (LS1,...L5d},{ 551,...554)), Child-Ptr, LSN)

Leaf entry

(N, (L51,...L54),(551,...554)),LSN)

Figure 6: Internal node and leaf node structure of proposed concurrent clustering

26

ANYTIME CONCURRENT CLUSTERING

The hierarchy of our concurrent clustering scheme is created like an R-tree except that
cluster features are stored instead of bounding rectangles. Incoming data objects are clus-
tered accordingly. First, we have to find the proper micro-cluster to insert an arriving data
object into. To achieve this, a data object descends the tree by starting from the root.
At each node, the distance between CF of the data object and CF of the node's entries
are calculated. The entry with the closest distance is selected. The selected entry has a
pointer to its child, so the data object descends the tree using the pointer. The data object
descends the tree towards the leaf level for a proper micro-cluster. When descending the
tree, the timestamp of the visiting node is updated.

As illustrated in Figure 6, both the node and its entries have certain capacity. This
means that before a data object is inserted to the closest entry at the leaf level, capacity
of the closest entry is checked. Different scenarios occur. First, the closest entry(proper
micro-cluster) has enough space for the data object. After an insertion, the cluster feature
of the entry will be updated through the additivity property of CF. Second, the closest
entry does not have enough space to insert the data object. In this situation, the capacity
of the node containing the closest entry is checked. If the node has enough space, a new
entry is created to insert the data object into. Then, a new entry at the parent of the node
should be created to point to the created new entry at the node. Finally, if neither the
closest entry nor its node have enough space for inserting a data object, the node will be
split. Splitting a node means a new node is created which needs a parent to point to it.
This splitting to create parent entry could be continued at upper levels of the tree till the
root. If the root is split, then the height of the tree will be increased by one.

In our concurrent clustering, in order to recognize node splitting, we use right-link ap-
proach similar to the concurrent R-tree [9]. Suppose that the data object 1 from data
stream 1 and data object 2 from data stream 2 are concurrently descending the tree to be
inserted into their closest micro-clusters. Data object 1 reaches leaf level and is inserted
into a closest entry of leaf node, but this insertion causes a split. Another data object 2
reaches the same leaf node and wants to be inserted into the split node. If the leaf node has
been split and data object 2 does not recognize this split, and to be able to traverse this
dynamic tree correctly, likewise R-link-Tree, we modify the ClusTree into the concurrent
version by adding extra features.

First, Logical Sequence Number(LSN)(as shown in Fig 6) is assigned to each node to rec-
ognize the split. Second, we link all nodes at each level of the tree using a link list. Using
LSN allows the split to be recognized and helps to decide how to traverse the tree. Also
linking all nodes at each level of a tree enables movement to the right of a split node.

Figure 7 presents an example where a node is split and the right-link along with LSN
is used to chain the split. One of the properties of the R-link-tree data structure is order
insensitivity. As can be seen in Fig 7, it is possible that node P; is ordered before node P,
(from left to right at each level) but because of a split, the child of Py, Cy, is visited after
child of PQ, Cl.

Using a global counter, each node has its unique LSN. Every entry of each node and its
child's entries have the same LSN. In the occurrence of a split, a new right sibling node

27

HESABI SELLIS ZHANG

will be created for the split node. The LSN of a split node is given to the new right sibling
and a new LSN is assigned to the split node. A data object descending the tree recognizes
the split by comparing LSN of a visiting(parent) node and its child node. If LSN of the
parent and its child is equal, no split has occurred; otherwise if LSN of the child node is
greater than its parent node, it means there is a split and the clustering process moves right
of the child node till it visits a node with the same LSN of the parent node, showing the
furthest right node split off the old node. The possibility of moving right to the split node
is provided by using a link-list of nodes at each level of the hierarchy.

Pl P2
1
1

Figure 7: Node split recognition using LSN and right-link

For concurrency control, we use a lock-coupling technique in such a way that during
the process of traversing the tree, nodes are read-locked. Hence, data objects from different
streams can access the tree and descend the tree in parallel. The main issue is at the time
of inserting a data object into a micro-cluster, then updating the CF of its parent at the
upper level of the tree. To solve this problem like in a R-link-tree, we use the write-lock;
when a data object is being inserted into a leaf node, the leaf node is locked. After an
insertion, the CF' of the node’s parent should be updated. Therefore, the parent is locked
and the leaf node is unlocked.

Algorithm 1: Clustering Algorithm

Input: D-dimensional data objects O;, Oy, ...
Output: Inserting data objects O;, Oy, ... into the closest micro-clusters

for all processors P;, P, ... do
ClosestMicrocluster = searchLeaf(root, O, root-lsn)
insert O on ClosestMicroCluster at leaf
if leaf was split then
expandParent(leaf,CF (leaf),LSN(leaf),right-sibling, CF (right-sibling),
LSN(right-sibling));
else
if CF of leaf changed then
| updateParent(leaf, CF (leaf));
else
| w-unlock(leaf);
end

end

end

28

ANYTIME CONCURRENT CLUSTERING

Our main proposed concurrent clustering algorithm (as shown in Algorithm 1) consists
of a search process to find the closest micro-cluster, updating the CF' of the parents after
clustering, expanding the parents in the case of split child and installing a new entry for
this split at upper levels of the tree. The algorithm is the same as the concurrent R-tree
algorithm [9] except that our purpose is to manage the micro-clusters. We explain each
function in details as follows.

searchLeaf: The searchLeaf function is called at the beginning of the clustering algorithm
(1) to find the closest micro-cluster for a given data object at the leaf level. The searchLeaf
function starts the process of a search from the root. During the process of searching the
tree, if a visiting node is not leaf, it is read-locked. Otherwise, it is write-locked. For each
node, the LSN of the visiting node is compared with the LSN of its parent. If the LSN of
the parent is smaller than the LSN of the visiting node, a split has occurred. Therefore,
the tree is traversed to the right of the visiting node(split node) till finding a node with the
LSN equals to the LSN of the parent guarantee to find the closest entry even after a split.
If the split node is at the leaf level, then the searchLeaf function returns the closest entry as
the closest micro-cluster to the clustering algorithm. Otherwise, the process of search keeps
descending the tree recursively from the child of the closest entry and the visited node is
read-unlocked.

expandParent: After finding the closest micro-cluster through serachLeaf function, the
data object is inserted into. If the insertion of the data object causes a split, then the
expandParent function is called. The expandParent function either installs a new entry
as the parent of the new created leaf (because of the split) at the top level of the split
leaf or find an entry for the new created leaf in the parent of the split leaf node or its
right sibling. The former is a new split at the parent level of the split node. Therefore,
the expandParent function is recursively called up until the root is split or no more split
is happened. During the process of expanding a parent, the child nod is write-locked till
the parent is accesses. Then, the child node is write-unlocked and the parent is write-locked.

updateParent: Whenever a data object is inserted into the leaf node and its CFs is up-
dated, or CFs of a parent is updated because of a split, the updateParent function is called
to propagate these updates up to the parent's levels.

We aim to optimize the process of clustering by finding top-k closest micro-clusters. This
means that descending the tree by finding the closest entry among all entries of visiting
nodes does not guarantee arrival at the closest micro-cluster among all other micro-clusters
at leaf level. Therefore, to find global optimum; the closest micro-cluster among all micro-
clusters, we use a stack data structure to keep track of the top-k closest entries to a data
object. In order to maintain up-to-date clustering, we use a buffer in each node, whenever
a new data object arrives and descends the tree, the time stamp of the visiting node is
updated like ClusTree.

29

HESABI SELLIS ZHANG

6. Discussion

In this work in progress, we proposed a new, anytime, concurrent, multiple stream clus-
tering algorithm using an indexing tree. Our proposed algorithm is based on one of the
well-known micro-clustering technique, ClusTree [10]. We captured the summary statistics
of multiple data streams concurrently in the online phase. We proposed to maintain statis-
tical information of the data locality in micro-clusters at a dynamic, multiple access index
data structure for further offline clustering. In the online phase, the index data structure
maintains summaries of data in the format of cluster feature tuples (CF') instead of storing
all incoming objects. Then, the data structure is traversed through an index to insert new
data objects concurrently into their closest micro-clusters. We designed the concurrent clus-
tering algorithm and will further develop this on SAMOA [24]. To evaluate our algorithm,
we plan to test our proposed algorithm on two real data sets: 1) the environmental sensor
data set with 97 stations and 18 attributes, which is available from [25], and 2) the Forest
Covertype dataset [26]. We will assess our proposed clustering algorithm and compare it
with competing clustering algorithms, including ClusTree. Our experimental analysis will
include time and space complexity of creating and maintaining concurrent clustering trees
in terms of the number of generated micro-clusters and quality of clustering. We plan to
experiment with three different workloads.

1) High workload which consists of receiving two data streams with high speed
2) Moderate workload of receiving a slow speed stream and a high speed stream
3) Low workload receiving two slow speed data streams

We also plan to study the effect of the number of processors required to perform efficient,
concurrent clustering.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in
data stream systems,” in Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’02, (New York, NY,
USA), pp. 1-16, ACM, 2002.

[2] C. Aggarwal and P. Yu, “A survey of synopsis construction in data streams,” in Data
Streams (C. Aggarwal, ed.), vol. 31 of Advances in Database Systems, pp. 169-207,
Springer US, 2007.

[3] D. White and R. Jain, “Similarity indexing with the ss-tree,” in Data Engineering,
1996. Proceedings of the Twelfth International Conference on, pp. 516-523, Feb 1996.

[4] A. Guerrieri and A. Montresor, “Ds-means: Distributed data stream clustering,” in
Euro-Par 2012 Parallel Processing (C. Kaklamanis, T. Papatheodorou, and P. Spirakis,
eds.), vol. 7484 of Lecture Notes in Computer Science, pp. 260—271, Springer Berlin
Heidelberg, 2012.

30

[5]

[10]

[11]

ANYTIME CONCURRENT CLUSTERING

J. a. Gama, P. P. Rodrigues, and L. Lopes, “Clustering distributed sensor data streams
using local processing and reduced communication,” Intell. Data Anal., vol. 15, pp. 3—
28, Jan. 2011.

S. Parthasarathy, A. Ghoting, and M. Otey, “A survey of distributed mining of data
streams,” in Data Streams (C. Aggarwal, ed.), vol. 31 of Advances in Database Systems,
pp- 289-307, Springer US, 2007.

X. Xu, J. Jger, and H.-P. Kriegel, “A fast parallel clustering algorithm for large spatial
databases,” Data Mining and Knowledge Discovery, vol. 3, no. 3, pp. 263-290, 1999.

9

C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel Computing,

vol. 21, no. 8, pp. 1313 — 1325, 1995.

M. Kornacker and D. Banks, “High-concurrency locking in r-trees,” in Proceedings of
the 21th International Conference on Very Large Data Bases, VLDB 95, (San Fran-
cisco, CA, USA), pp. 134-145, Morgan Kaufmann Publishers Inc., 1995.

P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The clustree: indexing micro-clusters
for anytime stream mining,” Knowledge and Information Systems, vol. 29, no. 2,
pp- 249-272, 2011.

T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data clustering method
for very large databases,” in Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’96, (New York, NY, USA), pp. 103
114, ACM, 1996.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving
data streams,” in Proceedings of the 29th International Conference on Very Large Data
Bases - Volume 29, VLDB 03, pp. 81-92, VLDB Endowment, 2003.

F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over an evolving
data stream with noise,” in Proceedings of the Sixzth SIAM International Conference
on Data Mining, April 20-22, 2006, Bethesda, MD, USA, pp. 328-339, 2006.

J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d. Carvalho,
and J. a. Gama, “Data stream clustering: A survey,” ACM Comput. Surv., vol. 46,
pp. 13:1-13:31, July 2013.

9

C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel Computing,

vol. 21, no. 8, pp. 1313 — 1325, 1995.

X. Xu, J. Jager, and H.-P. Kriegel, “A fast parallel clustering algorithm for large spatial
databases,” Data Min. Knowl. Discov., vol. 3, pp. 263—290, Sept. 1999.

A. Zhou, F. Cao, Y. Yan, C. Sha, and X. He, “Distributed data stream clustering: A
fast em-based approach,” in Data Engineering, 2007. ICDE 2007. IEEFE 23rd Interna-
tional Conference on, pp. 736—745, April 2007.

31

[18]

[19]

[25]

[26]

HESABI SELLIS ZHANG

G. Cormode, S. Muthukrishnan, and W. Zhuang, “Conquering the divide: Continuous
clustering of distributed data streams,” in Data Engineering, 2007. ICDE 2007. IEEE
23rd International Conference on, pp. 1036-1045, April 2007.

P. P. Rodrigues and J. Gama, “Distributed clustering of ubiquitous data streams,”
Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, vol. 4, no. 1, pp. 38—
54, 2014.

A.T. Vu, G. D. F. Morales, J. Gama, and A. Bifet, “Distributed adaptive model rules
for mining big data streams,” in 201/ IEEFE International Conference on Big Data,
Big Data 2014, Washington, DC, USA, October 27-30, 201/, pp. 345-353, 2014.

M.-Y. Yeh, B.-R. Dai, and M.-S. Chen, “Clustering over multiple evolving streams by
events and correlations,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 19, pp. 1349-1362, Oct 2007.

B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen, “Adaptive clustering for multiple
evolving streams,” Knowledge and Data Engineering, IEEE Transactions on, vol. 18,
pp. 1166-1180, Sept 2006.

B. Cun and C. Roucairol, “Concurrent data structures for tree search algorithms,” in
Parallel Algorithms for Irreqular Problems: State of the Art (A. Ferreira and J. Rolim,
eds.), pp. 135-155, Springer US, 1995.

G. D. F. Morales and A. Bifet, “Samoa: Scalable advanced massive online analysis,”
Journal of Machine Learning Research, vol. 16, pp. 149-153, 2015.

E. D. Sensors, “Environmental data: Sensors.” http://lcav.epfl.ch/
page-86035-en.html. [Online; accessed 20-03-2015].

H. S and B. S, “The UCI KDD archive..” https://archive.ics.uci.edu/ml/
datasets/Covertype, 1999. [Online; accessed 20-03-2015].

32

http://lcav.epfl.ch/page-86035-en.html
http://lcav.epfl.ch/page-86035-en.html
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype

	Introduction
	Related Work
	The ClusTree Algorithm
	Anytime Concurrent Multi-Stream Clustering using an Indexing Tree
	The Anytime Concurrent Clustering Algorithm
	Discussion

