
Human-Guided Learning of Social Action Selection for
Robot-Assisted Therapy

Emmanuel Senft, Paul Baxter, Tony Belpaeme

Centre for Robotics and Neural Systems,
Cognition Institute Plymouth University, U.K.

{emmanuel.senft, paul.baxter, tony.belpaeme}@plymouth.ac.uk

Abstract

This paper presents a method for progres-
sively increasing autonomous action selec-
tion capabilities in sensitive environments,
where random exploration-based learning is
not desirable, using guidance provided by a
human supervisor. We describe the global
framework and a simulation case study based
on a scenario in Robot Assisted Therapy
for children with Autism Spectrum Disorder.
This simulation illustrates the functional fea-
tures of our proposed approach, and demon-
strates how a system following these princi-
ples adapts to di↵erent interaction contexts
while maintaining an appropriate behaviour
for the system at all times.

1 Introduction

Humans are interacting increasingly with machines,
and robots will be progressively more important part-
ners in the coming years. Human-human interactions
involve high dimensionality signals and require com-
plex processing: this results in a large quantity of data
that ideally needs to be processed by an autonomous
robot. One potential solution is the application of ma-
chine learning techniques. Specifically, online learning
is desirable, however, some level of initial knowledge
and competencies are required to avoid pitfalls in the
early phases of the learning process, particularly in
contexts where random exploration could lead to un-
desirable consequences.

In this paper, we propose an approach inspired by, but
separate from, learning from demonstration to guide
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this early learning of an action selection mechanism for
autonomous robot interaction with a human, by tak-
ing advantage of the expert knowledge of a third-party
human supervisor to prevent the robot from exploring
in an inappropriate manner. We first present the for-
mal framework in which our action selection strategy
learning takes place (section 2), then illustrate this
with a case study from the domain of Robot Assisted
Therapy for children with Autism Spectrum Disorder
(ASD), where the incorrect selection of actions can
lead to an unacceptable impact on the goals of the
interaction (section 3).
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Figure 1: The supervised online learning of au-
tonomous action selection mechanism.

2 Supervised Emergent Autonomous
Decision Making

2.1 Framework

The situation considered involves a robotic agent, a
human supervisor of the agent, and a human with
which the agent, but not the supervisor, should in-
teract. The agent proposes actions that are accepted
or rejected by the supervisor prior to executing them.
The method proposed in this paper aims at enabling
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the agent to progressively and autonomously approxi-
mate the ideal behaviour as specified by the supervisor.

Our framework has five components: an agent and an
environment interacting with each other, a supervi-
sor, the algorithm controlling the agent and a context
characterising the interaction between the agent and
the environment. The agent has a defined set of avail-
able actions A. The environment could be a human, a
robot, or a computer for example and is characterised
by a n-dimensional vector S 2 Rn, which is time vary-
ing. The context C 2 Rm gives a set of parameters
defining higher-level aspects, such as goals or the state,
of the interaction, see figure 1. The supervisor and the
agent have direct access to the context, but may ignore
the real value of the state and see it only through ob-
servations.

The principal constraints are that the interaction has
one or more high level goals, and some available ac-
tions can have a negative impact on these goals if ex-
ecuted in specific states. This should be avoided, so
algorithms depending on randomness to explore the
environment state space are inappropriate.

In order to simplify the system, we are making the
following assumptions. Firstly, that the environment,
while dynamic, is consistent: it follows a defined set of
rules E which also describe how the context is updated.
Secondly, the supervisor T is omniscient (complete
knowledge of the environment), constant (does not
adapt during the interaction), and coherent (will react
with the same action if two sets of inputs are identi-
cal). Finally, the supervisor has some prior knowledge
of the environment K.

The algorithm has a model M of the supervisor and
the environment and will update it through online
learning following the learning method L. M is it-
eratively updated based on supervisor feedback to ap-
proximate T and E , in this way progressively approxi-
mating the action that the supervisor would have cho-
sen, and what impact this would have on the environ-
ment. Equation 1 describes the update of each part of
the framework from the step n to n+ 1.

Mn : (C0!n, S0!n, A0!n�1, A
0
0!n�1) �! A0

n

T : (C0!n, S0!n, A
0
0!n, A!n�1,K) �! An

E : (C0!n, S0!n, A0!n) �! (Sn+1, Cn+1)

L : (C0!n+1, S0!n+1, A
0
0!n, A0!n) �! Mn+1

(1)

At the start of the interaction, the environment is in a
state S0 with the context C0 and the algorithm has a
model M0. Applying M0 to C0 and S0, the algorithm
will select an action A0

0 and propose it to the super-
visor. The supervisor can either accept this action or

select a new one according to T , and makes the agent
execute the resulting action A0. The environment will
change to a new state S1 and the context will be up-
dated to C1 according to E . Based on S1, S0, C1, C0,
A0, and A0

0, the algorithm will update its model to
M1. The process can then be repeated based on the
updated model.

2.2 Related Work

The approach we take here necessarily requires the ap-
plication of machine learning, but we do not commit at
this stage to a single algorithmic approach; the specific
requirements for our application include online learn-
ing, deferring to an external supervisor, and being able
to handle a dynamic environment.

A widely used method to transfer knowledge from a
human to a robot is Learning from Demonstration
(LfD), see [2] for a survey. In the case of policy learn-
ing, a teacher provides the learning algorithm with cor-
rect actions for the current state and repeats this state-
action mapping for enough di↵erent states to give the
algorithm a general policy. LfD is usually combined
with supervised learning: trying directly to map out-
puts and inputs from a teacher, see [12] for a list of
algorithms that can be used in supervised learning.
The other important point is how the demonstrations
are generated, a first approach is using batch learn-
ing: the teacher trains the algorithm during a training
phase after which the robot is used in full autonomy
[11]. Or there may be no explicit training phase; us-
ing online learning the demonstrations are given dur-
ing the execution if required: the robot can request
a demonstration for the uncertain states, e.g. when
a confidence value about the action to perform is too
low [6].

Another method is Reinforcement Learning: the algo-
rithm tries to find a policy maximising the expected
reward [3, 10]. However, this implies the presence of
a reward function, which may not be trivial to de-
scribe in domains (such as social interaction) that do
not lend themselves to characterisation. Consequently
Abbeel and Ng proposed to use Inverse Reinforcement
Learning by using an expert to generate the reward
function [1], subsequently extended to use partially-
observable MDPs [8], although expert-generated re-
wards also pose problems on the human side [17].

The goal of our proposed approach di↵ers from these
alternative existing methods. The intention is to pro-
vide a system that can take advantage of expert hu-
man knowledge to progressively improve its competen-
cies without requiring manual intervention on every
interaction cycle. This is achieved by only asking the
human supervisor to intervene with corrective infor-
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mation when the proposed action of the robot agent is
deemed inappropriate (e.g. dangerous) prior to actual
execution. This allows the robot to learn from con-
strained exploration; a consequence of this is that the
load on the supervisor should reduce over time as the
robot learns. The supervisor nevertheless retains con-
trol of the robot, and as such we characterise the robot
as having supervised autonomy. Contrary to the active
learning approach used by, for example, Cakmak and
Thomaz [5] the robot is not asking a question and re-
quiring a supervisor response, it is proposing an action
which may or may not be corrected by the supervisor.

3 Case Study: Application to Therapy

One potential application area is Robot Assisted Ther-
apy (RAT) for children with Autism Spectrum Disor-
ders (ASD). Children with ASD generally lack typical
social skills, and RAT can help them to acquire these
competencies, with a certain degree of success, e.g.
[7, 14]. However, these experiments typically use the
Wizard of Oz (WoZ) paradigm [13], which necessitates
a heavy load on highly trained human operators.

We propose the use of supervised autonomy [15, 16],
where the robot is primarily autonomous, but the ther-
apeutic goals are set by a therapist who maintains
oversight of the interaction. Having a supervised au-
tonomous robot would reduce the workload on the
therapist.Both the therapist and the robot would be
present in the interaction, the robot interacting with
the child and the therapist supervising the interaction
and guiding the robot while it is learning its action
selection policy.

The formalism described above (section 2.1) can be di-
rectly applied to this scenario. In this case, the context
is the state of the task selected by the therapist to help
the child develop certain social competencies, for ex-
ample, a collaborative categorisation game [4] intended
to allow the child to practice turn taking or emotion
recognition. The state may be defined using multiple
variables such as motivation, engagement, and perfor-
mance exhibited by the child during the interaction,
the time elapsed since the last child’s action, and their
last move (correct or incorrect). The robot could have
a set of actions related to the game, such as proposing
that the child categorises an image, or giving encour-
agement to the child.

In this scenario, the goal would be to allow the child to
improve their performance on the categorisation task,
and this would be done by selecting the appropriate
di�culty level and finding a way to motivate the child
to play the proposed game. We can expect the child to
react to the robot action and that these reactions can
be captured by the di↵erent variables that define the

child’s state (as provided by therapists for example).
In principle, while precise determinations are likely to
be problematic, we assume that some aspects of these
variables can be estimated using a set of sensors (e.g.
cameras and RGBD sensors to capture the child’s gaze
and position; the way the child interacts with the touch
screen; etc). For the remainder of this paper, however,
we assume that a direct estimation of internal child
states are available to the system.

3.1 Proof of concept

A minimal simulation was constructed to illustrate the
case study described above. The state S is defined us-
ing three variables: the child’s performance, engage-
ment and motivation in the interaction. The robot has
the following set of actions A: encouragement (give a
motivating feedback to the child), waving (perform a
gesture to catch the child’s attention), and proposi-
tion (inviting the child to make a classification). In
this minimal example, the environment E is the child
model. A minimal model of the child was constructed
that encompassed both processes that were dependent
on the robot behaviour (e.g. responding to a request
for action), and processes that were independent of
the robot behaviour (e.g. a monotonic decrease of en-
gagement and motivation over time independently of
other events). The reaction of the model follows a
rule-based system, but the amplitude of the response
is randomly drawn from a normal distribution to rep-
resent the stochastic aspect of the child’s reaction and
the potential influence of non-defined variables in the
state. A number of simplifications are necessary, such
as the assumption of strict turn-taking and interac-
tions in discrete time. The minimal child model is
summarised in figure 2.

State: 
Performance

Motivation
Engagement 

 Motivation+=Norm(0.1,0.05)  Engagement+=Norm(0.1,0.05)
Motivation>0.6

Engagement>0.6

Perf += 0.05 Perf -= 0.05

Motivation = 0.5
Engagement = 0.5

Motivation -= Norm(0.01,0.001)
Engagement -= Norm(0.01,0.001)

Encouragement Waving

Proposition

Yes No

Figure 2: Model of the child used in the minimal sim-
ulation; random numbers are drawn from normal dis-
tributions.

Formally, the minimal simulation follows the frame-
work established above (equation 1), with the simpli-
fication that a history of prior states, contexts, and
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actions is not used in the learning algorithm. This re-
sults in a setup where the system makes a suggestion
of an action to take, which the supervisor can either
accept or reject, in which case an alternative action is
chosen (figure 3).

This allows the supervisor to take a more passive ap-
proach when the algorithm selects an acceptable action
since they will only have to manually select a correc-
tive action when this is needed. If the learning method
is e↵ective, the number of corrective actions should de-
crease over time, decreasing the workload on the ther-
apist over the interaction.

State (S)
 & 

Context (C)

M proposes
action A'

Does 
Supervisor (T) agree 

with A'?

A = 
alternate 

action

Agent executes
action A

      No

Change in Environment (E)

Yes, A = A'
Learning M

using L

Figure 3: Description of agent’s action selection pro-
cess: the agent proposes actions that are validated by
the supervisor prior to execution.

The learning model M is a MultiLayer Perceptron
(MLP), with three input nodes for the input states,
three output nodes for the three possible actions and
nine nodes in the hidden layer. The model is trained
using backpropagation (as L), the true labels are given
by the supervisor decision: output of 1 for the action
selected by the supervisor (A) and �1 for the other
ones. A Winner-Takes-All process is applied on the
output of the MLP to select the action suggested by
the robot (A’).

Figure 4 shows a subset of a run from step 100 to
150. With this approach, there is no distinct learning
and testing phases, but in the first part of the interac-
tion (before step 100), the supervisor had to produce
multiple corrective actions to train the network to ex-
press the desired output. The strategy used by the
supervisor is the following: if the motivation is lower
than 0.6 the supervisor enforces the action ‘encourage-
ment’, else if the engagement is below 0.6 ‘waving’ is
enforced, and if both are above 0.6 then a proposition
is made. The first graph presents the evolution of the
state over time, and the second one the output of the
MLP for each action. The vertical red lines represent
an intervention from the supervisor, i.e. a case where
the supervisor enforces a di↵erent action than the one
suggested by the MLP. The action actually executed
is represented by a cross with the same colour as the
respective curves.

Figure 5 shows a comparison of the cumulative total
of the di↵erent actions suggested and of the interven-
tion as well as the child performance for three di↵er-
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Figure 4: Subset of an interaction from step 100 to
150.

ent models of a child and for a random action selection
scheme. The di↵erence in the child models in the three
first graphs is the value of the thresholds required for
a good classification action, high reactive child: 0.6
and 0.6, asymmetrically: 0.9 for encouragement and
0.6 for engagement, and low reactive: 0.9 and 0.9. Be-
low these thresholds, a proposition would lead to a bad
action decreasing the performance. It can be observed
that the algorithm learns di↵erent strategies for each
child and that there is more learning apparent at the
start of the interaction than at the end (the rate of
interventions is decreasing over time), indicating that
the system is choosing the appropriate action at the
appropriate time, and that the workload on the super-
visor (necessity to provide these corrective actions) de-
crease over time. The last plot demonstrates a random
action selection with a high reactive child. Contrary
to the other cases, the child’s performance decreases
over time, and the number of interventions increases.
Here, a bad action only decreases the performance, but
in reality it may result in the termination of the inter-
action, which must be avoided.

4 Discussion

While demonstrating promise, there are a number of
limitations to the framework as presented. The as-
sumptions described in section 2.1 are typically vio-
lated when working with humans. Firstly the children
are all di↵erent, and a method learned for one child
may often not be suited when working with another.
Furthermore, the same child may have non-consistent
behaviour between the sessions and even within a sin-
gle session. There is no perfect solution to solve this
problem, but we can expect that with enough training
sessions and a more complex learning algorithm, the
system would be able to capture patterns and react to
the di↵erent behaviours appropriately. Since it is ex-
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Figure 5: Comparison of the cumulative total of the di↵erent actions suggested, the supervisor interventions
required, and child performance for three di↵erent models of a child (highly responsive; asymmetrically increased
responsiveness to engagement than motivation; low responsiveness), and a random action selection scheme.

pected that in a real application of such an approach a
therapist who knows the child will always be present,
we propose that for a new child the algorithm will use
a generic strategy based on previous interactions with
other children, with subsequent fine-tuning under su-
pervision.

Another assumption that is likely to be violated is that
of a perfect supervisor. As explained in [6] humans
are not always consistent nor omniscient, but meth-
ods presented in the literature can be used to cope
with these inconsistencies if enough data is gathered.
Further mitigating solutions could be employed, such
as the robot warning the therapist if it is about to
select an action which had negative consequences in
a previous interaction (even if for a di↵erent child).
Furthermore, it may not be possible to measure the
true internal states of the child in the real world, with
imperfect estimations of these states being more likely
accessible. In this case, inspiration from [9] can be
used to mixed the POMDP framework with the help
of an exterior oracle. Another problem which will have
to be addressed in the future is the di↵erence in in-
puts between the robot and the therapist: the thera-
pist will have access to language, more subtle visual
features and their prior experience, whereas the robot
may have direct and precise access to some aspects of
the child’s overt behaviour (such as timings of touch-
screen interaction).

In the currently implemented case study, we assume
that the supervisor responds to the action proposed
by the robot within some predetermined fixed time,
whether this response is accept or reject (figure 3).
This, in principle, allows the supervisor to only ac-
tively respond if a proposed action is clearly inappro-
priate. In further developments, we will incorporate
a measure of certainty (given prior experience) into
the time allowed the supervisor to respond to the pro-

posed action: for example increasing the time available
if the confidence in the proposed action is low. This
modulation of the load on the supervisor’s attention
according to confidence should result in the supervisor
being able to increasingly pay attention to the child
directly, rather than to the robot system, as training
progresses.

5 Conclusion

We have presented a general framework to progres-
sively increase the competence of an autonomous ac-
tion selection mechanism that takes advantage of the
expert knowledge of a human supervisor to prevent in-
appropriate behaviour during training. This method
is particularly applicable to application contexts such
as robot-assisted therapy, and our case study has pro-
vided preliminary support for the utility of the ap-
proach. While the simulation necessarily only pro-
vided a minimal setup, and thus omitted many of the
complexities present in a real-world setup, we have
nevertheless shown how the proposed method resulted
in the learning of distinct action selection strategies
given di↵ering interaction contexts, although further
refinement is required for real-world application. In-
deed, given real-world supervisor knowledge limita-
tions, we suggest it will furthermore be possible for
a suitably trained action selection mechanism of this
type to aid the supervisor in complex and highly dy-
namic scenarios.

Acknowledgements

This work is supported by the EU FP7 DREAM
project (grant 611391).



Human-Guided Learning of Social Action Selection for Robot-Assisted Therapy

References

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning
via inverse reinforcement learning. Proceedings
of the 21st International Conference on Machine
Learning (ICML), pages 1–8, 2004.

[2] B. D. Argall, S. Chernova, M. Veloso, and
B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous sys-
tems, 57(5):469–483, 2009.

[3] A. G. Barto. Reinforcement learning: An intro-
duction. MIT press, 1998.

[4] P. Baxter, R. Wood, and T. Belpaeme. A
touchscreen-based sandtrayto facilitate, mediate
and contextualise human-robot social interaction.
In Human-Robot Interaction (HRI), 2012 7th
ACM/IEEE International Conference on, pages
105–106. IEEE, 2012.

[5] M. Cakmak and A. L. Thomaz. Designing robot
learners that ask good questions. In Proceedings
of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction, pages
17–24. ACM, 2012.

[6] S. Chernova and M. Veloso. Interactive pol-
icy learning through confidence-based auton-
omy. Journal of Artificial Intelligence Research,
34(1):1, 2009.

[7] K. Dautenhahn. Robots as social actors: Au-
rora and the case of autism. In Proc. CT99, The
Third International Cognitive Technology Confer-
ence, August, San Francisco, volume 359, page
374, 1999.

[8] F. Doshi, J. Pineau, and N. Roy. Reinforcement
learning with limited reinforcement: Using bayes
risk for active learning in pomdps. In Proceedings
of the 25th international conference on Machine
learning, pages 256–263. ACM, 2008.

[9] F. Doshi, J. Pineau, and N. Roy. Reinforcement
learning with limited reinforcement: Using bayes
risk for active learning in pomdps. In Proceedings
of the 25th international conference on Machine
learning, pages 256–263. ACM, 2008.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of ar-
tificial intelligence research, pages 237–285, 1996.

[11] W. B. Knox, S. Spaulding, and C. Breazeal.
Learning social interaction from the wizard: A
proposal. In Workshops at the Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014.

[12] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas.
Supervised machine learning: A review of classi-
fication techniques, 2007.

[13] L. Riek. Wizard of Oz Studies in HRI: A Sys-
tematic Review and New Reporting Guidelines.
Journal of Human-Robot Interaction, 1(1):119–
136, Aug. 2012.

[14] B. Robins, K. Dautenhahn, R. T. Boekhorst, and
A. Billard. Robotic assistants in therapy and ed-
ucation of children with autism: can a small hu-
manoid robot help encourage social interaction
skills? Universal Access in the Information Soci-
ety, 4(2):105–120, July 2005.

[15] E. Senft, P. Baxter, J. Kennedy, and T. Bel-
paeme. When is it better to give up?: Towards
autonomous action selection for robot assisted
asd therapy. In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-
Robot Interaction Extended Abstracts, HRI’15 Ex-
tended Abstracts, pages 197–198, New York, NY,
USA, 2015. ACM.

[16] S. Thill, C. A. Pop, T. Belpaeme, T. Ziemke,
and B. Vanderborght. Robot-assisted therapy for
autism spectrum disorders with (partially) au-
tonomous control: Challenges and outlook. Pala-
dyn, 3(4):209–217, Apr. 2013.

[17] A. L. Thomaz and C. Breazeal. Teachable robots:
Understanding human teaching behavior to build
more e↵ective robot learners. Artificial Intelli-
gence, 172(6-7):716–737, 2008.


