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Abstract

Deep neural networks currently stand at the state of the art for many machine learning
applications, yet there still remain limitations in the training of such networks because of
their very high parameter dimensionality. In this paper we show that network training
performance can be improved using a stage-wise learning strategy, in which the learning
process is broken down into a number of related sub-tasks that are completed stage-by-
stage. The idea is to inject the information to the network gradually so that in the early
stages of training the “coarse-scale” properties of the data are captured while the “finer-
scale” characteristics are learned in later stages. Moreover, the solution found in each stage
serves as a prior to the next stage, which produces a regularization effect and enhances
the generalization of the learned representations. We show that decoupling the classifier
layer from the feature extraction layers of the network is necessary, as it alleviates the
diffusion of gradient and over-fitting problems. Experimental results in the context of
image classification support these claims.
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1. Introduction

In recent years we have witnessed the exceptional success of “learned” features using deep
models, in contrast to hand-crafted features, in many number of applications including
image classification (Krizhevsky and Hinton (2009); Farabet et al. (2013)), speech recog-
nition (Dahl et al. (2012); Deng et al. (2013)), language modeling (Arisoy et al. (2012);
Mikolov (2012)) and information retrieval (Huang et al. (2013); Salakhutdinov and Hinton
(2009)). The power of these deep models is rooted in their nonlinear multi-layer architecture
which allows them to learn complicated input-output relationships and to extract high-level
abstract features.

The origin of deep models, and more specifically deep neural networks, dates back
to more than twenty years ago. However, training these networks for general use was
impractically slow. The significant growth in computational power (particularly in GPUs
and distributed computing) and access to large labeled data sets (e.g., ImageNet (Deng
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et al. (2009)) paved the way for the popularity of deep models. Moreover, effective methods
were proposed for dealing with the two major obstacles in training deep nets:

Overfitting stems from the very large number of parameters present in deep networks.
The key, then, is to employ regularization techniques to limit the degrees of freedom
in the parameter space. Among the classic regularizers for neural networks we find
early-stopping, Tikhonov regularization (i.e., L2 weight decay) (Tikhonov (1943)) and
lasso (i.e., L1 regularization) (Tibshirani (1996)). Specialized regularizers for deep
neural networks include convolutional weight-sharing (LeCun et al. (1998); Lee et al.
(2009)), dropout (Srivastava et al. (2014)) and drop-connect (Wan et al. (2013)).

The diffusion of gradients is caused by the progressive vanishing of the error as it is
back-propagated to earlier layers of the network. The most widely used methods to
address this problem are layer-wise pre-training (Hinton et al. (2006); Bengio et al.
(2007)), piecewise linear activation functions (Nair and Hinton (2010)) and transfer
learning (Caruana (1995); Bengio (2012)).

Despite the remarkable advances in this area, the training of deep networks remains challeng-
ing and continues to motivate further developments. In particular, our research described
in this paper focuses on the issues of overfitting and gradient-diffusion into two questions
of interest:

1. How should computational resources be distributed between learning the classifier and
the feature extractors?

2. Should all of the information (i.e., constraints) be fed to the network at once? Or is it
preferable for the network to be guided step-by-step towards learning more discrimi-
native features through a gradual, strategic presentation of the information?

One of the structural properties of deep networks is that all of the feature extraction
layers and the classifier layer are trained at the same time. Recently, Yosinski et al. (2014)
showed that the feature extractors at successive layers are co-adopted and there is a com-
plicated interaction between them. Therefore, training of feature extractor layers can not
be factorized and it is important to learn them at the same time. However the same limi-
tation does not necessarily apply to the classifier layer, leading to a question whether the
classifier and feature extraction layers should be trained at the same time. Although in
general coupled training of the feature extractors and classifier results in a better perfor-
mance (Gönen (2014); Mohri et al. (2015)), it is not clear to what extent these two steps
should be co-adapted. In this paper we show that for deep nets, training indeed benefits
from treating the classifier layer separately, and that the problem of diffusion of gradient
can be addressed by preventing the complex co-adaptation of the feature extraction layers
with the classification layer.

The second question that we raise in this paper is whether we can increase the gen-
eralization of the learned features by the gradual injection of information to the network
during training. In particular, given an image classification problem, our goal is to develop
stage-wise learning, whereby the network is first steered in the direction of capturing dis-
criminative information related to coarse-scale structures (i.e., shape features). Then, by
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gradually increasing the level of detail presented at the input, the learned feature extrac-
tors are fine-tuned to grasp the discriminative information related to the fine-scale image
characteristics (i.e., appearance features).

Motivated by these questions, we propose a stage-wise training framework for represen-
tation learning using deep networks in which overfitting can be avoided through stage-wise
evolution of the information fed to the network, and whereby gradient diffusion can be ad-
dressed by decoupling the feature extraction layers from the classifier layer across successive
training stages.

2. Related Works

2.1 Unsupervised Layer-wise Pre-training

Layerwise Pre-training (Hinton et al. (2006)) played a significant role in revitalizing deep
nets. As it comes from its name, the main idea behind this method is to train only one
layer of the network at a time, starting from the first layer. After training each layer, its
computed output is considered as the input for training the next layer. This layer-wise
pre-training strategy is usually performed in an unsupervised way because of two reasons:
1) cheap access to abundant unlabeled data 2) avoiding overfitting due to the large number
of parameters per layer. The pre-trained weights are used to initialize the network for a
fine-tuning stage where all of the layers are trained together.

The optimization explanation for the effectiveness of layer-wise pre-training is that, this
method initializes the network at a location where it is more likely to converge to a good
local minimum (Bengio et al. (2007)). In addition, initializing the network parameters acts
as a regularizer in the sense that it restricts the parameters to the regions corresponding to
the input distribution (Erhan et al. (2010)).

Due to its layer-wise nature, this initialization method does not take into account the
interactions between successive layers of the network.

2.2 Transfer Learning

The goal of transfer learning for deep nets (Bengio (2012)) is to use the related information
in a base dataset to initialize the parameters of a model on a target dataset. Assume that
our target task is to learn a deep net NT on the target dataset DT . Given a base dataset
DB with similar general properties to DT , one can train a deep net NB on that and transfer
the learned representations from NB to NT . The transfered features are used to initialize
some layers of NT which can be kept frozen or fine-tuned using DT , depending on the size of
DB and DT and their common characteristics. Since the specificity of the learned features
to the target task increases as we move towards the top layers of the network, this method
is used to initialize the early layers of the network1. Transfer learning is used to prevent
overfitting specially when DB is much larger than DT . A thorough study of this method
for deep nets can be found in (Yosinski et al. (2014)).

It is important to note that, the applicability of transfer learning is limited to tasks that
are supported with a related and large base dataset.

1. Another reason is that early layers suffer more from the diffusion of gradients problem.
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3. Stage-wise Training

Neural networks are discriminative models focused on minimizing the prediction error with
respect to some architectural priors, such as the number of layers, the number of neurons
at each layer, and the type of the activation function. To distinguish between different
classes, these networks aim at learning features that are unique to each class, as opposed to
the typical features of a class (Nguyen et al. (2014)). However, this training strategy can
produce counter-intuitive results, for example how a deep network trained on the ImageNet
dataset mistakenly classified a black and yellow striped pattern as a school bus (Nguyen
et al. (2014)). The reason for such a mistake is that in decision making no priority is assigned
to the coarse properties of the data compared relative to its detailed characteristics.

To address this problem, we propose a stage-wise training framework in which the
information in the training data is presented to the network gradually. In this way, at the
early stages of training the network has access to only a subset of the data, specifically the
coarse-scale properties of the data, such that the network learns to perform prediction by
extracting features at that coarse scale. Then, during following stages, finer information
is provided to the network and the learned feature extractors from previous stages are
permitted to evolve to perform better predictions. In other words, the learned feature
extractors at each stage act as a prior for feature leaning at the next stage (see figure 1).

3.1 Definition of a Training Stage

Let s ∈ {1, 2, ..., S} be the current stage of training. The training set in stage s is denoted
by Ts = {(xi,yi)}ns

i=1 ⊆ Xs×Ys, where Xs ⊂ Rps and Ys ⊂ {0, 1}c are the input and output
domains2. At stage s, the learning algorithm A(., .) takes the training set and the initial
value of the parameters W init

s as input, and outputs the learned parameters Ws:

Ws = A(Ts,W
init
s ), (1)

where A is, in principle, any state of the art learning strategy currently established in the
research literature.

3.2 Connection between Successive Stages

Assuming that the network is randomly initialized at the first stage,

Winit
1 := random (2)

a natural way of connecting successive stages would be as follows:

Winit
s := Ws−1 for all s ∈ {2, ..., S}. (3)

However, if we consider the multi-layer structure of the network and the properties of the
error back-propagation algorithm, some layers of the network require special treatment.
Training of neural networks is a gradient-based optimization procedure and the gradient
of the objective function is back-propagated through the layers of the network. In multi-
layer networks, this training strategy usually suffers from the problem of gradient diffusion:

2. Note that training instances of different stages can be from different domains
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Figure 1: Schematic diagram of stage-wise training with information evolution. Note that
only the feature extractor layers (and not the classifier) are initialized using the previous
stage.

the back-propagated gradients vanish quickly as the depth of the network increases. Con-
sequently the top layers learn faster than the more distant earlier layers of the network.
Furthermore the last layer of the network alone, the classifier layer, has sufficient degrees
of freedom (free parameters) to model the entire labeled data by itself. Consequently, the
classifier layer is more prone to overfitting than the feature extraction layers.

It follows, then, that in any sort of stage-wise training framework it is important to use
the previous stage to initialize the feature extraction layers, and not the classifier layer, to
avoid overfitting at the classifier layer.

3.3 Stage-wise Information Evolution

In the proposed stage-wise framework, the training information passed to each stage should
be evolved gradually. Considering the definition of a training stage, this objective can be
met in a number of ways:

1. The evolution of the input domain Xs,

2. The evolution of the output domain Ys, or

3. The evolution of training set Ts.

In this paper we focus on the first way, i.e., evolution of the input domain.

Assume that XS is the original representation of the input data; that is, our target is to
arrive at the usual training data at the final stage S. We therefore require a stage-to-stage
mapping operator F which projects Xs, the input data at stage s, to lower-dimensional
Xs−1:

Xs−1 := F(Xs) (4)

F : Xs 7→ Xs−1 where ps > ps−1

It is important to note that this information evolution method should be used with a con-
volutional weight-sharing scheme for all of feature extraction layers so that the number
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of parameters becomes independent of the input dimension. The parameter count inde-
pendence is essential to allow learned parameters to be associated and connected between
successive stages using the method discussed in section 3.3.

In the case of image data, a choice for mapping F is the sub-sampling operation and a
stage-wise evolution of the input image can be obtained through sub-sampling the original
input samples with an increasing ratio. Therefore, at the early stages of training, the net-
work is focused on capturing coarse-scale image characteristics (i.e., shape features) through
considering a wider context around each pixel. As we move forward toward the final stages,
given more detailed information, the learned feature extractors are fine-tuned to detect
discriminative information in the fine-scale image structures (i.e., appearance features).

4. Experiments

We first conduct a set of experiments to understand how the proposed stage-wise training
framework for multi-layer neural network improves feature extraction. Then, we examine
the performance of a multi-stage trained network for image classification compared to an
equivalent single-stage trained counterpart.

For the experiments the standard CIFAR10 dataset (Krizhevsky and Hinton (2009)) is
used. This dataset consists of 32× 32 colored images of ten classes of objects, each having
50000 training samples and 10000 test samples. For the purpose of information evolution,
each training image is sub-sampled with 5 different increasing ratios (i.e., S = 5)3.

For the stage-wise training, the architecture of the network is kept unchanged during
training stages. We use a convolutional neural network (CNN) with two feature extraction
layers (i.e., hidden layers) before the classification layer. The hyper-parameters of this CNN
are similar to that of (Hinton et al. (2012)) for CIFAR10: 64 filters of size 5 × 5 at each
convolutional layer followed by max-rectifying nonlinearity and pooling of size 3 × 3 with
stride 2. The max and average pooling functions are used for the first and second layer,
respectively.

4.1 Analysis

Given the fact that different input data is used at different stages, we study how the clas-
sification problem solved at each training stage is related to that of the other stages.

Table 1 shows the connection between the learned models at different stages with evolved
inputs. In this table, entry at row i and column j refers the to “what ratio of the test samples
that are correctly classified (with high confidence) at stage i are classified correctly (with
high confidence) at stage j?”4. Considering the entries above the main diagonal, most
(i.e., more than %92) of the samples that are recognized confidently at each scale are also
classified correctly in the subsequent stages. The entries below the main diagonal show
that the learned network at each stage is an improved version of the learned model at its
previous stage. This result is interesting in the sense that, despite the difference in the size
of the input data at each stage and consequently, different width of the context used for

3. The size of each input training image at stages 1, 2, ... , 5 are 14 × 14, 16 × 16, 20 × 20, 23 × 23 and
32 × 32, respectively.

4. The confidence of a prediction comes from the output of the soft-max layer for the predicted class.
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Stage 1 1 0.957±0.002 0.956±0.003 0.957±0.003 0.954±0.003
Stage 2 0.608±0.004 1 0.953±0.003 0.949±0.002 0.938±0.003
Stage 3 0.477±0.004 0.748±0.004 1 0.950±0.002 0.930±0.004
Stage 4 0.426±0.004 0.665±0.004 0.848±0.003 1 0.929±0.004
Stage 5 0.386±0.003 0.597±0.005 0.754±0.003 0.844±0.003 1

Table 1: Connection between the learned models at different stages with evolved inputs.
The entry at row i and column j indicates “what ratio of the test samples that are correctly
classified (with high confidence) at stage i, are classified correctly (with high confidence)
at stage j?”. Note that despite the difference in the input data, the models learned at
successive stages are closely connected.
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Figure 2: (a) Dependency of the extracted features at each layer of the network to the true
class label across different stages of training. Observe how this dependency increases during
stage-wise training for the extracted features at both layers of the network. (b) Performance
of the learned features as a function of the level of information presented to the network
during stage-wise training. Notice how the gradual information evolution during multiple
training stages leads to a smaller error rate.

feature extraction, there is a close relationship between the problems that we are solving at
successive stages.

In the next experiment, we factorize the effect of the learned feature extractors from
the classifier. In other words, we directly compare the statistical dependence between the
learned features (at each layer of the network) and the output variable for different training
strategies. In order to measure this dependence, we use the Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al. (2005)). Assume that we are given n samples belonging
to c different classes. Each sample is represented by a d-dimensional vector, which are the
extracted features at a specific layer of the network. Using HSIC, we can compute the
dependence between the extracted features Zd×n and their corresponding labels Yc×n as
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Figure 3: Classification performance of three methods (i.e., single-stage, stage-wise without
information evolution and stage-wise with information evolution) in terms of (a) test error
(b) training loss. Observe the superior performance of the stage-wise training strategy on
test data despite the better performance of its counterparts on the training loss, which
demonstrates the regularization effect of stage-wise training. Also, figure (c) shows that the
gap between the performance of the stage-wise framework is more significant for smaller
training sizes.

HSIC(Z, Y ) := (n− 1)−2tr(HKHL) (5)

where K is a kernel of Z (e.g., ZTZ), L is a kernel of Y and H = I−n−1eeT (the centering
matrix)5. In this experiment we use a linear kernel for both Z and Y and normalize HSIC

to have a maximum value of 1 (i.e., multiplying (5) by (n−1)2
‖K‖F ‖L‖F ). Figure 2a shows the

computed HSIC for the extracted features from the test set using the trained network
at different stages. This figure indicates that during stage-wise training, the dependence
between the learned features and the class labels increases. Moreover, compared to single-
stage training, stage-wise training of the network improves the quality of the extracted
representations at all of the network layers in terms of their dependence to the class labels.

Finally, we study the effect of the speed of the information evolution on the performance
of the learned features. We wonder how many training stages is required for a certain amount
of information evolution to take place. As explained in the beginning of this section, each
input image is represented in 5 different levels of details such that level 5 corresponds to the
original input representation. In this experiment we compare and contrast three different
training scenarios: (i) Single-stage training using the entire information (e.g., level 5) (ii)
Stage-wise training with a high speed of information evolution (e.g. jumping from stage 1
to 5) (iii) Stage-wise training with a slow speed of information evolution (e.g. stage 1 to 2,
...,4 to 5). As figure 2b shows, it is important to increase the amount of training information
fed to the network gradually and during multiple stages.

4.2 Classification Results

In this section, we evaluate the classification performance of the learned representations
using the proposed stage-wise training framework. Three different training strategies are

5. e is a vector of all ones.
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compared: 1) conventional single-stage training 2) stage-wise training without information
evolution (i.e., the level of details in training images are the same for all stages) 3) stage-wise
training with information evolution (i.e., the level of details in training images increases at
successive stages). The architecture of the trained networks using all of these three methods
are the same and is as discussed at the beginning of this section. Figure 3a demonstrates the
superior performance of the stage-wise training strategy on test data classification compared
to the conventional single-stage training. Furthermore, considering the training loss of these
methods shown in figure 3b, evolution of information during stage-wise training acts as a
regularizer and improves the generalization of the learned features. Note that these results
are obtained using a simple base-line two-layer network and can be applied to the state of
the art models without loss of generality.

A good regularizer should improve the generalization performance of the learned model
on small data sets. Considering this fact, we explore the performance of the model as a
function of the number of training samples. The result of this experiment is depicted in
figure 3c. It can be observed that the gap between the performance of the stage-wise model
and its single-stage counterpart is more significant for small training sets, confirming the
fact that it is more important to regularize well for small datasets.

5. Conclusion

In this paper we proposed a stage-wise training framework with information evolution for
feature extraction using deep neural networks. In this framework, the network is steered
towards a good solution through a sequence of related learning stages, where the amount
of information provided to the network is gradually increased during these stages. More
specifically, at the early stages only coarse-scale properties were provided to the network;
then, using the solution found at the previous stage, as a prior for the next learning stage,
fine-scale learning takes place at the successive stages. In principle, stage-wise training acts
as a regularizer.

Moreover, we showed that the classifier layer of the network requires a special treatment.
In fact, due to the problem of diffusion of gradient in deep models, the classifier can over-
fit while the early layers are not still learned. This problem is alleviated in a stage-wise
framework, where the feature extraction layers are initialized using the previous stage while
the classifier layer is randomly initialized at the beginning of each stage .

The experimental analysis showed that the proposed framework improves the accuracy
of image classification for CIFAR10 data set. The most important reason for such an
improvement is the regularization effect of the stage-wise training. In addition, it was shown
that the statistical dependence between the learned features and the class labels increases
stage-by-stage, eventually becoming larger than that of single-stage training. This shows
that the extracted features using stage-wise model are more discriminative. Nevertheless,
we believe that the real power of the proposed method emerges on higher-dimensional inputs
(e.g., larger images), the subject of future work.
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