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Abstract

Bias reduction is an important condition for effective feature extraction. Utilizing recent
theoretical results in high dimensional statistical modeling, we propose a model-free yet
computationally simple approach to estimate the partially linear model Y = Xβ+g(Z)+ε.
Based on partitioning the support of Z, a simple local average is used to approximate
the response surface g(Z). The model can be estimated via least squares and no tuning
parameter is needed. The proposed method seeks to strike a balance between computation
burden and efficiency of the estimators while minimizing model bias. The desired theoretical
properties of the proposed estimators are established. Moreover, since the proposed method
bypasses data-driven bandwith selection of traditional nonparametric methods, it avoids
the further efficiency loss due to computation burden.

Keywords: Nonparametric estimation, computational efficiency, least squares estimation,
low model dependency
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1. Introduction

Regression analysis is a family of important techniques that estimate the relationship be-
tween a continuous response variable Y and covariates X with dimension p, Y = f(X) + ε.
Parametric regression models such as linear regression are easy to estimate and interpret
but the requirement of a strict functional form can increase the risk of model misspecifica-
tion. In contrast, nonparametric methods such as kernel methods or smoothing techniques
have been developed to estimate flexible form of f(X). The estimation of such models re-
quires a data driven bandwith parameter h that can be computationally demanding as the
dimension of X increases. Moreover, A fully nonparametric approach is rarely useful as it
suffers the curse of dimensionality which requires the sample size to increase exponentially
with the dimension of X. Semi-parametric regression models such as the partially linear
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the Estimation of Semi-parametric Regression Function

model

Yi = XT
i β + g(Zi) + εi, i = 1, . . . , n (1)

offer an appealing alternative. In this model, the covariates are separated into paramet-
ric components Xi = (Xi1, . . . , Xip)

T and nonparametric components Zi = (Zi1, . . . , Ziq)
T .

The parametric part of the model can be interpreted as a linear model, while the non-
parametric part frees the model from stringent structural assumptions. As a result, the
estimates of β are also less affected by model bias. This model has gained great popular-
ity since it was first introduced by Engle, Granger, Rice, and Weiss (1986) and has been
widely applied (for examples, Robinson (1988) and Severini and Staniswalis (1994)). For
more details, Härdle, Liang, and Gao (2000) provide a good comprehensive reference of the
partially linear model.

To circumvent the curse of dimensionality, g(Z) is often specified in terms of additive
structure of one-dimensional nonparametric functions,

∑q
j=1 gj(Zj). This is the so-called

generalized additive model. In theory, if the specified additive structure corresponds to the
underlying true model, every gj(·) can be estimated with desired one-dimensional nonpara-
metric precision, and β can be estimated efficiently with optimal convergent rate. But in
practice, estimating multiple nonparametric functions is related to complicated bandwidth
selection procedures, which increases computation complexity and makes the results un-
stable. Moreover, when variables {Zj} are highly correlated, the stability and accuracy of
such additive structure in partially linear regression model is problematic (see Jiang, Fan,
and Fan, 2010). Lastly, if the additive structure is misspecified, for example, when there
are interactions between the nonparametric predictors Z, the model and the estimation of
β will be biased.

In this paper, we propose a simple least squares based method to estimate the parametric
component of model (1) without complicated nonparametric estimation. The basic idea is
as follows. Since the value of g(Z) at each point is only related to the local properties of
g(·), a simple stepwise function can be used to approximate the function g(Z). Such local
average approximation can be represented by a set of incidental parameters that are only
related to finite local sample points falling within the same step interval. When the length
of step interval is small enough, the approximation error can be ignored. The increasing of
variance due to estimating those incidental parameters is expected to be integrated and its
effect on the parametric vector estimate β in model (1) can be almost ignored.

2. The method

The key motivation behind this method is the partial consistency propertyLancaster (2000)
and Fan, Peng, and Huang (2005)) First consider a partially linear regression model with
one-dimensional nonparametric component,

Yi = XT
i β + g(Zi) + εi, i = 1, . . . , n, (2)

where g(·) is an unknown function, Zi ∈ R1 is a continuous random variable. Without loss
of generality and for convenience of theoretical analysis, we assume that Zi are i.i.d random
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variables and follow [0, 1] uniform distribution, and is sorted as 0 ≤ Z1 ≤ Z2 . . . ≤ Zn ≤ 1
based on their realized values.1

Next we can partition the support of Zi into J = n/I sub-intervals such that the jth
interval covers I different random variables with closely realized values from z(j−1)I+1 to zjI .
If the density of Zi is smooth enough, these sub-intervals should be narrow and the values
of g(·) over the same sub-interval should be close and g(Z(j−1)I+1) ≈ g(Z(j−1)I+2) · · · ≈
g(ZjI) ≈ αj where αj = 1

I

∑I
i=1 g(Z(j−1)I+i). Then the nonparametric part of model (2)

can be reformulated in terms of partially consistent observations and rewritten in the the
following form,

Yn = Bnαn + XT
nβ + ε∗n, n = J × I (3)

with ε∗(j−1)I+i = ε(j−1)I+i + g(Z(j−1)I+i) − 1
I

∑I
i=1 g(Z(j−1)I+i). It is easy to see that the

second term in ε∗(j−1)I+i is the approximation error. Normally when I is a small constant,

it is of order O(1/J) or O(1/n) , and much smaller than ε. Hence the approximation error
can be ignored and it is expected that β in the model (2) or (3) can be estimated almost
efficiently even when g(·) in (2) is not estimated consistently. Model (3) can be easily
estimated by profile least squares,

J∑
j=1

I∑
i=1

(Y(j−1)I+i −XT
(j−1)I+i β − αj)

2. (4)

We have the following theorem for the above profile least squares estimate of β under
the model (2) or (3).

Theorem 1 Under regularity conditions (a)—(d) in the Appendix, for the profile least
squares estimator of β,

√
n(β̂ − β)

L−→ N(0,
I

I − 1
σ2Σ−1), (5)

where Σ = E
[
{X − E(X|Z)}{X − E(X|Z)}T

]
.

Similar to the treatment of least square estimator for linear regression models, and
noting that the degrees of freedom of (3) is approximately (I − 1)/I · n, we can estimate
the variance of β̂ using sandwich formula. Furthermore, we can plug β̂ back into equation
(3) and obtain an updated nonparametric estimate of g(Z) based on Y ∗i = Yi −Xiβ̂ using
standard nonparametric techniques. Since β̂ is a root n consistent estimator of β, we
expect the updated nonparametric estimator ĝ(Z) will converge to g(Z) at the optimal
nonparametric convergence rate.

2.1 Extension to multivariate nonparametric g(Z)

Case I: The simple method of approximating one-dimensional function g(Zi) can be readily
extended to the multivariate case when Z consists of one continuous variable and several

1. Note that this condition is indeed quite mild. If Zi doesn’t follow a [0, 1] uniform distribution, we can
consider a monotonic transformation Zi∗ = F (Zi), i = 1, 2, . . . , n where F (·) is the distribution function
of Zi and Z∗

i follows a uniform distribution. In this case, we can just investigate the proposed method
based on Zi∗.
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categorical variables. Note that without loss of generality, we can express multiple categor-
ical variables as one K-level categorical variable. Hence, a partially linear model

Yi = Xiβ + g(Zdi , Z
c
i ) + εi, i = 1, . . . , n, (6)

where Zi = (Zdi , Z
c
i ) where Zci ∈ R1 as specified in (2), Zdi is a N -level categorical variable.

To approximate g(Zd, Zc) we first split the data into N subsets given the categorical
values of Zdi , then the kth (0 ≤ k ≤ N) subset of the data will be further partitioned into
sub-intervals of I data points with adjacent values of Zc. Based on the partition, model
(6) can still be written in the form of (3). The profile least squares as shown above can be
used to estimate β and we have the following corollary.

Corollary 1 Under the model (6) and regularity conditions (a)—(e), for the profile least
squares estimator of β,

√
n(β̂ − β)

L−→ N(0,
I

I − 1
σ2Σ−1), (7)

where Σ = E
[
{X − E(X|Z)}{X − E(X|Z)}T

]
.

Case II: The simple approximation can also be easily applied to continuous bivariate vari-
able Z = (Z1, Z2) ∈ R2. The partition will need to be done over the bivariate support of
Z. In the extreme case when the two components of Z = (Z1, Z2) are independent from
each other, the approximation error based on the partition is of order o(1/

√
n), the same

as the model error. Hence in theory the root-n consistency of β can be established. Below
we outline a corollary that based on the case when the two components of Z are highly
correlated so we only need to partition the support of Z according to one component. First
we assume

∆si ≡ Z1i − Z2i → 0, i = 1, · · · , n, (8)

a similar condition as in Jiang, Fan, and Fan (2010)

Under the assumption (8) with ∆si = o(1), it is sufficient to partition the observations
into subintervals of I data points according to the order of Z1i, i = 1, . . . , n. If g(·) satisfies
some regular smoothness conditions, given subinterval j, g(Z(j−1)I+i) is approximately equal
for i = 1, · · · , I, denoted by αj . Again the model can be represented in the form of (3) and
we have another corollary,

Corollary 2 Under the model (6) where Z1i and Z2i are highly correlated and satisfy the
condition (8), and the regularity conditions (a)—(d), for the profile least squares estimator
of β,

√
n(β̂ − β)

L−→ N(0,
I

I − 1
σ2Σ−1), (9)

where Σ = E
[
{X − E(X|Z)}{X − E(X|Z)}T

]
.

The proofs of the theorem and corollaries are deferred to the Appendix. As the di-
mension of the continuous components of Z increases, similar as the discussion of Fan and
Huang (2001) about ordering multivariate vector, Z can be ordered according to the first
principle component of Z or certain covariate. In practice, as shown by Cheng and Wu
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(2013) and Mohri et al. (2015), the high dimensional continuous random vector Z can often
be represented by a low dimensional manifold. Hence we can expect that for many cases,
once Z is expressed in a low dimensional manifold without losing much information, the
partition of Z can be done within the manifold effectively and our results should still apply.

2.2 Choice of I

As shown in the theoretical results, our proposed estimate β̂ is
√
n-consistent with the

asymptotic variance I
I−1σ

2Σ−1. The loss in efficiency is determined by a factor of I/(I − 1)
and it can be controlled by specifying desired I value. But in principle, I shouldn’t be
too large since we also need to control the approximation error. In general we suggest to
choose an I value that is no more than O(log2 n). For example, for sample size 400, I
should be no more than 10 (log2(400) = 8.6439). As a matter of fact, as our simulation
examples show (see next section), I = 4 or 5 is good enough for a wide range of sample
sizes and various nonlinear forms. In addition, for small to moderate sample sizes, to
strike a balance between reducing model bias (prefer smaller I) and minimizing the impact
of many incidental parameters (prefer larger I), we can consider model averaging. This
proposed method doesn’t require additional tuning parameter selection. As shown in the
theoretical results, the impact of different values of I is gauged explicitly by the inflation
factor I/(I−1). In practice the optimal value of I need to be determined by cross-validation
which is computationally intensive. Hence, computationally the proposed method has a
clear advantage.

3. Numerical studies

We conduct three simulation examples to examine the effectiveness of the proposed estima-
tion method. To assess estimation accuracy of the parametric components, we compute the
average estimation errors, ASE(β̂) =

∑p
l=1 |β̂l− βl|. For comparison purposes, all the simu-

lations examples are also calculated using available R packages. Packages gam and mgcv are
used to fit generalized additive model. package NP is used to fit nonparametric regression
and package locfit is used for nonparametric curve fitting. Generalized cross validation
method is used to select the optimal bandwidth whenever it is applicable.

Example 1 Consider the following simple partially linear regression model

Yi = XT
i β + g(Zi) + εi, i = 1, . . . , n,

where β = (1, 3, 0, 0, 0, 0) and g(Zi) = 3 sin(2Zi) + 10δI(0 < Zi < 0.1) + δI(Zi ≥ 0.1).
(Xi, Zi), i = 1, . . . , n are i.i.d. draws from a multivariate normal distribution with mean
zero and a covariance matrix where the variance of all the terms are 1 and the pair-wise
correlation is ρ = 0.5. εi, i = 1, . . . , n are i.i.d. and follow the standard normal distribution.

We let δ = 0, 3 and 6 in this simulation. The size of δ determines the jump in the
nonparametric function. Classical nonparametric method does not estimate functions with
jump accurately hence the estimate of β will be affected too. 400 simulated samples are
produced to evaluate the performance of the proposed estimators for the parametric com-
ponents. The results will be compared with those produced by function gam in R package
gam that fits Generalized Additive Models.
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As suggested by Table 1, when I is set to be moderately large (at 4 or 5), the ASE of
the proposed estimators is generally comparable with that is produced by the gam function
in R. As sample size increases and when the nonparametric function is not smooth (δ 6= 0),
the ASE of the proposed estimators is often smaller. In which cases, the estimated standard
errors of the ASE are also much smaller suggesting that our method produces more stable
estimators than gam.We have also learned from this set of simulations that the improved
estimators based on averaging results from different choices of I can be a good alternative,
especially when sample size is relatively small. In the extreme case when I = 2, the ASE
decreases with sample size and it is only about 1.3 times that of function gam.This implies
the empirical model variance of our method is about 1.7 times that of gam results. It
suggests that in practice the optimal efficient kernel based methods also suffer efficiency
loss due to computational complexity that is not captured in theoretical results.

Table 1: Average Estimation Errors for Simulation Example 1 (estimated standard errors
in parentheses)

Method Our Method GAM

δ = 0 I=2 I=4 I=5 I=10 I=20 Average

n=100 0.977(0.357) 0.781(0.290) 0.800(0.291) 0.846(0.302) 1.075 (0.353) 0.784(0.284) 0.723(0.248)

n=200 0.650(0.207) 0.538(0.160) 0.528(0.169) 0.516(0.182) 0.583(0.175) 0.496(0.167) 0.507(0.173)

δ = 3

n=100 0.957(0.357) 0.834(0.305) 0.815(0.285) 0.904(0.296) 1.225 (0.400) 0.821(0.275) 0.789(0.269)

n=200 0.676(0.241) 0.539(0.199) 0.509(0.184) 0.518(0.191) 0.601(0.208) 0.495(0.182) 0.543(0.174)

δ = 6

n=100 1.006(0.312) 0.852(0.313) 0.847(0.310) 1.017(0.351) 1.420 (0.486) 0.855(0.303) 0.934(0.294)

n=200 0.624(0.220) 0.530(0.182) 0.527(0.174) 0.544(0.169) 0.687(0.222) 0.517(0.153) 0.625(0.197)

Example 2 Consider the following generalized additive model,

Yi = X>i β + g1(Z1i) + g2(Z2i) + g3(Z3i) + εi, i = 1, . . . , n,

where β = (1.5, 0.3, 0, 0, 0, 0)>. The functions g1, g2, g3 are:

g1(Z1i) = −5 sin(2Z1i), g2(Z2i) = (Z2i)
2 − 2/3, g3(Z3i) = Z3i.

Xi follows a multivariate normal distribution with mean vector zero and the covariance
matrix as in Example 1. The Zis are constructed to be highly correlated.

Z1i = X1i + u1i; Z2i = Z1i + n−1/2u2i; Z3i = Z1i + n−1/2u3i (10)

where n is the sample size and uis (s = 1, 2, 3) are N(0, 1) disturbance terms that are
drawn independently from covariates X. The correlation among Zs goes up as sample size
increases. Lastly, the error term of the model εi ∼ N(0, 1).

As in Example 1, 400 simulation examples are generated to evaluate the performance
and running time of the proposed estimation method in comparison with the R function
gam. As indicated by Table 2, as sample size increases, our proposed method outperforms
the gam package even when I = 2. In general, we can see that the proposed method is not
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Table 2: The Average Estimation Errors and Running Time (second) for Simulation 2

Method Our Method GAM

I=2 I=4 I=5 I=10 I=20 Average

ASE, n=100 1.372(0.523) 1.343(0.482) 1.358(0.532) 1.606(0.765) 2.364(0.851) 1.352(0.520) 1.123 (0.0374)

Running Time 5.51 2.95 2.89 2.09 1.14 14.58 17.68

ASE, n=200 0.814(0.332) 0.738(0.279) 0.731(0.277) 0.899(0.408) 1.103 (0.403) 0.758(0.282) 0.829(0.285)

Running Time 10.27 5.73 4.87 2.77 2.02 25.66 26.36

sensitive to the choice of I as long as it is not chosen to be too large a value relative to the
sample size. Given a fixed sample size, larger I will yield smaller number of subintervals
and lead to coarser approximation of the nonparametric function, but with shorter running
time. Compared to gam,the computational efficiency of our method is quite evident.

Example 3 The model is

Yi = X>i β + g(Zdi , Z
c
2) + εi, i = 1, . . . , n,

where g(Zdi , Z
c
i ) = (Zci )

2 + 2Zci + 0.25Zdi e
−16Zc2i .

and the true parameter β is a 6×1 vector and equals to (3.5, 1.3, 0, · · · , 0)>. Xi, i = 1, . . . , n
are independently generated from Bernoulli distribution with equal probability being 0 or 1.
The categorical variable Zdi is a Bernoulli variable independent of Xi with P (Zdi = 1) = 0.7.
The variable Zci is continuous and sampled from a uniform distribution on [−1, 1] and
independent of Xi and Zdi . The error term ε ∼ N(0, 0.22).

For comparison purpose, we use R package np to estimate the bivariate function g(Zdi , Z
c
i )

nonparametrically. In addition, we also use package gam to estimate a “pseudo” model with
an additive nonparametric structure specified as below,

g(Zdi , Z
c
i ) = δZdi + g(Zci ) + εi, i = 1, . . . , n.

We can see that the “pseudo” model misspecifies the nonparametric components. It will
be interesting to compare the performance of the proposed method, generalized additive
model and nonparametric method in terms of estimation of the parametric parameter β.

Again, we produced 400 samples for numerical comparison. Table 3 presents the ASE
and estimates of β under three different methods. The np method tries to estimate β
and the bivariate function g(Z1, Z2) simultaneously which involves iterative algorithm and
complicated tuning parameter selections. Hence we expect the numerical performance will
be compromised to some extent. As the other two simulation studies suggested, our method
in general produces slightly bigger ASE than the np method but in a factor less than
I/(I − 1). On the other hand our method produces more precise estimates of β than
the nonparametric approach. It is interesting that the GAM approach outperforms the
nonparametric approach even under the wrong model specification.

4. Discussion

In this paper, based on the concept of partial consistency, we proposed a simple estimation
method to partially linear regression model that has two worth noting advantages. First, it
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Table 3: Fitting Results of ASE and Estimation of β for Example 3 based on the
proposed method, NP and GAM (estimated standard errors in parentheses)

Method Our Method NP GAM

n I=2 I=5 I=10 I=20

100 ASE 0.302 (0.104) 0.298(0.091) 0.367(0.118) 0.505(0.165) 0.254 (0.091) 0.217 (0.078)

β1 3.504(0.067) 3.502(0.063) 3.506(0.076) 3.498 (0.112) 3.464 (0.058) 3.499(0.047)

β2 1.305 (0.067) 1.294(0.065) 1.302(0.086) 1.310(0.100) 1.291(0.055) 1.302 (0.047)

200 ASE 0.197(0.064) 0.163(0.052) 0.187(0.059) 0.242(0.072) 0.153 (0.052) 0.149(0.048)

β1 3.502(0.045) 3.497 (0.033) 3.498(0.042) 3.504 (0.055) 3.486 (0.032) 3.499(0.030)

β2 1.300(0.041) 1.299(0.035) 1.303(0.039) 1.297 (0.054) 1.293(0.031) 1.299(0.032)

greatly simplifies the computation burden in model estimation with little loss of efficiency.
Second, it can be used to reduce the model bias by allowing more generalized form of
nonparametric components in the model, while bias reduction is an important condition for
effective feature extraction.

Our results have offered us more insights about the “bias-efficiency” tradeoff in semi-
parametric model estimations: when estimating the nonparametric components, pursing
further bias reduction can increase the variance of nonparametric estimation, but the ef-
ficient loss in the parametric part is small due to partial consistency property. Moreover,
nonparametric estimation involving bandwidth selection can lead to some efficiency loss
due to computation cost that is not outlined in the theoretical results. Our study raised an
interesting problem in semiparametric estimation: how to balance between the computation
burden and the efficiency of the estimators while minimizing model bias.
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Appendix A.

We need the following conditions to prove our theoretical results:
(a). E|ε|4 <∞ and E‖X‖4 <∞.
(b). The support of the continuous component of Z is bounded.
(c). The functions g(zd, zc), E(X|Zd = zd, Zc = zc), the density function of Z, and their

corresponding second derivatives with respect to zc are all bounded.
(d). Σ is nonsingular.
(e). In presence of discrete covariate in Z, assume that for any category, the number of

samples lies in this category is large enough and of order n.

For simplicity of presentation, we only discuss the case of Z = Zc and prove Theorem
1. When Z is of 2-dimension, we mainly consider that one component of Z is discrete or
both components in Z are highly correlated. For the former case, according to condition
(e) it can be concluded that each category has a sample size of order n. So categories do
not affect the following proof which leads to the results of Corollary 1 . For the latter case,
assumption (8) implies that the following proof can be easily generalized to obtain Corollary
2. The proofs for both Corollary 1 and Corollary 2 are therefore omitted here.

Proof of Theorem 1. First, based on standard operations in least squares estimation, we
can obtain the decomposition

√
n(β̂ − β) = R1 +R2, where

R1 =
{ 1

n

J∑
j=1

I∑
i=1

{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}T
}−1

×
{ 1√

n

J∑
j=1

J∑
j=1

{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}{g(Z(j−1)I+i)−
1

I

I∑
i=1

g(Z(j−1)I+i)}
}

≡ RN1 /RD1
(A.1)

and

R2 =
{ 1

n

J∑
j=1

I∑
i=1

{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}T
}−1

×
{ 1√

n

J∑
j=1

J∑
j=1

{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}{ε(j−1)I+i −
1

I

I∑
i=1

ε(j−1)I+i}
}

≡ RN2 /RD2

(A.2)

Hereby we will show that the term R1 converges to zero in probability as n→∞ and the
asymptotic distribution of R2 is multivariate normal with zero mean vector and covariance
matrix given in (9).

According to the form of R1, we need to first analyze the numerator RN1 and the de-
nominator RD1 respectively. Let Fn = σ{Z1, Z2, · · · , Zn} and observe that conditionally on
Fn, X(j−1)I+i are independent of each other. The following is a sketch.
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We first analyze RN1 . Denote E(X|Z = z) by m(z) and X −m(Z) by e, then

RN1 =
1√
n

J∑
j=1

I∑
i=1

{m(Z(j−1)I+i)−
1

I

I∑
i=1

m(Z(j−1)I+i)}{g(Z(j−1)I+i)−
1

I

I∑
i=1

g(Z(j−1)I+i)}

+
1√
n

J∑
j=1

I∑
i=1

{e(j−1)I+i −
1

I

I∑
i=1

e(j−1)I+i}{g(Z(j−1)I+i)−
1

I

I∑
i=1

g(Z(j−1)I+i)}

= R
N(1)
1 +R

N(2)
1 .

(A.3)

Notice that R
N(1)
1 can be expressed using the following summations,

R
N(1)
1 =

1√
nI2

J∑
j=1

I∑
i=1

I∑
l=1

I∑
k=1

{m(Z(j−1)I+i)−m(Z(j−1)I+l)}{g(Z(j−1)I+i)− g(Z(j−1)I+k)}

Parallel to the proof of Hsing and Carroll (1992) and Zhu and Ng (1995), we can show that

R
N(1)
1 ≤ 1√

nI2

√√√√ J∑
j=1

I∑
i=1

I∑
l=1

I∑
k=1

‖m(Z(j−1)I+i)−m(Z(j−1)I+l)‖2

×

√√√√ J∑
j=1

I∑
i=1

I∑
l=1

I∑
k=1

|g(Z(j−1)I+i)− g(Z(j−1)I+k)|2

=OP (n−1/2I−2nδ) = oP (1).

Here δ is a arbitrarily small positive constant. Let Ωj denote the sample set lying in the jth
partition with 1 ≤ j ≤ J . The last equality obtained from the fact that, under condition
(c), m(·) and g(·) have a total variation of order δ,

lim
n→∞

1

nδ
sup

{Ωj ,1≤j≤J}

I−1∑
i=1

‖m(Z(j−1)I+i)−m(Z(j−1)I+(i+1))‖ = 0,

lim
n→∞

1

nδ
sup

{Ωj ,1≤j≤J}

I−1∑
i=1

|g(Z(j−1)I+i)− g(Z(j−1)I+(i+1))| = 0.

Next we consider R
N(2)
1 . Let ē(n) and ē1 be the largest and smallest of the corresponding

ei’s, respectively. It is clear that

R
N(2)
1 ≤

ē(n) − ē1√
nI

J∑
j=1

I∑
i=1

I∑
l=1

|g(Z(j−1)I+i)− g(Z(j−1)I+l)|

=2
ē(n) − ē1√

nI

J∑
j=1

∑
1≤i<l≤I

|g(Z(j−1)I+i)− g(Z(j−1)I+l)|
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The above argument leads to that

R
N(2)
1 ≤2

ē(n) − ē1√
nI

I∑
i=1

I∑
l=1

n−1∑
j=1

|g(Z(j+1))− g(Z(j))|

≤2I
ē(n) − ē1√

n

n−1∑
j=1

|g(Z(j+1))− g(Z(j))|.

Applying Lemma A.1 of Hsing and Carroll (1992), we obtain

n−1/4|ē(n) − ē1|
P−→ 0.

Note the fact that total variation of g(·) is of order nδ, we have R
N(2)
1 = oP (1). Combining

the results about R
N(1)
1 and R

N(2)
1 , the proof for RN1 is completed.

Next consider RD1 and RD2 . Since RD1 = RD2 , we only need to show the case of RD1 . The
expectation of RD1 is calculated as follows.

E(RD1 ) =E(XXT − 1

nI

J∑
j=1

I∑
i=1

I∑
l=1

E{X(j−1)I+iX
T
(j−1)I+l}

=E(XXT − 1

nI

J∑
j=1

I∑
i=1

E{X(j−1)I+iX
T
(j−1)I+i} −

1

nI

J∑
j=1

∑
i 6=l

E{X(j−1)I+iX
T
(j−1)I+l}

=(1− 1

I
)E(XXT )− 1

nI

J∑
j=1

∑
i 6=l

E
[
E{X(j−1)I+iX

T
(j−1)I+l|Fn}

]
Under the assumption that conditionally on Fn, X(j−1)I+i are independent of each other,
we can obtain that E{X(j−1)I+iX(j−1)I+l|Fn} = m(Z(j−1)I+i)m(Z(j−1)I+l). This, together
with the above analysis, gives

E(RD1 ) =(1− 1

I
)E(XXT )− I − 1

nI

J∑
j=1

I∑
i=l

E
[
m(Z(j−1)I+i)m(Z(j−1)I+i)

]

− 1

nI

J∑
j=1

∑
i 6=l

E
[
m(Z(j−1)I+i){m(Z(j−1)I+l)−m(Z(j−1)I+i)}

]

=(1− 1

I
)E(XXT )− I − 1

nI

J∑
j=1

I∑
i=l

E
[
m(Z(j−1)I+i)m(Z(j−1)I+i)

]
+ o(1)

=(1− 1

I
)E
[
{X − E(X|Z)}{X − E(X|Z)}T

]
+ o(1).

The term of order o(1) is obtained following a similar argument of Theorem 2.3 of Hsing
and Carroll (1992). This completes the proof for R1.

We now deal with the term R2. Observe that given {(Xi, Zi), i = 1, · · · , n}, each term

of {ε(j−1)I+i − 1
J

J∑
j=1

ε(j−1)I+i} has mean zero and is independent of each other. Thus R2
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is asymptotically normal with mean zero. We will show that the limiting variance of R2 is
equal to the covariance matrix given in (9). That is,

Var(R2|{Xi, Zi}) =(RD2 )−1Var(RN2 |{Xi, Zi})(RD2 )−1

={E(RD2 )}−1 E{Var(RN2 |{Xi, Zi})}{E(RD2 )}−1 + oP (1)

and

Var(RN2 |{Xi, Zi}) =
1

n

J∑
j=1

I∑
i=1

{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}T

× E
[
{ε(j−1)I+i −

1

I

I∑
i=1

ε(j−1)I+i}2
∣∣∣{Xi, Zi}

]
=
σ2

n

J∑
j=1

I∑
i=1

{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}{X(j−1)I+i −
1

I

I∑
i=1

X(j−1)I+i}T

P−→σ2(1− 1

I
)E
[
{X − E(X|Z)}{X − E(X|Z)}T

]
.

Combining the last two equations, we complete the proof of Theorem 1. �
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