
The 1st International Workshop “Feature Extraction: Modern Questions and Challenges”

JMLR: Workshop and Conference Proceedings 44 (2015) 277-291 NIPS 2015

Covariance Selection in the Linear Mixed Effect Model

Jonathan P Williams jpwill@live.unc.edu
Department of Statistics and Operations Research
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514, USA

Ying Lu ying.lu@nyu.edu

Department of Humanities and Social Sciences

New York University

New York, NY 10003, USA

Editor: Dmitry Storcheus

Abstract

This paper improves and extends the two-step penalized iterative estimation procedure for
the linear mixed effect model (LMM) by explicitly penalizing the off-diagonal components
of the covariance matrix of random effects. To explicitly penalize the off-diagonal terms
in the covariance matrix of random effects, glasso is incorporated in the penalized LMM
approach. The paper also provides theoretical justification and a computational algorithm
for the provided approach. Empirical analysis using random simulated data shows that
explicitly penalizing the off-diagonal covariance components can greatly improve the model
selection procedure.

Keywords: covariance matrix selection, model selection, linear mixed effects model,
random effects, penalized least squares, sparsity

1. Introduction

Peng and Lu (2012) proposed a two-step penalized iterative estimation procedure to se-
lect and estimate a Linear Mixed Effect Model (LMM). Their procedure is improved and
extended in this paper by proposing a method which explicitly penalizes the off-diagonal
components of the covariance matrix of random effects. Such an extension is crucial for be-
ing able to estimate the structure of a sparse covariance matrix, but the procedure in Peng
and Lu (2012) is only able to explicitly penalize the diagonal components of the covariance
matrix of random effects.

Traditionally, one uses Maximum Likelihood (ML), or Restricted Maximum Likelihood
(REML) to estimate the LMM. Given normality, the maximum likelihood method yields the
most efficient estimates. The ML estimation problem reduces to a constrained optimization
problem which is very computationally intensive, and relies heavily on a normality assump-
tion for the conditional likelihood function of the data. Another downside is that when the
number of random effects variables is large, the ML method has computational difficulties
in estimating the random effects covariance matrix. Further, the ML approach, by itself
does not address the issue of model selection.
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Fan and Li (2001) show, both theoretically and empirically, that PLS estimates simul-
taneously select and estimate simple linear regression models as if the true model were
known, that is, PLS is shown to have Oracle properties. This method of model selection
and estimation for the simple linear regression model can be extended to simultaneously
select and estimate the LMM, and to a great advantage. A recent overview of the literature
on model selection in LMM, over the past decade, is given by Muller, Scealy, and Welsh
(2013). Other methods of reducing the problem of model selection include dimensionality
reduction. See Mohri, Rostamizadeh, and Storcheus (2015) for a more recent paper on this
topic.

As an alternative to the traditional methods, Peng and Lu (2012) proposed their two-
step penalized iterative estimation procedure which simultaneously selects and estimates
a LMM, and which is more robust than the ML approach because it does not rely on a
normality assumption of the data. Their method also avoids the constrained optimization
problem in the ML approach, and therefore allows for greater computational stability.

Use is made in this paper of the penalized glasso algorithm in R, from Friedman, Hastie,
and Tibshirani (2008) to improve the two-step penalized iterative estimate of the covariance
matrix of random effects. The resulting covariance structure can also be applied, in the form
of constraints, to the classical ML/REML method, to estimate the LMM with reduced
computational burden.

The outline of the paper is as follows. Section 2 provides motivation, and a brief overview
of the theory of penalized least squares. It then goes on to discuss covariance estimation
and selection, and the glasso algorithm from Friedman, Hastie, and Tibshirani (2008) which
is relied on heavily in this paper. Then section 3 establishes the theory from Peng and Lu
(2012) for the two-step penalized iterative estimation procedure for estimating a LMM, and
finishes by outlining the extension method proposed in this paper. Lastly, brief simulation
results of the proposed method are presented in section 4, and concluding remarks follow.
However, the reader is strongly encouraged to see Appendix A for the full empirical analysis
of this paper.

2. Penalized Least Squares for Model Selection and Parameter
Estimation

Let p be the number of parameters to be estimated in a simple linear regression model,
and let n be the number of observations. In the classical linear regression, p << n. The
motivation for PLS is the scenario in which p is large, or even p > n, but that the model
with all p parameters is believed to be sparse. This is a very viable assumption in situa-
tions in which many explanatory variables are arguably relevant to the model. Traditional
model selection methods such as stepwise deletion, and AIC and BIC criterion can be time
consuming, and they do not behave consistently. In contrast, PLS is a very effective model
selection procedure for reducing the complexity of a simple linear regression model while
still retaining desirable properties for estimating nonzero coefficients.

The basic idea of PLS is to penalize ‘small’ coefficient estimates on becoming larger in
the minimization procedure. In such a manner, ‘small’ coefficients have, in some sense, an
incentive for shrinking in magnitude to zero. The definition of ‘small’ will become clear
in the sections which follow, but for now it can be said that it depends on a data-driven
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thresholding parameter. Two well-known thresholding functions are LASSO and SCAD.
LASSO, with it’s L1 penalty function is effective for handling ‘small’ coefficients estimates
with PLS estimation, but it inherently shrinks ‘large’ coefficient estimates. Conversely,
the SCAD thresholding function is able to treat ‘small’ coefficient estimates in the same
desirable way that LASSO does, but also leaves ‘large’ estimates unbiased.

Fan and Li (2001) give the following three properties which estimators using a good
penalty function should have.

(1) Unbiasedness of the large, truly nonzero parameter estimates.

(2) Sparsity of the estimates. That is, ‘small’ parameter estimates are set to zero to reduce
model complexity.

(3) Continuity of the estimator over the parameter space.

To understand these properties and their origins, see the discussion in Fan and Li (2001).

Perhaps the most well known and simple penalty function is the L1 penalty function used
for LASSO to estimate penalized least squares. However with the exception of simplicity, the
SCAD penalty function is more desirable than the L1 penalty function for use in estimating
PLS. The SCAD penalty function satisfies all three of the properties of a good penalty
function from the previous section, whereas the L1 penalty function only satisfies two; it
does not satisfy the unbiasedness property for large parameter estimates. For this reason,
and since SCAD is represented less extensively in the literature, the major emphasis of this
study will rely on PLS estimates using the SCAD penalty function. For a more complete
discussion of penalty functions see Fan and Li (2001).

2.1 Covariance Estimation and Selection

The estimation of the covariance matrix of random effects is particulary important in esti-
mating the LMM. In section 3.2, within the iterative procedure of Peng and Lu (2012), a
penalty function is used to estimate both the fixed effects, and the covariance of random
effects. However, to estimate this covariance matrix, only the variance (diagonal) terms
are explicitly being penalized, and the covariance (off-diagonal) terms between each pair of
variables are only set to zero if the variances of either of the corresponding variables is set
to zero. Thus, a limitation of the penalized two-step iterative method is that the covariance
(off-diagonal) terms are never explicitly penalized. To remedy this limitation, and thereby
extend the penalized estimation approach taken in Peng and Lu (2012), the aim of this
paper is ultimately to consider options for penalizing the nonzero covariance (off-diagonal)
terms.

A method for covariance selection and estimation is proposed in Friedman, Hastie, and
Tibshirani (2008). Namely, they propose the Graphical LASSO algorithm, or GLASSO,
and their paper also includes an R package/function which they built for the algorithm,
called glasso. For simplicity, throughout the rest of this paper, glasso will denote the R
package/function, and will also refer directly to the proposed method. More work remains
to better understand the glasso algorithm, but here, the basic ideas will be presented.
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Under the assumption of normality, the precision matrix can be found by minimizing
the penalized log-likelihood of the function of the data, given by

log det
(
Σ−1

)
− tr

(
SΣ−1

)
− ρ
∥∥Σ−1

∥∥
1
.

The L1 norm is the sum of the absolute values of the matrix, and ρ is a thresholding
parameter associated with the penalty function. Alternatively, this optimization problem
can be solved for Σ rather than Σ−1 by optimizing over each row and corresponding column
of W = Σ̂ (some estimate of Σ) in the following block coordinate descent fashion (Friedman,
Hastie, and Tibshirani (2008)). Partition

Σ̂ = W =

(
W11 w12

wT12 w22

)
, S =

(
S11 s12

ST12 s22

)
.

The solution for w12 is given by the y which satisfies

min
y

{
yTW−1

11 y : ‖y − s12‖∞ ≤ ρ
}
,

which is shown to be equivalent to w12 = W11β, where β satisfies

min
β

{
1

2

∥∥W 1
2

11β −W
− 1

2
11 s12

∥∥2
+ ρ‖β‖1

}
. (1)

All of the off-diagonal terms can be solved for by permuting the rows and columns of W
and S. The actual glasso algorithm begins with W = S + ρIp.

The LASSO problem in equation (1) is solved for all permutations, and the solutions
w12 = W11β̂ are filled into the corresponding row and column of W = Σ̂. This procedure
is continued until convergence. The reader is invited to consult Friedman, Hastie, and
Tibshirani (2008) for further details. Their paper advocates for the algorithm because it is
a simple and remarkably fast algorithm for estimating a sparse inverse covariance matrix.
It is used in this paper to refine the estimate of the covariance matrix of random effects –
from the penalized two-step iterative estimation procedure which will be presented in the
sections that follow.

3. Linear Mixed Effect Model and Penalized Linear Mixed Effect Model

The LMM will be established and estimated using the distribution-free, iterative procedure
from Peng and Lu (2012). For each cluster i, 1 ≤ i ≤ m as

Yi = Xi
~β + Zi~bi + εi.

Each Yi is a ni × 1 column vector, Xi is a ni × p design matrix corresponding to the
fixed effects, ~β is a p × 1 vector of fixed effects parameters, Zi is a ni × q design matrix
corresponding to random effects, ~bi is a q× 1 vector of random effects parameters, and εi is
a ni×1 vector of random errors which are independent of Xi, Zi, and ~bi. The distributional
assumptions of the model are the following.

εi ∼ N(0, σ2Ini)

~bi ∼ N(0, σ2D)

where D is a q × q symmetric nonnegative definite matrix. Thus,

Yi ∼ N
(
Xi
~β, σ2(ZiDZ

T
i + Ini)

)
.
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3.1 Two-Step Iterative Estimation Procedure

To describe the estimation procedure for the fixed and random effects using the two-
step iterative procedure, as in Peng and Lu (2012) first let Y = (Y T

1 , Y
T

2 , . . . , Y
T
m )T , ~b =

(~bT1 ,
~bT2 , . . . ,

~bTm)T , ε = (εT1 , ε
T
2 , . . . , ε

T
m)T be n× 1 column vectors, X = (XT

1 , X
T
2 , . . . , X

T
m)T

a n×p matrix, and let Z = diag{Z1, Z2, . . . , Zm} be a n× qm block diagonal matrix, where

n =
m∑
i=1

ni. For an initial estimate, ignore the random effects and begin with the simple

linear regression model. The initial estimate of the fixed effects coefficients is then given
by OLS, which can be expressed using the clustered structure of the data in the following
from.

~̂β = ~β0 = (XTX)−1XTY =

( m∑
i=1

XT
i Xi

)−1 m∑
i=1

XT
i Yi

With this initial estimate, recall that

Yi = Xi
~β + Zi~bi + εi =⇒ Yi −Xi

~β︸ ︷︷ ︸
=:ui

= Zi~bi + εi. (2)

Then estimate the random effect for each i, 1 ≤ i ≤ m by least squares as

~̂bi = (ZTi Zi)
−1ZTi ûi and

ε̂i = ûi − Zi~̂bi.
(3)

With theses estimates, Peng and Lu (2012) propose the following estimators of σ2 and D.

σ̂2 =

m∑
i=1

ε̂Ti ε̂i

n− qm
. (4)

To obtain the estimator for D, observe that D = E
[

1
mσ2

m∑
i=1

~bi~b
T
i

]
≈ 1

mσ2

m∑
i=1

~bi~b
T
i . So for an

estimator of D, use ~̂bi as an estimator of ~bi, 1 ≤ i ≤ m. However, recall the equation

~̂bi = (ZTi Zi)
−1ZTi ui = ~bi + (ZTi Zi)

−1ZTi εi.
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So

m∑
i=1

~̂bi~̂b
T

i =
m∑
i=1

(
~bi + (ZTi Zi)

−1ZTi εi
)(
~bi + (ZTi Zi)

−1ZTi εi
)T

=
m∑
i=1

[
~bi~b

T
i + (ZTi Zi)

−1ZTi εi
~bTi

+~biε
T
i Zi(Z

T
i Zi)

−1 + (ZTi Zi)
−1ZTi εiε

T
i Zi(Z

T
i Zi)

−1
]

≈
m∑
i=1

[
~bi~b

T
i + (ZTi Zi)

−1ZTi εiε
T
i Zi(Z

T
i Zi)

−1
]

Peng and Lu (2012)

=⇒
m∑
i=1

~bi~b
T
i ≈

m∑
i=1

[̂
~bi~̂b

T

i − (ZTi Zi)
−1ZTi εiε

T
i Zi(Z

T
i Zi)

−1
]

≈
m∑
i=1

[̂
~bi~̂b

T

i − σ2(ZTi Zi)
−1
]
.

Thus,

D ≈ D̂ =

m∑
i=1

~̂bi~̂b
T

i

mσ̂2
−

m∑
i=1

(ZTi Zi)
−1

m
. (5)

With this estimate of D, re-estimate the fixed effects using weighted least squares. That is,

~̂β =
(
XTWX

)−1
XTWY, (6)

where W = diag
{

(Z1D̂Z
T
1 +In1)−1, . . . , (ZmD̂Z

T
m+Inm)−1

}
. Finally, iterate between (2)-(6)

until convergence in ~̂β, σ̂2, and D̂.

3.2 Penalized Two-Step Iterative Estimation Procedure

In this section, the two-step iterative estimation procedure (in the previous section) will be
modified as in Peng and Lu (2012) to use PLS estimation. The two-step iterative estimation
procedure is a well-behaved and robust estimation procedure for the LMM, but it is not
a method for model selection. However, it will be shown here that by modifying this
estimation procedure to use PLS estimation it becomes a great procedure for estimation
as well as selection of the LMM. See Fan and Li (2001) for the heart of the PLS theory
which will be relied on here. The iterative estimation procedure for the LMM will remain
largely unchanged from the previous section, but the estimation solutions will be different.
Recall that to get an estimate of D (the covariance matrix of random effects) in the previous
section, first each of the vectors of random effects parameters, ~bi, are explicitly estimated
from the data for every cluster, 1 ≤ i ≤ m. To estimate the vectors of random effects
parameters, recall from equation (2), that

ui = Zi~bi + εi, where ui = Yi −Xi
~β.

So the vector of random effects parameters can be obtained from a simple linear regression
model that regresses the model errors, assuming no random effects, on the random effect
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variables. Assuming the εi are well behaved, this is an OLS estimation problem, and thus
PLS can be implemented at this stage of the iterative estimation procedure to penalize the
random effect coefficient estimates. As a result of using PLS to estimate the random effect
parameters, corresponding ‘small’ variance terms in the estimated covariance matrix D̂ will
be shrunk (in magnitude) to zero. Additionally, if it happens through the estimation that
one of diagonal components of D̂ is negative in value, then this term will be set equal to
zero because the diagonal components of a covariance matrix correspond to variances which
can only be nonnegative in value. As mentioned in (Pend and Lu 2012), the only case when
there is a nonzero probability for one of the diagonal components of D̂ to be negative valued
is when the corresponding true parameter in D is equal to zero. In fact, when the variance
of any of the random effects parameters (the diagonal components of D) is estimated to be
zero, the corresponding row and column of D̂ will be set equal to zero. The reason being
that if a particular random effect has no variance, then it is no longer considered random,
and thus it’s covariance with the other random effects is meaningless. Accordingly, the
actual implementation of the penalty function will be on the diagonal components of D̂.

In similar notation to Peng and Lu (2012) let ck =
√
Dkk, where Dkk is the kth diagonal

component of D, and obtain the PLS estimates by minimizing

G(~bi) =
1

2
(ui − Zi~bi)T (ui − Zi~bi) + n

q∑
k=1

pξ(ck),

for 1 ≤ i ≤ m. Observe that each ck is a function of the bi because

D ≈ 1

mσ2

m∑
i=1

~bi~b
T
i .

Here, for the reasons discussed in section Fan and Li (2001), the SCAD penalty function
will be chosen. Then as in Fan and Li (2001) and Peng and Lu (2012), the following second
order approximation is used for the SCAD penalty function where for some initial estimate
c0k ≈ ck

pξ(ck) ≈ pξ(c0k) +
p′ξ(c0k)

2c0k

(
c2
k − c2

0k

)
,

and the second order approximation for G is made as

G(~bi) ≈ f(~b0i) +∇f(~b0i)(~bi −~b0i) +
1

2
(~bi −~b0i)T∇2f(~b0i)(~bi −~b0i) +

n

2
~bTi Σλ(~c0)~bi︸ ︷︷ ︸

(F)

,

where~b0i is an initial estimate in a neighborhood of~bi, and ~c0 is the vector of initial estimates
c0k, 1 ≤ k ≤ q. In this case, f(~bi) = 1

2(ui − Zi~bi)T (ui − Zi~bi). The difference in minimizing
G for random effects versus for fixed effects is in the last term of the approximation. That
is,

(F) n

q∑
k=1

pξ(ck) ≈ n
q∑

k=1

p′ξ(c0k)

2c0k
c2
k (up to a constant).
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Since G(~bi) must be minimized with respect to ~bi, it will be helpful to express ck in terms
of ~bi. By construction,

c2
k = Dkk ≈

[
1

mσ2

m∑
i=1

~bi~b
T
i

]
kk

=

[
1

mσ2

m∑
i=1

(bi1, . . . , biq)
T (bi1, . . . , biq)

]
kk

=

 1

mσ2

m∑
i=1


b2i1 bi1bi2 · · · bi1biq
bi2bi1 b2i2 · · · bi2biq

...
...

. . .
...

biqbi1 biqbi2 · · · b2iq



kk

=⇒ c2
k ≈

1

mσ2

m∑
i=1

b2ik,

so

(F) n

q∑
k=1

pξ(ck) ≈ n
q∑

k=1

(
p′ξ(c0k)

2mσ2c0k

m∑
i=1

b2ik

)
=

m∑
i=1

n

q∑
k=1

p′ξ(c0k)

2mσ2c0k
b2ik.

Then since G(~bi) will be differentiated with respect to a given i ∈
{

1, . . . ,m
}

, the ~bj terms
for j 6= i will vanish. Hence, the following simplification is appropriate.

(F) n

q∑
k=1

pξ(ck) ≈ n
q∑

k=1

p′ξ(c0k)

2mσ2c0k
b2ik =

n

2

(
p′ξ(c01)

mσ2c01
b2i1 + · · ·+

p′ξ(c0q)

mσ2c0q
b2iq

)

=⇒ n

q∑
k=1

pξ(ck) ≈
n

2
~bTi diag

{
p′ξ(c01)

mσ2c01
, . . . ,

p′ξ(c0q)

mσ2c0q

}
︸ ︷︷ ︸

=Σξ(~c0)

~bi.

It now follows that the closed form PLS solution can be solved for using the Newton-Raphson
algorithm. That is,

~b∗i =
(
ZTi Zi + nΣξ(~c0)

)−1
ZTi ûi, for 1 ≤ i ≤ m,

can be iterated until convergence to yield the penalized random effects coefficient estimates.
Note that ûi can be estimated initially using an OLS estimate for ~β, say ~βLS . And, as in
the previous section, D̂ can be updated as in (5), which is

D∗ =

m∑
i=1

~b∗i (
~b∗i )

T

mσ2∗ −

m∑
i=1

(ZTi Zi)
−1

m
.

Recall that Yi ∼ N
(
Xi
~β, σ2(ZiDZ

T
i + Ini)

)
. To take advantage of the improved estimate

of D, and thus the improved estimate of cov(Yi), update ~βLS , as in the penalized setting,
using Weighted Least Squares. Accordingly,

~β∗ =
(
XTWX + nΣλ(~β0)

)−1
XTWY,

where W = diag
{

(Z1D
∗ZT1 + In1)−1, . . . , (ZmD

∗ZTm + Inm)−1
}

. With these improved esti-

mates of ~β∗ and D∗, iterate until convergence, as in the previous section.
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Now that PLS estimation has been discussed within the LMM setting, what remains
is to discuss the selection of the tuning parameters λ and ξ. See the appendices for this
discussion.

3.3 Incorporate glasso to Select Off-Diagonal Covariance Terms

The main objective of this paper is to extend the penalized LMM approach to explicitly
penalize the off-diagonal terms in the covariance matrix of random effects. Here the esti-
mated covariance matrix of random effects from the penalized two-step iterative procedure,
D̂, is used to construct the initial covariance matrix estimate, S, as in section (2.1). S is
given by the nonzero sub-matrix of D̂. Since rows and columns of the penalized covariance
estimate are simultaneously shrunk to zero when their corresponding diagonal component
is shrunk to zero, by sub-matrix of D̂ it is meant D̂ with the zero rows/columns removed.
Beginning with S, the backward procedure is to start with all off-diagonal elements of S,
and then drop the elements component-wise, whose absence do not significantly diminish
the fit of the model.

In a penalized framework, the backward procedure seems most appropriate, and instead
of dropping elements component-wise, the off-diagonal terms could rather be shrunk itera-
tively using a penalty thresholding rule such as SCAD or LASSO. Accordingly, to extend
the penalized LMM method, the glasso algorithm is applied to the nonzero sub-matrix of
D̂. A normality assumption is used for the data to accommodate the glasso algorithm, but
recall that the penalized LMM does not rely on this assumption.

4. Simulation Results

Presented here are simulation results from estimating the LMM using the penalized two-
step iterative estimation procedure, and using the glasso algorithm to refine the estimated
covariance matrix of random effects. The procedure is repeated for 200 samples of randomly
generated data for a LMM with the following true vector of fixed effects coefficients, and
true covariance matrix of random effects.

β = (−3.3, 1,−7, 4.6, 0, 0, 0, 0, 0, 0, 0, 0)T , and D =



9 5 0 0 0 0
5 7 0 0 0 0
0 0 2 −1.5 0 0
0 0 −1.5 4 0 0
0 0 0 0 0 0
0 0 0 0 0 0


To best accommodate the estimation procedure the covariance has a block diagonal struc-
ture, m = 60, and ni = 14 for all 1 ≤ i ≤ 60. The focus here is on the performance of
the estimation procedure in more of an ideal situation. If there is no evidence of desirable
results in an ideal situation, then there would be little motivation to further study the
proposed estimation procedure.

Table 1 displays a measure of the added improvement of explicitly penalizing the co-
variance (off-diagonal) terms of the covariance matrix. Most notably, the proportion of
off-diagonal elements which are incorrectly estimated to be nonzero is reduced by just over
twenty compared to not using glasso, regardless of the criterion used. Recall that, unless
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the variance (diagonal) term has been estimated to be zero in the penalized estimation
procedure, the covariance (off-diagonal) terms are not shrunk to zero. However, about ten
percent of the time, the glasso algorithm will incorrectly shrink off-diagonal terms to zero,
regardless of the criterion used.

The reader is strongly encouraged to see Appendix A for the full empirical analysis
carried out in this paper, in which the improvements of this procedure are more fully
illustrated.

Tuning FPR glFPR FNR glFNR

GCV 0.31 0.09 0.00 0.09
AIC 0.32 0.08 0.00 0.09
BIC 0.31 0.09 0.00 0.07

Table 1: Performance of the penalized two-step iterative estimation procedure in selecting the cor-
rect random effects covariance structure. ‘FPR’ is the false positive rate, that is, the
proportion of off-diagonal coefficients that are incorrectly estimated to be nonzero. ‘FNR’
is the false negative rate, that is, the proportion of off-diagonal coefficients that are incor-
rectly estimated to be zero. The labels ‘glFPR’, and ‘glFNR’ denote the corresponding
rate using the glasso algorithm from Friedman, Hastie, and Tibshirani (2008).

5. Conclusion

The two-step penalized iterative estimation procedure proposed by Peng and Lu (2012)
does not explicitly select the off-diagonal terms of the covariance matrix of random effects
in a the LMM. A method was proposed in this paper to improve and extend their procedure
by applying the glasso algorithm to select the off-diagonal terms of the covariance matrix.
The empirical evidence suggests that implementation of the penalized glasso algorithm in
R, from Friedman, Hastie, and Tibshirani (2008) greatly improves the two-step penalized
iterative estimate of the covariance matrix of random effects from Peng and Lu (2012) when
the true covariance matrix has a block diagonal form.

It is of interest in further research to better understand theoretically how these pro-
cedures perform when estimating a LMM of which both the number of fixed and ran-
dom effects covariates are greater than the smallest cluster size in the data, that is, when
p > min1≤i≤m ni and q > min1≤i≤m ni. Currently, the procedure from Peng and Lu (2012)
can only handle the case when p > min1≤i≤m ni, but requires q < min1≤i≤m ni. However,
theory suggests that their penalized LMM procedure should be able to handle the case when
p > min1≤i≤m ni and q > min1≤i≤m ni.

286



Covariance Selection in the Linear Mixed Effect Model

References

E. Demidenko. Mixed Models: Theory and Applications. John Wiley and Sons, Inc., 2004.
ISBN 9780471601616.

A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properities. American Statistical Association, 96(456):1348–1360, 2001.

J. Fan, Y. Feng, and Y. Wu. Network exploration via the adaptive lasso and scad penalties.
The Annals of Applied Statistics, 3(2):521–541, 2009.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

J. S. Hodges and D. J. Sargent. Counting degrees of freedom in hierarchical and other
richly-parameterized models. Biometrika, 88(2):367–379, 2001.

C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix
estimation. The Annals of Statistics, 37(6B):4254–4278, 2009.

M. Mohri, A. Rostamizadeh, and D. Storcheus. Foundations of coupled nonlinear dimen-
sionality reduction. arXiv preprint arXiv:1509.08880v2, 2015.

S. Muller, J. L. Scealy, and A. H. Welsh. Model selection in linear mixed models. Statistical
Science, 28(2):135–167, 2013.

H. Peng and Y. Lu. Model selection in linear mixed effect models. Journal of Multivariate
Analysis, 109(11):109–129, 2012.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, 58(1):267–288, 1996.

H. Wang, R. Li, and C. L. Tsai. Tuning parameter selectors for the smoothly clipped
absolute deviation method. Biometrika, 94(3):553–568, 2007.

Appendix A. Simulation Results

The purpose of this section is to provide a more full empirical analysis of the proposed
methods and procedures presented in this paper. Simulated data for the LMM is randomly
generated using the random number generators in R. m clusters of ni × p design matrices
X1, . . . , Xm are generated whose elements come from the Uniform[−2, 2] distribution. The
columns of the Xi are the fixed effect explanatory variables. The random effect variables
compose the columns of the ni× q matrices, Z1, . . . , Zm. In this setup, the q columns of the
Zi taken as the first q columns of the corresponding Xi, if q <= p, else the remaining q− p
columns are generated the same as they were for the fixed effect covariates. To include an
intercept term, the first column of each Xi and Zi is replaced with a column of ones. For
simplicity rename p = p + 1 and q = q + 1. Then, for 1 ≤ i ≤ m, a q × 1 column vector
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of random effect coefficients is generated as bi ∼ N(0, σ2D), and a ni × 1 column vector
of random errors is generated as εi ∼ N(0, σ2Ini), where σ2 = 1. Thus, for each cluster,
1 ≤ i ≤ m, the observed dependent variable data is given as

Yi = Xiβ + Zibi + εi,

which implies that the true model structure of the data is a LMM.
Recall that the penalized two-step iterative estimation procedure is a model selection

and estimation procedure for the LMM. While it is able to select the random effect covariates
in a LMM, it does this by only penalizing the variance (diagonal) terms of the covariance
matrix of random effects. It is not, however, able to select the full covariance structure in the
matrix. To do so, there must be a means of penalizing the covariance (off-diagonal) terms
separately in the covariance matrix of random effects. As in Section 2.1, a simple extension
of the penalized iterative procedure, worth exploring, is to apply the glasso algorithm to
the nonzero submatrix of the estimated covariance matrix. As discussed in Section 2.1,
this method is a step in the direction of effectively selecting the covariance structure of the
random effects in the LMM. Currently, more work needs to be done to further understand
the procedures used in the glasso R package, but as discussed in the package documentation,
the algorithm used works best for covariance matrices with a block diagonal structure.

To give a sense of the performance of the model selection in the simulation setup of
section 4, before the glasso algorithm is applied, see Table 2. The penalized two-step
iterative estimation procedure does a very nice job of model selection for both the fixed and
random effects.

Tuning Correct CF CR

GCV 0.88 0.88 1.00
AIC 0.84 0.85 0.97
BIC 0.90 0.90 1.00

Table 2: Determining the proportion of times that the penalized two-step iterative estimation pro-
cedure selects the correct model. ‘Correct’ is the proportion of times that both the correct
fixed and random effects were selected. ‘CF’ is the proportion of times that the correct
fixed effects were selected. ‘CR’ is the proportion of times that the correct random effects
were selected. Compare to Table 2 in Peng and Lu (2012).

To more directly evaluate the estimation properties of the penalized two-step iterative
estimation procedure, consider Table 3 which presents the biases and Median Absolute
Deviation (MAD) of the estimated fixed effects coefficients and random effects variances
(for the nonzero parameters). In the table, the biases and MAD’s can be compared to that
of the non-penalized two-step iterative estimation procedure, and the ML estimates (using
the lmer function of the lme4 package for R), where only the data corresponding to the
true model is used for both of these estimators. That is, the estimates from the penalized
estimation procedure, under the sparse model, are compared to those of the other estimation
procedures, under the true model. In this fashion, the penalized estimation procedure is not
given a handicap, and is subject to more rigorous evaluation of it’s estimation performance.
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Note, that the glasso algorithm has no effect on these biases and MAD’s. It appears
overwhelmingly clear from Table 3 that no estimation method has out-performed all others,
in this 200 sample simulation. This provides strong empirical evidence that, at least in
a larger sized sample setting, the estimation properties of the penalized two-step iterative
estimation procedure, under the sparse model, perform on par with the ML estimates,
under the true model. Recall that the ML estimates are the most efficient estimates. This
evidence, along with the evidence in Table 2 suggesting very good performance of model
selection, strongly supports the theory that the penalized estimation procedure does an
excellent job of model selection, and does not compromise any estimation performance, in
a large sample setting. These results support the results of Peng and Lu (2012).

Once the penalized two-step iterative estimate of the covariance matrix of random ef-
fects has been estimated, for each of the 200 randomly generated samples of data, the glasso
algorithm is then used to further refine the estimates of the covariance (off-diagonal) terms
of the matrix. The algorithm should shrink ‘small’ estimates to zero, and it requires loop-
ing over a one-dimensional grid of tuning parameters (a range of six values is used here).
The last two tables (in addition to table 1 in section 4) evaluate the additional selection
performance of the glasso algorithm.

Bias MAD

GCV AIC BIC IterO MLEO GCV AIC BIC IterO MLEO

β1 -0.07 -0.09 -0.06 -0.04 -0.04 0.31 0.32 0.31 0.31 0.31
β2 -0.06 -0.09 -0.05 -0.02 -0.02 0.24 0.24 0.23 0.23 0.23
β3 0.01 0.01 0.01 0.01 0.01 0.14 0.14 0.13 0.13 0.13
β4 0.02 0.02 0.02 0.02 0.02 0.21 0.21 0.21 0.21 0.21
D11 -0.15 -0.11 -0.16 -0.16 -0.06 1.07 1.07 1.06 1.06 1.11
D22 0 0.05 -0.01 -0.02 0.08 0.93 0.95 0.92 0.9 0.83
D33 -0.01 -0.01 -0.01 -0.01 0.02 0.29 0.3 0.29 0.29 0.29
D44 -0.05 -0.04 -0.05 -0.05 0 0.54 0.54 0.54 0.54 0.51

Table 3: Observe the average bias and the Median Absolute Deviation (MAD) of the estimated
fixed effects coefficients, and random effects variances. ‘IterO’ refers to the non-penalized
two-step iterative estimation procedure under the true model, and ‘MLEO’ refers to the
MLE estimates under the true model. Compare to Table 4 in Peng and Lu (2012).

Table 4 reports the proportion of times that the exact structure of the true covariance
matrix of random effects has been selected. That is, the position and number of zero
and nonzero terms in the estimated matrix is identical to that of the true matrix. Since
the penalized estimation procedure, alone, has no way of shrinking covariance (off-diagonal)
terms to zero, it is never able to select the exact structure of the covariance matrix. However,
with the refined matrix estimates, using the glasso algorithm, the exact structure of the
covariance matrix of random effects is chosen for just over half of the 200 randomly generated
samples. In such a large sample setting, it would be hoped that this performance would
be much better, especially given that the true covariance matrix was chosen to be block
diagonal to accommodate the glasso algorithm. But still, these results are promising, and
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much more work is needed to better understand this algorithm from Friedman, Hastie, and
Tibshirani (2008).

Tuning Correct glCorrect

GCV 0.00 0.55
AIC 0.00 0.56
BIC 0.00 0.56

Table 4: ‘Correct’ is the proportion of times that the correct covariance structure (off-diagonal) of
the random effects was selected. ‘glCorrect’ is the proportion of times that the correct
covariance structure (off-diagonal) of the random effects was selected, using the glasso
algorithm from Friedman, Hastie, and Tibshirani (2008).

GCV AIC BIC glGCV glAIC glBIC IterO MLEO

Prediction Error 0.71 0.71 0.71 0.71 0.71 0.71 0.71 53.54

Table 5: Average prediction error for each criterion. The prediction error is computed as the sum of
squared error divided by the sample size. The labels ‘glGCV’,‘glAIC’, and ‘glBIC’ denote
the corresponding criterion statistic using the glasso algorithm from Friedman, Hastie,
and Tibshirani (2008).

Finally, Table 5 displays the prediction error of the penalized two-step iterative estima-
tion procedure with and without the application of the glasso algorithm, and, under the
true model, of the non-penalized two-step iterative estimation procedure and of the ML
estimates. The glasso algorithm has no effect on the predictive performance of the esti-
mates because it does not directly effect the bi vectors of random effect coefficients which
have been explicitly estimated prior to implementing glasso. In future research, it will be
useful to incorporate the penalized off-diagonal estimate of the covariance matrix of random
effects into the procedure for estimating the bi. A major advantage of explicitly estimating
the bi is observed dramatically, by contrast to the much larger prediction error for the ML
estimates (which were obtained using only data from the true model). This sharp improve-
ment in prediction power over that of the ML estimates is a very favorable property of the
penalized iterative procedure, although, only the large sample setting is considered here.
Observe also that the penalized procedure under the sparse model performs just as well,
predictively speaking, as the non-penalized procedure under the true model.

Appendix B. Tuning Paramerters

For the fixed effects tuning parameter, λ, Theorem 3.1 from Peng and Lu (2012) states that
under certain regularity conditions, if

λn −→ 0 and
√
nλn −→∞ as n→∞, (7)
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where λn is the optimal fixed effects tuning parameter for a sample of size n, then, given
a
√
n-consistent estimator of D, there is a local minimizer of the fixed effects estimates ~β∗

which satisfies,

(i) ‖~β − ~β∗‖ = O
(

1√
n

)
.

(ii) Sparsity; ~β∗ does not over-fit the fixed effects structure of the model.

(iii) Asymptotic normality;

√
n(~β − ~β∗)

D−→ N(0,Σ~β
), where Σ~β

= lim
m→∞

σ2

(
1
n

m∑
i=1

XT
i

(
ZiD

∗ZTi + Ini
)−1

Xi

)−1

.

Note that in property (iii), theXi and Zi are assumed to be the data given by the true model.
Similarly, for the random effects tuning parameter, ξ, Theorem 3.2 also from Peng and Lu
(2012) states that under certain regularity conditions, given a

√
n-consistent estimator of

~β, if

ξn

√
n

log(n)
−→ O(1) as n→∞, (8)

where ξn is the optimal random effects tuning parameter for a sample of size n, then there
is a local minimizer of the random effects estimates ~b∗i for 1 ≤ i ≤ m, which satisfies

(i) Sparsity; diag(D∗) does not over-fit the random effects structure of the model.

(ii) Asymptotic normality and consistency of diag(D∗).

The GCV, AIC, and BIC are used as the selection criterion. When deciding the range of
λ and ξ values to consider in selecting and estimating the LMM, adhering to their asymptotic
behavior can be used as a starting point. λ = log(n)√

n
is an appropriate choice. And from

equation (8) it follows that ξ =

√
log(n)
n is an appropriate choice since

ξ

√
n

log(n)
=

√
log(n)

n

√
n

log(n)
= 1 = O(1).
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