
The 1st International Workshop “Feature Extraction: Modern Questions and Challenges"

JMLR: Workshop and Conference Proceedings 44 (2015) 30-48 NIPS 2015

Learning Sparse Metrics, One Feature at a Time

Yuval Atzmon YUVAL.ATZMON@BIU.AC.IL
Gonda brain research center, Bar Ilan University, Israel

Uri Shalit UAS1@NYU.EDU
Courant Institute of Mathematical Sciences
New York University, New York, USA

Gal Chechik GAL@GOOGLE.COM

Gonda brain research center, Bar Ilan University, Israel
and Google Research, Mountain View CA, USA

Editor: Dmitry Storcheus

Abstract
Learning distance metrics from data is a fundamental problem in machine learning and useful

way to extract data-driven features by using the matrix root of a distance matrix. Finding a proper
metric amounts to optimization over the cone of positive definite (PD) matrices. This optimization
is difficult since restricting optimization to remain within the PD cone or repeatedly projecting to
the cone is prohibitively costly.

Here we describe COMET, a block-coordinate descent procedure, which efficiently keeps the
search within the PD cone, avoiding both costly projections and unnecessary computation of full
gradients. COMET also continuously maintains the Cholesky root of the matrix, providing feature
extraction and embedding of samples in a metric space. We further develop a structurally sparse
variant of COMET, where only a small number of features interacts with other features. Sparse-
COMET significantly accelerates both training and inference while improving interpretability.

As a block-coordinate descent procedure, COMET has fast convergence bounds showing lin-
ear convergence with high probability. When tested on benchmark datasets in a task of retrieving
similar images and similar text documents, COMET has significantly better precision than compet-
ing projection-free methods. Furthermore, sparse-COMET achieves almost identical precision as
dense-COMET in document classification, while running ×4.5 faster, maintaining a 0.5% sparsity
level, and outperforming competing methods both in precision and in run time.
Keywords: Feature extraction, Metric learning, Proximal sparse methods, Positive definite matrix

1. Introduction
Metric learning, learning a measure of pairwise distance among data samples, is an approach for
extracting features in a data-driven way and a fundamental task in machine learning. Learned met-
rics can be used to project data into a new feature space, providing a representation for supervised
learning techniques based on distances such as nearest-neighbors or kernel methods (Kulis, 2012).
Learned metrics can also be used for ranking samples similar to a query sample, like finding similar
images, or recommend online content to a user visiting a webpage.

Metric learning is tightly related to convex feature extraction, for the following reason: Learning
a metric is often cast as solving a convex optimization problem over the cone of positive definite
(PD) matrices by optimizing a similarity measure simW (x, y) = x>Wy such that W ∈ Rd×d is a
PD matrix (Kulis, 2012; Bellet et al., 2014). When W is PD, it can be factored as W = LTL, and L

c©2015 Yuval Atzmon, Uri Shalit and Gal Chechik.

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

can be used to map any data sample x to a new feature space Lx. Unfortunately, enforcing the PD
constraint has a high computational cost. Projections to the PD cone require an eigendecomposition
which is cubic in the number of features, or restricting optimization to the PD cone which is hard to
perform efficiently. As a result, metric learning has been limited to mid-sized problems, and finding
efficient optimization algorithms for metric learning is an ongoing challenge.

A major opportunity to speed metric learning and inference lies in the sparsity structure of
the learned metric. At the extreme, enforcing the matrix to be diagonal could speed learning and
inference dramatically, but it would ignore all interactions among feature pairs and does not extract
any new features from data. Other sparse approaches focus on limiting the number of off-diagonal
entries (Liu et al., 2014), and achieve state-of-the-art results in some sparsity regimes. Another
natural sparsity structure that was not explored before, is the case were some features are limited to
the diagonal, while another small set of features, determined from data, have off-diagonal terms. We
show here that this structure can be learned very efficiently, and that it dramatically speeds learning
and inference while the added sparsity constrains hardly hurt the quality of the learned metric.

This paper describe two new efficient algorithms for learning PD metrics called COordinate-
descent METric learning (COMET), introducing a cost-effective method for performing block-
coordinate descent over PD matrices. The first algorithm, dense-COMET, learns a dense PD
matrix efficiently, while limiting optimization within the PD cone. The second algorithm, sparse-
COMET, further introduces a new sparsity structure and uses it to speed training and inference.
Both COMET algorithms efficiently optimize standard metric learning loss functions, while main-
taining a PD matrix model continuously during learning, with no need for eigendecomposition. The
algorithms can be applied efficiently to any smooth and convex objective function on PD matrices
which decomposes over the matrix rows or columns.

COMET operates by updating the learned matrix one column and row at a time, thus updating
the terms relating to one feature at each iteration. We use a log det term as a barrier function for
the PD cone, and employ the Schur complement to efficiently calculate an exact bound over the
step size that guarantees that the model remains within the PD cone. Evaluations of COMET on
benchmark datasets show that it outperforms other continuous-PD metric learning methods, and that
sparse-COMET identifies highly informative features.

2. Related work
Learning distance metrics and metric similarity measures from data has been intensively studied,
see Bellet et al. (2014); Kulis (2012) for recent surveys. This paper focuses on learning Maha-
lanobis distance matrices, where a major challenge is to efficiently enforce the PD matrix constraint
during optimization. The simplest approach is to project the learned matrix onto the cone of PSD
matrices, but this projection amounts to solving an eigendecomposition problem and is therefore
costly (generally cubic in the feature dimensionality). Qian et al. (2014a,b) showed that the number
of projections can be cleverly reduced, however each projection is still slow. A second common
approach to enforcing PD is to learn a factored model LTL, but in that case the learning problem is
no longer convex.

A second line of work avoids costly projections by keeping optimization within the PSD cone.
Davis et al. (2007) and Jain et al. (2009) took this approach and introduced a log det divergence
term which acts as a log-barrier regularizer term. Another type of projection-free methods views a
PSD matrix as a combination of other simpler PSD matrices. HDSL (Liu et al., 2014) learns a PSD
matrix as a weighted combination of rank-1 sparse PSD update matrices, which are all zeros except

31

ATZMON, SHALIT AND CHECHIK

for a 2×2 entry corresponding to a pair of feature. BoostMetric (Shen et al., 2009) learns the metric
matrix using rank-1 (PSD) updates which are generated by a boosting-based process. See also Bi
et al. (2011); Liu and Vemuri (2012). Sparse Metric Learning (Ying et al., 2009) learns a low-rank
matrix regularized with the squared trace-norm, where solutions are not necessarily sparse.

Closely related to our approach, is the work of Wen et al. (2009) who used row-column updates
in the context of semi definite programming (SDP). Our approach further derives an explicit bound
on the step size for the gradient step and applies it to a proximal step procedure. We also provide
convergence analysis of the overlapping steps, and address the practical issue of preventing the
matrix solutions from becoming ill-posed when too close to the PD-cone boundary.

3. The learning setup
We address the problem of learning a metric over a set of entities such as images or text documents,
based on their relative pairwise similarities. Formally, let P be a set of entities {p1, ...,pN} each
represented as a vector in Rd. We measure the similarity of two samples q,p ∈ P using a bilinear
form parametrized by a model W ∈ Rd×d, SW (q,p) = qTWp. When the matrix W is PSD, it can
be factored as W = LTL and used to define a similarity measure over pairs of data points. Specifi-
cally, the similarity x>Wy between two data points x and y through the matrix W , is equivalent to
an Euclidean inner product (Lx)>(Ly) in the transformed space x 7→ Lx.

We assume that a weak form of supervision is given in the form of a ranking over triplets (Wein-
berger et al., 2006; Chechik et al., 2010; Qian et al., 2014a). Such ranking supervision is often easy
to obtain and has widely achieved good performance. We assume we have access to triplets of
entities from P , where each triplet t consists of a “query” instance qt ∈ P , and two instance
pt+,pt− ∈ P such that qt is more similar to pt+ than to pt−.

We aim to find a similarity measure SW that agrees with the ranking of these triplets, namely,
SW (q,p+) > SW (q,p−). To achieve this, we use one of the following triplet loss functions

lhW (qt,pt+,pt−) = [1− qtTWpt+ + qtTWpt−]+ (1)

lhsW (qt,pt+,pt−) = [1− qtTWpt+ + qtTWpt−]2+
llogW (qt,pt+,pt−) = log(1 + exp(−qtTWpt+ + qtTWpt−)),

where [z]+
.= max(0, z). Given a batch of T triplets, adding a Frobenius regularization term, and a

log-barrier term, we aim to solve the following regularized optimization problem

L(W) = min
W

∑
t∈T

lW (qt,pt+,pt−)− α log det(W) + β

2 ‖W‖
2
F , (2)

where lW is any of the triplet loss functions and ‖W‖2F is the squared Frobenius norm of the matrix
W . This optimization problem is convex in W . The log-barrier term log det(W) ensures that the
optimum is within the PD cone. The method we introduce in Section 4.1 guarantees that all iterates
remain within the PD cone even without the log-barrier term, but we found that term to contribute
to empirical performance and to numerical stability, especially when the optimum is near the PSD
cone edge.

The loss in Eq. (2) can be minimized using gradient descent (GD), yielding

∂L(W)
∂W

=
∑
t∈T
{[1

2 [qt∆ptT + ∆ptqtT]l′(qt,pt+,pt−)} − αW−1 + βW, (3)

32

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

where ∆pt = p−t −p+
t , and l′(x) .= dl(x)

dx is the outer derivative of the loss function (Appendix A).

4. Learning a PD metric with block-coordinate descent: Dense COMET
The learning setup above is commonly studied, but optimizing it using gradient descent is compu-
tationally hard, because the log det term yields a W−1 term in the gradient of Eq. (3). This term
makes naive implementations with matrix inversion slow, scaling cubically with the matrix dimen-
sion. Another difficulty is that while in theory the log det term ensures that the optimum is within
the PD cone, in practice the intermediate iterates for first-order methods are not necessarily confined
to the cone. The reason is that the gradients of the log det term are not Lipschitz and any fixed step
size might take the update outside the cone. Forcing the objective to be Lipschitz by adding a small
constant term to the diagonal of W , would still require the step size to be small to ensure remaining
within the cone, leading to slower convergence.

We propose an algorithm that alleviates these problems by using efficient block-coordinate de-
scent that keeps optimization within the PD cone while amortizing the cost of matrix inversion. In
general, block-coordinate descent enjoys provable fast convergence rates, and is especially useful
when updating a block is efficient, as we show below. We derive a method that enables using a step
size which is as large as possible while still remaining within the PD cone for all iterates, based on
the Schur complement condition for PD matrices (Boyd and Vandenberghe, 2004, p. 650).

We perform the block updates as follows: Draw a feature k ∈ {1 . . . d} at random, and define
a matrix G that is all zeros except the values of −∂L̃(W)

W on the k-th row and k-th column. Then,
update Wnew = W + ηG, using a step size η that is computed analytically to keep the iterates
within the PD cone (see subsection 4.1). For a fast access to the log det derivative elements, we
also hold (Wnew)−1 in memory. In each step, we update (Wnew)−1 based on W−1 and using the
Woodbury inverse matrix identity (Woodbury, 1950). This costs O(d2), see Appendix B for details.

Algorithm 1 Dense COMET
1: input: training data, α, β
2: initialize: Generate a triplet set T . Set W ← Id. Set W−1 ← Id.
3: repeat
4: Draw a coordinate k ∈ {1 . . . d} uniformly at random.
5: Compute the coordinate step gradient G (Eq. (3)).
6: Select the step size η using the upper limit from Eq. (11) (See Appendix B).
7: Update the metric Wnew = W + ηG, and Wnew−1 (see Appendix B).
8: until stopping condition

4.1 Selecting a step size that guarantees remaining within the PD cone
Taking a coordinate step may take Wnew out of the PD cone. In Appendix B, we show that given
W and G, the step size can be analytically bounded to guarantee that Wnew remains PD. We also
show the bound can be computed efficiently using the Schur complement condition for positive
definiteness. In turn, the condition reduces to a scalar inequality for the case of row-column update:

Wnew � 0 ⇔ c∗ − b∗TA−1b∗ > 0, (4)

where w.l.g. we assume we updated the first row-column, and c∗ = Wnew
1,1 ∈ R (a scalar), b∗ =

Wnew
2:d,1 ∈ Rd−1 (a column vector) and A∗ = Wnew

2:d,2:d = W2:d,2:d ∈ R(d−1). The condition

33

ATZMON, SHALIT AND CHECHIK

Algorithm 2 Sparse COMET

1: input: training data, α, β, λ, θ̄
2: initialize: Generate a triplet set T . Set W ← Id, W−1 ← Id, V0 ← Id, {Vk}dk=1 ← 0.
3: Optimize the diagonal of W using Eq. (3). Update W , W−1, V0 ←W
4: repeat
5: Select a coordinate k ∈ {1 . . . d} uniformly at random.
6: Compute the coordinate step gradient G according to Eq. (3).
7: Solve the proximal problem Eq. (8) with maximal step size θ̄ and λ sparsity coefficient.
8: if Vknew == Vk then
9: Continue to next iteration.

10: else
11: Select new step size θ, obeying the upper limit from Appendix E.
12: Solve the proximal problem Eq. (8) with step size θ and sparsity coefficient λ.
13: Update the decomposition {Vk}dk=1 with Vknew (see Eq. (8)).
14: Update the metric Wnew = Vk

new +W − Vk and the inverse Wnew−1 (see Appendix B).
15: end if
16: until stopping condition

in Eq. (4) induces a condition over the step size η, which gives us an upper limit to the allowable
step size of a block coordinate (row-column) step over the gradient update Eq. (3). Respecting the
upper limit guarantees that the updated matrix Wnew will be PD. The computational complexity
for calculating the upper limit is O(d2), as detailed in Appendix B. In practice we use a Cholesky
solver (Chen et al., 2008) to speed up training and maintain the matrix square root. See details in
Appendices B and C. Maintaining the Cholesky root matrix provides an embedding of the features
to the metric space continuously during training. This approach is summarized in Algorithm 1.

Convergence rate. COMET is based on minimizing a strongly-convex function using block-
coordinate descent. Since blocks in our method are partially overlapping, we use a convergence
result by Richtárik and Takáč (2013) to analyze the convergence of the algorithm, and show that
Algorithm 1 converges with high probability to the optimum value in a linear rate. The analysis
holds for the squared hinge-loss and the log-loss, but not for the hinge-loss which is not smooth.
See Theorem 1 in Appendix D for the detailed claim and proof.

5. Learning a block-sparse PD metric: Sparse COMET
In most high-dimensional learning problems, many feature pairs do not interact intensely with other
features, hence their corresponding off-diagonal terms are (close to) zero. The PD metrics learned
above fail to take into account such structure, leading to "wasteful" inference that costs O(d2) extra
computation. To benefit from such structure, we propose to enforce a new type of structured sparsity,
which can be optimized efficiently. Specifically, we suggest to allow only a small set of features to
interact with any of the other features, and eliminate the interaction term for any two features which
are not in the “interacting set”. Importantly, we also maintain weights for the individual features,
corresponding to the diagonal of the learned similarity matrix. This interaction structure, illustrated
in Figure 3a, leads to sparse matrices and allows faster inference both during training and test time.

34

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

We now describe a method for learning PD metrics with this interaction structure, using a
block-coordinate descent method that maintains the PD property throughout training. In the metric
learning setting, each feature corresponds to a row-column block which overlaps with all the other
row-column blocks. For example, the first row-column of the matrix W , corresponding to the first
feature, intersects the i-th row-column at entries W1i and Wi1. We therefore use an overlapping
decomposition of W into blocks (Jacob et al., 2009; Obozinski et al., 2011). Specifically, we de-
compose the matrixW into d+1 group-components matrices {Vk}dk=0. The matrix V0 is a diagonal
matrix, and each matrix Vk (k > 0) is a symmetric matrix of non-zero values only on the kth row
and column, with an all-zeros diagonal. Finally, we define W as the sum W =

∑d
k=0 Vk. Given

this definition of W , the loss from Eq. (2) can be expressed as a function of the groups {Vk}dk=0:

L({Vk}dk=0) = min
{Vk}d

k=0

∑
t∈T

lW (qt,pt+,pt−)− α log det(
d∑

k=0
Vk). (5)

The gradient of this loss w.r.t. an element of Vk is therefore:

∂L(Vk)
∂vki

=
∑
t∈T
{[1

2 [qt∆ptT + ∆ptqtT]k,il′W (qt,pt+,pt−)} − α[W−1]k,i , (6)

where for k ≥ 1, the gradient ∂L(Vk)
∂vli

vanishes if l 6= k∧i 6= k, or l = i. Computing the gradient term
of Eq. (6) requires computing W−1, which we maintain and update as in dense-COMET. Adding a
group-sparse norm penalty to the loss to encourage solutions with fewer features, we obtain:

L({Vk}dk=0) = min
{Vk}d

k=0

∑
t∈T

lW (qt,pt+,pt−)− α log det(
d∑

k=0
Vk) + λ

d∑
k=1
‖Vk‖F . (7)

One can also add an L2 or L2
2 regularization factor to the diagonal group V0. The regularized loss in

Eq. (7) is a convex function of {Vk}dk=0, since the negative log det term is a composition of a con-
vex function with a linear function, and therefore convex. The group sparsity term λ

∑d
i=1 ‖Vk‖F

encourages some of the groups Vk, 1 ≤ k ≤ d to be 0. Since the groups Vk control the off-diagonal
terms of W , any pair i 6= j for which Vi = 0, Vj = 0, has the corresponding off-diagonal elements
Wij equal to 0. Given the decomposition {Vk}dk=0, we can Eq. (7) using standard block-coordinate
methods for non-smooth objectives, using the method of Richtárik and Takáč (2014).

Let Vk denote the set of d × d matrices which are all zero except the non-diagonal entries on
the k-th row and column. At each block update, we solve the following proximal problem, which
admits a closed form solution (Bach et al., 2012) (See appendix E):

V new
k = arg min

V ∈Vk

〈
∂L(Vk)
∂Vk

, V

〉
+ 1

2θ‖V − Vk‖
2
F + λ‖V ‖F , (8)

and set Wnew = W + V new
k − Vk, where θ corresponds to the step size of the proximal update.

The proximal update of Eq. (8) maintains many of the groups Vk as identically zero. This leads
to a sparse update schedule, since a group that is 0 often remains 0, saving the computation of the
PD bound and of updating W . Therefore sparse COMET reduces the mean cost per step to O(ρd2),
where ρ is the group sparsity of {Vk}dk=1. The method is summarized in Algorithm 2.

35

ATZMON, SHALIT AND CHECHIK

METHOD: D/SPCOMET SGD+PROJECT. HDSL LEGO
COMPUTATIONAL COMPLEXITY. O(γ2d2T + ρd3) O(γ2d2T + T

P · d
3) O(T · d4) O(d2 · T)

Table 1: Asymptotic computational complexity per one pass over all triplets and coordinates, comparing
COMET, SGD-based methods (Chechik et al., 2010; Qian et al., 2014a), HDSL (Liu et al., 2014) and LEGO
(Jain et al., 2009). In our experiments, HDSL converged before going over all coordinates, but then typically
achieves significantly inferior test performance. COMET has lower complexity than SGD with multiple
projections HDSL. COMET also has lower complexity than LEGO if T (1− γ2) > d, that is, when the data
is even moderately sparse and the number of triplets is larger than the number of features. Notation: T :
number of constraints (triplets). d: the dimension. 0 < γ ≤ 1: data sparsity, often is O(1/

√
d). P : size of

triplet batch between PSD projections for SGD-based methods; (Qian et al., 2014a) used T/P = 0.1T .

Convergence. Similar to the case of dense-COMET, the objectiveL({Vk}dk=0) in Eq. (5) is strongly
convex but not smooth. Let L̃({Vk}dk=0) = L({κId + V0} ∪ {Vk}dk=1) be a modified version of the
loss in Eq. (7), where Id is the d × d identity matrix, and κ > 0 is a fixed parameter. As shown
in (Richtárik and Takáč, 2014, Theorem 7), the proximal block coordinate descent we use con-
verges w.h.p. linearly to the optimal value, given that the maximal step size θmax is smaller than the
block-Lipschitz constants of L̃({Vk}dk=0). As with dense-COMET, the block-Lipschitz constants
for the proximal step size provide a theoretical convergence guarantee which is very conservative,
yet ensures every iterate Wnew remains within the PD cone.

In practice, faster convergence can be achieved by taking larger step sizes, but large non-adaptive
steps may yield a Wnew that is no longer PD. The approach we take is similar to the dense case,
albeit slightly more involved since the proximal step lies in the span of two vectors. Details are
provided in Appendix E. Evaluating the step size bound costs O(d2);

6. Computational complexity
Table 1 summarizes the asymptotic computational complexity of COMET and several competing
methods. COMET has lower complexity than SGD-based methods that require repeated projections
(Chechik et al., 2010; Qian et al., 2014a), and than HDSL (Liu et al., 2014). In the regime of many
samples and a moderate-to-high data sparsity, COMET has lower complexity than LEGO (Jain et al.,
2009). See Appendix C for detailed derivation.

7. Experiments
We evaluate COMET on three datasets and compare it with four metric-learning approaches.

7.1 Competing approaches
We compare the two variants of COMET with 4 approaches that learn a Mahalanobis metric matrix
while avoiding repeated projections to the PD cone.
(1) COMET. Dense-COMET as described in Algorithm 1 and sparse-COMET in Algorithm 2, both
using linear hinge-loss for the triplets loss, see Eq. (2). (2) Euclidean. The Euclidean similarity
in the original feature space. COMET is initialized using the identity matrix, which is equivalent
to this similarity measure. (3) HDSL (Liu et al., 2014). A Frank-Wolfe based approach tuned for
high-dimensional sparse data. HDSL learns a convex combination of rank-1 PSD matrices that are
all zeros except for a 2× 2 pair of features elements. It iteratively adds these matrices, one feature-
pair at a time, to control the number of active features. (4) LEGO (Jain et al., 2009). This approach

36

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

Number of neighbours
1 5 10 20

P
re

c
is

io
n

0.7

0.8

0.9

0.95

Reuters CV1, 5K

Number of neighbours
1 5 10 20

P
re

c
is

io
n

0.08

0.12

0.16

0.2

0.22

Caltech256,
50 Categories

dCOMET
spCOMET
LEGO
BoostMetric
HDSL
Euclid

Figure 1: Preci-
sion at the top-k
nearest neighbors,
evaluated on the test
set and averaged
over five train/test
cross validation
folds (80%/20%).
Error bars denote the
standard error of the
means across 5 folds.

uses a log det divergence term to enforce the PD constraint. While the main variant of LEGO aims
to fit pairwise distances, we used a variant of LEGO that, like COMET, learns from relative simi-
larities. Loss is incurred for same-class samples farther than a certain distance, and different-class
samples closer than a certain distance. We profiled and optimized the provided LEGO source code
to decrease its run time, and made it significantly faster in large scale data scenarios. LEGO uses
pairs constraints and not triplets, therefore we used approximately×2 constraints to train LEGO per
each dataset. We chose a number of pairs constraints that demonstrates convergence for LEGO pre-
cision on the validation set. (5) BoostMetric (Shen et al., 2009). Based on the observation that any
positive semidefinite matrix can be decomposed into linear positive combination of rank-1 matrices,
BoostMetric uses rank-1 PSD matrices as weak learners.

7.2 Datasets
We evaluate COMET on three benchmark datasets. (1) REUTERS CV1 is a collection of English
text documents. We used the 4-class subset introduced in (Cai and He, 2012) and used in (Liu
et al., 2014), and selected subsets of 5000 and 1000 features using the infogain criterion (Yang and
Pedersen, 1997). Each document was represented as a bag of words, where weights of selected
features were tf-idf transformed. The sparsity of this dataset, after selecting top 5000 features, is
1.3%. As in Liu et al. (2014), we used 100,000 triplets for training. To train HDSL, we took 8000
iterations as in (Liu et al., 2014). BoostMetric could not converge on this dataset due to memory and
runtime issues caused by the large number of features. (2) CALTECH256 is a dataset of labeled
images for visual object recognition. We used the subsets of 50 and 249 classes tested for metric
learning in (Chechik et al., 2010). This sets contain 65 images per class (total of 3250 images),
represented with 1000 bag-of-local-descriptors features provided by these authors. The sparsity of
this dataset is 3.3%. We selected the number of triplets based on early-stopping of the OASIS model,
resulting in 135,000 triplets. Number of HDSL training iterations was selected using early stopping
on a validation set. BoostMetric was slow on this dataset, and used a large amount of memory.
For a fair comparison, we took the number of COMET coordinate steps to be the maximal number
of BoostMetric rank-1 updates. (3) PROTEIN is a dense dataset with 3 classes, 357 features and
24387 samples (Chang and Lin, 2011), which was recently tested for metric learning in (Qian et al.,
2014a). We used 20,000 triplets for training.

7.3 Experimental setup and evaluation measures
In all datasets, two samples are considered similar if they share the same class label. Each data set
is tested on a two-layer 5 fold cross validation experiment. We use the same (frozen) random splits

37

ATZMON, SHALIT AND CHECHIK

(a) (b)

Minutes
100 200 300 400 500 575

P
re

c
is

io
n

0.84

0.86

0.88

0.9

0.92 14.6%10.6%
4.8%

0.5%

Density 100%

dCOMET

Euclid

Precision @1
Precision @3
Precision @5

Density (ρ) %
14.6 10.6 6.4 0.5

M
in
u
te
s

0

50

100

150

200

250

300

350 90.99%

90.98%

90.74%

90.11%

Precision@1

Figure 2: The effect of sparsity on sparse-COMET precision and runtime. RCV1 dataset with 5K features.
(a) Precision at 1, 3 and 5 nearest neighbor evaluated on the test set vs. the mean training run time of COMET.
Percentiles denote the density of the learned matrix. Error bars denote the standard error of the mean across
5 random train/test partitions (80%/20%). Dashed line denotes the precision-at-1 of the Euclidean baseline.
(b) Mean training time as a function of the learned matrix density. Percentiles denote the Precision-at-1.

across all approaches. Training all learners with the exact same set of triplets, except for LEGO that
uses pairs constraints. We verified that we choose the triplets/constraints number in a regime such
that test performance converges (figures not shown due to space constraints). We generated triplets
randomly while keeping a fixed number of triplets per query sample.

(a) (b)

1 2500 5000

1
2
5
0
0

5
0
0
0

Infogain
0 0.05 0.1 0.15 0.2

F
ro
b
en

iu
s
n
o
rm

p
er

g
ro
u
p
V
k

0

2

4

6

8

10

Figure 3: Structured sparsity and
extracted features. (a) A heat map
of the absolute values of the el-
ements of W trained on RCV1,
illustrating the structured sparse-
ness of the learned metric. Fea-
tures are ordered by their infor-
mation gain. (b) Frob. norm of
the groups Vk against the infor-
mation gain of feature k. Sparse
COMET assigns zero weights to
less-informative features.

We evaluated the performance of all algorithms using standard ranking precision measures based
on nearest neighbors. For each query instance in the test set, all other test instances were ranked
according to their similarity to the query instance. The number of same-class instances among the
top k instances (the k-nearest-neighbors) was computed, and averaged to yields the precision-at-k,
providing a precision curve as a function of the rank k. Precision-at-k for k >1 is useful in retrieval
of multiple objects that are similar to a query object, as done in image search engines.

7.4 Results
We evaluate the learned metric in a setup of ranking samples by their distance from test examples,
and evaluating the fraction of nearest neighbors that belong to the same class as the test sample. We

38

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

DATASET DCOMET SPCOMET HDSL LEGO
REUTERS CV1 (5K FEATURES) 573 ± 22 238 ± 8 ρ = 10.6%

132 ± 5 ρ = 0.5%
522 ± 24 423 ± 29

CALTECH256 50 CAT. (1K F.) 32 ± 2 25 ± 1 ρ = 20.0% 495 ± 73 15 ± 3
CALTECH256 249 CAT. (1K F.) 90 ± 9 44 ± 2 ρ = 24.5% 495 ± 39 20 ± 3
REUTERS CV1 (1K FEATURES) 53 ± 3 25 ± 1 ρ = 24.7% 115 ± 18 11 ± 3
PROTEIN (357 FEATURES) 6.1 ± 0.5 15 ± 0.3 ρ = 10.3% 163 ± 11 0.5 ± 0.1

Table 2: Run-time, minutes. ± denotes the standard deviation. For spCOMET, we selected ρ values to
illustrate the performance gain. These are the ρ values used in Figures 1,3,4. For other ρ values, see Figure 2.

report the precision-at-k on test set as a function of k neighbours, averaged across 5 random train/test
partitions (80%/20%). Hyperparameters were tuned using a second layer of cross validation. We
discuss here results for RCV1 5000 features and Caltech256 50 categories, and discuss the other
datasets in Appendix F. We observed that convergence is usually achieved after 6 · d to 8 · d
coordinate steps for dense COMET and 8 · d to 11 · d with sparse COMET. We note that instead of
random sampling with replacement we used a random permutation of the coordinates {1, . . . , d} for
each epoch, as previous work indicated sampling without replacement leads to faster convergence.
Surprisingly, when tuning hyper-parameter values, we found that the Frobenius regularizer obtained
very small weights, and setting its coefficient to zero did not harm performance.

Figure 1 compares the precision obtained by sparse and dense COMET with the four competing
approaches described above. Both sparse and dense COMET achieved consistently superior or equal
precision throughout the full range of number of neighbours tested. Figure 2 shows the precision
of sparse COMET on RCV1 over several sparsity levels, and compares it with dense COMET and
the Euclidean baseline. It demonstrates that sparse-COMET achieves 99% of the nearest neighbor
precision of dense COMET, while cutting training time by ×4.5 and maintaining a 0.5% sparsity
level. Moreover, even these highly sparse solutions outperform competing methods in terms of
precision and run time.

We further compared dense-COMET with OASIS, a method achieving state-of-the-art preci-
sion on the Caltech-256 dataset. Dense-COMET precision is nearly identical to that of OASIS,
even though OASIS solutions are not limited to the PSD cone. This is likely because both meth-
ods essentially optimize a similar objective. Table 2 compares the run times of the competing
approaches. BoostMetric results were partial hence not shown. Sparse COMET is fastest on the
RCV1 5K features dataset. LEGO is fastest on the smaller datasets; HDSL is mostly slower than
COMET. Importantly, both sparse and dense COMET converged to a significantly better optimum.

8. Summary
We presented COMET, a new metric learning approach that avoids both costly projections and un-
necessary computation of full gradients. It continuously maintains the PD property, and allows
feature extraction and embedding of samples in a metric space throughout the training. We also in-
troduced a new form of structured sparsity, where only a small number of features can interact with
other features. Sparse-COMET significantly accelerates both training and inference, maintains in-
terpretability and outperforms competing methods. COMET source code is available for download
at chechiklab.biu.ac.il/~yuvval/COMET/

39

chechiklab.biu.ac.il/~yuvval/COMET/

ATZMON, SHALIT AND CHECHIK

Acknowledgements: We thank Prof. Tim Davis for insightful discussions and assistance with
Cholesky decomposition for row-column updates.

References

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with
sparsity-inducing penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106, 2012.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709v4, 2014.

Jinbo Bi, Dijia Wu, Le Lu, Meizhu Liu, Yimo Tao, and Matthias Wolf. Adaboost on low-rank psd
matrices for metric learning. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 2617–2624. IEEE, 2011.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Deng Cai and Xiaofei He. Manifold adaptive experimental design for text categorization. Knowl-
edge and Data Engineering, IEEE Transactions on, 24(4):707–719, April 2012.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. acm trans-
actions on intelligent systems and technology, 2: 27: 1–27: 27, 2011. Software available at
http://www. csie. ntu. edu. tw/cjlin/libsvm, 2011.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning of image
similarity through ranking. Journal of Machine Learning Research, 11:1109–1135, 2010.

Yanqing Chen, Timothy A. Davis, and William W. Hager. Algorithm 887: Cholmod, supernodal
sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Soft-
ware, pages 1–14, 2008.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th international conference on Machine learning, pages
209–216. ACM, 2007.

Timothy A. Davis, William, and William W. Hager. Row modifications of a sparse cholesky factor-
ization. SIAM J. Matrix Anal. Appl, 26:997–1013, 2005.

Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with overlap and graph
lasso. In Proceedings of the 26th annual international conference on machine learning, pages
433–440. ACM, 2009.

Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and fast
similarity search. In Advances in neural information processing systems, pages 761–768, 2009.

Brian Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4):287–
364, 2012.

Kuan Liu, Aurélien Bellet, and Fei Sha. Similarity learning for high-dimensional sparse data. Pro-
ceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, pp.
653–662, 2015, 2014.

40

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

Meizhu Liu and Baba C Vemuri. A robust and efficient doubly regularized metric learning approach.
In Computer Vision–ECCV 2012, pages 646–659. Springer, 2012.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Guillaume Obozinski, Laurent Jacob, and Jean-Philippe Vert. Group lasso with overlaps: the latent
group lasso approach. arXiv preprint arXiv:1110.0413, 2011.

Qi Qian, Rong Jin, Jinfeng Yi, Lijun Zhang, and Shenghuo Zhu. Efficient distance metric learning
by adaptive sampling and mini-batch stochastic gradient descent (sgd). Machine Learning, pages
1–20, 2014a.

Qi Qian, Rong Jin, Shenghuo Zhu, and Yuanqing Lin. An integrated framework for high dimen-
sional distance metric learning and its application to fine-grained visual categorization. arXiv
preprint arXiv:1402.0453, 2014b.

Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent meth-
ods. arXiv preprint arXiv:1310.3438, 2013.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,
2014.

Chunhua Shen, Junae Kim, Lei Wang, and Anton Hengel. Positive semidefinite metric learning
with boosting. In Advances in neural information processing systems, pages 1651–1659, 2009.

Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric learning for large margin
nearest neighbor classification. 2006.

Zaiwen Wen, Donald Goldfarb, Shiqian Ma, and Katya Scheinberg. Row by row methods for
semidefinite programming. Technical report, Dept of IEOR, Columbia University, 2009.

Max A Woodbury. Inverting modified matrices. Memorandum report, 42:106, 1950.

Yiming Yang and Jan O Pedersen. A comparative study on feature selection in text categorization.
In ICML, volume 97, pages 412–420, 1997.

Yiming Ying, Kaizhu Huang, and Colin Campbell. Sparse metric learning via smooth optimization.
In Advances in neural information processing systems, pages 2214–2222, 2009.

41

ATZMON, SHALIT AND CHECHIK

Appendix A. Gradient for a triplet

To compute the matrix gradient step ∂lt(W)
∂W of an arbitrary triplet t, we denote the linear part of the

hinge loss of a triplet t by λtW
.= 1− qtTWpt+ + qtTWpt−.

W is PD and therefore symmetric. We enforce its gradient to be symmetric by replacing W
with 1

2(W +WT). The derivative of the ranking loss is then given by

∂ltW
∂W

= 1
2 [qt∆ptT + ∆ptqtT] · l′(λtW),

where l′(x) .= dl(x)
dx is the outer derivative of the loss function, ∆pt

.= (p−t − p+
t).

Appendix B. Bounding the step size and updating the inverse matrix

Without loss of generality, assume that the coordinate round updates the first feature k = 1. We
write the pre- and post-update matrices, as

W =
[
c bT

b A

]
, Wnew =

[
c∗ b∗T
b∗ A∗

]
, (9)

where c = W1,1 ∈ R (a scalar), b = W2:d,1 ∈ Rd−1 (a column vector) and A = W2:d,2:d ∈
R(d−1)×(d−1). Similarly for A∗, b∗ and c∗.

According to the Schur-complement condition for positive definiteness (Boyd and Vanden-
berghe, 2004, p. 650), Wnew is PD iff both A∗ and c∗ − b∗TA∗−1b∗ are positive definite. Since
W � 0 and A is a minor of W which is left unchanged by the update, we have A∗ = A � 0.
Moreover, c∗ − b∗TA∗−1b∗ is a scalar, yielding

Wnew � 0 ⇔ c∗ − b∗TA−1b∗ > 0. (10)

Now let u1 = c∗ − c and u2:d = b∗ − b be the updated scalar and vector obtained from ηG =
Wnew − W . We expand Eq. (10) and Eq. (3) (with k = 1) yielding a necessary and sufficient
condition for Wnew � 0: (W1,1 + 2ηu1)− (W2:d,1 + ηu2:d)TA−1(W2:d,1 + ηu2:d) > 0. Grouping
as a quadratic inequality in η, and using the notation from Eq. (9) we end up with

(u2:d
TA−1u2:d) η2 − 2(u1 − u2:d

TA−1b) η − (c− bTA−1b) < 0. (11)

For η = 0, this inequality always holds since W � 0 guarantees that c− bT
A−1b > 0. As a result,

and since A−1 is PD, Eq. (11) always has a real root η > 0. This root provides an upper bound on
η that guarantees that Wnew is PD. Computing the coefficients involves computing bilinear terms
and costs O(d2) if A−1 is given.

In practice, evaluating the condition of Eq. (11) efficiently requires that we maintain an updated
Cholesky root matrix L such that W = LTL. It enables us to efficiently derive a Cholseky root for
A (Davis et al., 2005) and in turn to efficiently evaluate the terms of Eq. (11) with a cost of O(d2).

To evaluate the log det gradient, the new inverse Wnew−1 can be easily computed using the
Woodbury matrix identity (Woodbury, 1950). We rewrite the update and Eq. (3), using Wnew =
W + ηG = W + G̃ and write

G̃ = UCV =
[
u ek

] [η 0
0 η

] [
ek

T

uT

]
,

42

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

where u is a column vector that equals the column k of the gradient matrix of the objective Eq. (3),
ek equals an elementary vector for selecting a column k of a matrix. Using the Woodbury matrix
identity gives

Wnew−1 = W−1 −W−1U(η−1I2 + VW−1U)−1VW−1 .

Appendix C. Analysis of computational complexity

We first evaluate the computational complexity of a single coordinate step of Eq. (3), which includes
computing the gradient and updating W , W−1 and the Cholesky decomposition of W .

Consider first the computation of the gradient. For the hinge-loss case lhW , each element δi,j of
the gradient matrix in Eq. (3) equals

δ(i,j) =
∑
t∈T

[1
2 [(qt)i(∆ptT)j + (∆ptT)i(qt)jT] · 1(λtW)− α ·W−1

i,j + β ·Wi,j , (12)

where λtW
.= 1 + qtTW∆pt is the linear part a triplet loss

For dense data, evaluating the sum over T triplets costsO(T) operations. However, for gamma-
sparse data with a sparsity coefficient 0 < γ < 1, this cost can be reduced to O(γ2T) operations on
average, by accumulating only elements that are non-zero both in (qt)i and in (∆ptT)j and likewise
for (qt)j and (∆ptT)i. To efficiently evaluate the indicator functions {1(λtW)}t∈T on Eq. (12),
we keep an array of the linear terms {λtW }t∈T . Computing all the gradient elements δ(k,1:d) in a
single row k costs O(d · γ2T). Maintaining and updating W−1 and the Cholesky decomposition
of W , and computing the optimal step size following equations on Appendix B, each costs O(d2)
operations. To conclude, the total computational complexity per an active block-coordinate step is
O(γ2dT + d2). For dense COMET, when taking Nd coordinate steps, the overall complexity of
dense COMET is

O(N · (γd)2T +N · d3) . (13)

For sparse-COMET, when taking ρNd active coordinate steps and (1 − ρ)Nd zero-update co-
ordinate steps, the overall complexity of sparse-COMET is

O(N · (γd)2T + ρN · d3). (14)

In our experiments dense-COMET converged within 6d to 8d coordinate steps and sparse
COMET within 8d to 11d with sparse COMET (d being the data dimensinality). As a compari-
son, consider using SGD or mini-batches for the objective of Eq. (2) (with α = 0) and projecting
onto the PD cone every P triplets (P � T), as proposed in Chechik et al. (2010); Qian et al.
(2014a). The computational complexity per data pass becomes O((γd)2T + T

P d
3). This approach

is slower than COMET and only reaches the complexity of COMET when projections are very rare.
For example, Qian et al. (2014a) used mini-batches of P = 10 triplets. When the number of triplets
is T = 100k, the resulting computational complexity is on the order of 1000 times larger than with
COMET.

As another comparison, consider Liu et al. (2014). The fast heuristic version of HDSL costs
O(Mγd + Tk) per coordinate step, where M is the size of mini-batch, k is the iteration number.
This is summed over k = 1, ..., O(d2) iterations, since each HDSL step considers a single pair of
features, updating 4 matrix entries as opposed to 2d − 1 entries in COMET. Overall, this yields

43

ATZMON, SHALIT AND CHECHIK

O(Mγd3 + Td4) computations for HDSL, compared with Eq. (13) of COMET. Since both M and
N are typically small, this means HDSL is more costly than COMET by a factor of d2

N . In our
experiments, HDSL sometimes uses much less than O(d2) iterations, but then achieved a signifi-
cantly inferior test error. We believe that HDSL would excel in cases where the true optimum is
very sparse, and there is no need to go over the entire set of

(d
2
)

coordinate pairs.
Finally, we compare with the complexity of LEGO (Jain et al., 2009). LEGO requires O(d2)

computation per constraint. Thus for N passes over T triplets LEGO’s complexity is O(N · d2 ·T).
Assuming an equal number of passes over the triplet, we find that COMET’s complexity Eq. (13) is
asymptotically better than LEGO as long as N · T · (1 − γ2) > d2. That is, whenever the data is
even moderately sparse, and the number of triplets is larger than the number of matrix parameters.

dense and sparse COMET Memory footprint: Keeping the data triplets in memory takes
O(γdT) elements and holding W and W−1 and the Cholesky decomposition costs O(d2). The
total memory usage is O(γdT + d2).

Appendix D. Convergence proofs

There is a well established body of work showing that with non-overlapping blocks, block-coordinate
descent iterates converge w.h.p. in a linear rate to the optimum value (Nesterov, 2012; Richtárik and
Takáč, 2014). However, the blocks we use in our method are overlapping - for example the (1, 2)
coordinate of the matrix is a part of both the 1st and the 2nd column-row. To address this case,
we use a more general convergence result applicable to overlapping blocks, given by Richtárik and
Takáč (2013). Richtárik and Takáč give a very general result, suitable for any distribution over the
set of coordinate subsets. Specifically of interest to us, Richtárik and Takáč give sufficient condi-
tions for a linear convergence rate of overlapping block-coordinate descent with a strongly convex
smooth objective. We use a relatively simple distribution over coordinate subsets: we have d over-
lapping blocks corresponding to the column-rows of the matrix, each sampled with a probability pi,
i = 1 . . . d (in the experiments below we used a uniform pi = 1

d).
The step sizes implied by the convergence theory presented in this section are conservative un-

derestimates, especially since many of the constants involved in obtaining the step-sizes cannot be
evaluated exactly but can only be upper-bounded. In practice, we found that much faster conver-
gence is gained using larger steps while staying within the PD cone, using the Schur complement
driven procedure described in detail in section 4.1.

To show convergence, we must prove our objective satisfies two assumptions: Assumption 1,
called “Expected Separable Overapproximation”, is that in expectation over the choice of blocks
the function is smooth w.r.t. an inner product given by the coordinate probabilities. Assumption
2 is that the objective is strongly convex. In addition, for technical reasons the objective must be
differentiable. This means that technically our proof is only valid for the squared hinge-loss and
log-loss, but not the non-differentiable hinge-loss.

To fulfill the conditions in (Richtárik and Takáč, 2013), we must slightly modify the objective
function L(W). The objective L(W) is strongly convex but is not smooth, since the gradient of
the log det term is unbounded near the envelope of the PD cone. Let L̃(W) = L(W + κId) be a
modified version of the loss in Eq. 2, where Id is the d × d identity matrix, and κ > 0 is a fixed
parameter. Note that our algorithm can easily minimize L̃, the only difference being that we now
need to maintain and update both W−1 and (W + κId)−1, which does not change the asymptotic
computational complexity. The additional κId term acts as a bias term, where we add a constant

44

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

Euclidean distance term to the distance we learn. We note that in practice we found that simply
setting κ = 0 had no detrimental effect on our performance.

We show that the modified objective L̃ obeys Assumptions 1 and 2 of Richtárik and Takáč
(2013). Thereby, according to Theorem 3 of Richtárik and Takáč, Algorithm 1 converges with high
probability to the optimum value in a linear rate:

Theorem 1 Let W t be the t-th iterate of Algorithm 1 with objective function L̃(W), sampling each
column-row i with probability pi. Let L̃∗ be the optimal value of L̃(W) on the PD cone. Let β∗ ≥ β
be the strong convexity parameter of L̃(W), M1 a constant depending on the norm of the dataset,
Λ = maxi 1

pi
, ρ > 0, ε > 0. Then:

If t > Λ(M1+αd(1/κ)2+β)
β∗ log

(
L̃(W 0)−L̃∗

ερ

)
then Prob(L̃(W t)− L̃∗ ≤ ε) ≥ 1− ρ.

We first establish two auxiliary lemmas, then proceed to the proof of Theorem 1.

Lemma 2 (Smooth objective) Let:
L̃(W) =

∑
t∈T

lW+κI(qt,p+
t ,p−t) − α · log det(W + κI) + β

2 · ‖W + κI‖2F , where lW+κI is

either the squared hinge loss or the log-loss, and L̃(W) is defined over the positive semidefininte
cone. Let H i ∈ Rd×d, i = 1 . . . d, be a symmetric matrix with non-zero entries only on the i-th row
and column. For any W and H i such that W +H i is PSD, there exists a positive constant Mi such
that:

∆L ≤ 〈∂L̃(W)
W

,H i〉+ Mi

2 ‖H
i‖2F =

d∑
k,l=1

∂L̃(W)
Wkl

H i
kl + Mi

2

d∑
k,l=1

(H i
kl)2,

with the constant Mi ≤ 2
∑T
t=1(qt2i + ∆pt2i) + αd

κ2 + β and ∆L = L̃(W +H i)− L̃(W).

Proof The objective L̃(W) is comprised of three terms: (1) the sum of loss terms, (2) the log det
term, and (3) the Frobenius regularization term. We will bound each of the separately, denoting the
positive bounding constants M1

i , M2
i and M3

i , respectively.
Assuming the instances qt and pt are unit normalized, straightforward computation shows that

for the term (1), inequality 15 holds true for M1
i ≤ 2

∑T
t=1(qt2i + ∆pt2i).

To show that 15 is true for the − log det term, we bound the maximal eigenvalue of its Hessian
H, which upper bounds M2

i by convexity and standard use of a Taylor expansion. The Hessian
is a d2 × d2 PSD matrix, due to convexity and twice-differentiability of − log det. At every point
X = W+κI ,W � 0, the HessianH(X) defines a bilinear form BX (P,Q) on the set of symmetric
d × d matrices. This bilinear form is BX (P,Q) = tr

(
X−1PX−1Q

)
(Boyd and Vandenberghe,

2004, Appendix A). We then have:

max eig(H) = max
‖P‖F =1

BX (P, P) =

max
‖P‖F =1

tr
(
X−1PX−1P

)
≤

max
‖P‖F =1

‖X−1P‖2F ≤ ‖X−1‖2F ≤

d‖X−1‖2 = d

‖X‖2
≤ d

κ2 ,

45

ATZMON, SHALIT AND CHECHIK

where in the last line we denote the spectral norm (maximum singular value) of X by ‖X‖. The
last inequality is due to the fact that X = W + κI , W � 0. We therefore have a bound M2

i ≤ αd
κ2 .

Finally, the constant M3
i for the Frobenius regularization is immediately seen to be β.

Collecting all the terms together, we obtain an overall bound on the constant: Mi ≤M1
i +M2

i +
M3
i ≤M1

i + αd
κ2 + β.

Let us define a matrix P ∈ Rd×d such that Pij = pi + pj for i 6= j, Pii = pi. P is defined
such that Pij is the probability of updating the (i, j) entry of the matrix W at any given iteration.
To show our method converges in a linear rate, we must show that L̃(W), P and the constants Mi

satisfy the “Expected Separable Overapproximation” assumption presented by Richtárik and Takáč
(2013).

Lemma 3 (Expected Separable Overapproximation) For any symmetric H ∈ Rd×d such that
W + H is PSD, let H i ∈ Rd×d, i = 1 . . . d be identical to H on the i-th row and column, and 0
elsewhere. Then:

Ei∼Mult(p1,...,pd)
[
L̃(W +H i)

]
≤ L̃(W) +

d∑
k,l=1

∂L̃(W)
Wkl

HklPkl + 1
2

d∑
k,l=1

Mk(Hkl)2Pkl, (15)

where i is sampled from a multinomial distribution with parameters (p1, . . . , pd).

Proof
Ei∼Mult(p1,...,pd)

[
L̃(W +H i)

]
=

d∑
i=1

piL̃(W +H i)
(a)
≤

d∑
i=1

pi

L̃(W) +
d∑

k,l=1

∂L̃(W)
Wkl

H i
kl + Mi

2

d∑
k,l=1

(H i
kl)2

 (b)=

L̃(W) +
d∑

k,l=1

∂L̃(W)
Wkl

d∑
i=1

piH
i
kl +

d∑
k,l=1

d∑
i=1

pi
Mi

2 (H i
kl)2 (c)=

L̃(W) +
d∑

k,l=1

∂L̃(W)
Wkl

HklPkl + 1
2

d∑
k,l=1

Mk(Hkl)2Pkl.

Inequality (a) is due to Lemma 2. Equality (b) is by changing the order of summation and since the
pi sum to 1. Equality (c) is by a simple counting argument, and the fact that H i is the restriction of
H to its i-th row and column. Each off-diagonal element Hkl appears twice in the sum over i: when
i = k and i = l. This is accounted for by the elements Pkl = pk + pl.

Proof [Theorem 1] We show that Algorithm 1 with objective function L̃(W) squared-hinge loss
or log loss), sampling each column-row i with probability pi > 0, and using step sizes ηi ≤ 1

Mi
,

follows Assumption 1 and Assumption 2 of Richtárik and Takáč (2013). From this the conver-
gence result follows from Richtárik and Takáč, Theorem 3, plugging in our bounds regarding the
smoothness and strong convexity of L̃(W).

We first note that our algorithm is indeed a special case of the algorithm presented in Richtárik
and Takáč (2013). Specifically, our algorithm assigns probability pi > 0 to each of the d column-
rows of a matrix, and probability 0 to every other possible choice of coordinates. We update along

46

LEARNING SPARSE METRIC, ONE FEATURE AT A TIME

this block, and the log det term acts as a barrier function assuring us we will stay within the PD
cone.

Lemma 3 shows our objective is smooth and satisfies Assumption 1 of Richtárik and Takáč.
Assumption 2 of Richtárik and Takáč is immediately satisfied because of the Frobenius regulariza-
tion term, ensuring a strong convexity term β∗ ≥ β > 0. The result follows by considering that
the probability Pij of updating coordinate (i, j) obeys Pij ≥ mini pi and the values of Mi given in
Lemma 2.

Appendix E. Selecting the step size for the sparse proximal step

First, we bring the closed-form solution of the proximal step of Eq. (8) for step size θ (Bach et al.,
2012): 

Hk(θ)
.= (Vk − θGk)

Vk
new(θ) = Hk(θ) · [1− λ

||Hk(θ)||F]+ if k ≥ 1
Vk

new(θ) = Hk(θ) if k = 0,
(16)

where Gk is a matrix notation of the gradient step, as discussed in 4.
In section 4.1 we demonstrated how to bound the step size for a single row-column update given

a PD matrix and and a single row-column update matrix G, using the quadratic inequality Eq. (11).
However the same method cannot be directly applied to evaluate the proximal step size θ from 8,
because as one can see above, the closed form solution for the proximal step Vknew is a sum of a
gradient step and a shrinkage operation, and is therefore a more complicated function of θ.

We proceed as follows. Define an origin O which is the point where the proximal step will
result with 0. For clarification, this is not a zero update. Instead it means that Vknew is all zeros.
We also note that Hk represents the ordinary coordinate update, as in section 4.1. Finally, from the
update equation 16 it is clear that the updated point Vknew is a convex combination of O and Hk.
Therefore, from the convexity of the PSD cone, if both O and Hk are PSD, then the update will be
PSD as well. We can determine a maximum θmax for which Hk(θmax) will be PSD by inequality
Eq. (11), and we can use inequality Eq. (11) again to determine whether O is within the PSD cone.

This leads to two possibilities: if O is within the PSD cone, then necessarily Vknew(θmax) is
PSD, since it is a convex combination of two PSD matrices, and we may use any step-size which is
lesser than or equal to θmax.

If, on the other hand, O is not within the PSD cone, we need to find a maximal scalar ρmax such
thatO′ = W +ρmax(W −O) is PSD. This is again done using the inequality Eq. (11). We can now
perform a binary search on θ between 0 and θmax and test whether Vknew(θ) is within the triangle
whose vertices are W , W − Vk + Hk(θmax), and O′, where we know that this triangle is entirely
within the PSD cone. This procedure still results in O(d2) computational complexity, albeit with a
larger constant which may depend on the required precision. In practice, we found that even when
we learn a moderately sparse metric (less that 30% sparsity), it is very rare that the O is not PD.
Therefore, in our experiments we simply skip the update in case its O is not PD.

We stress that the bound in Eq. (11) is evaluated twice on an active step of sparse COMET.
Hence, it would take approximately twice the time in comparison to a step of dense COMET. There-
fore, in the case it is required to learn a dense matrix, dense COMET would be faster.

47

ATZMON, SHALIT AND CHECHIK

To conclude, we demonstrated how to evaluate a bound on the step size that maintains the
proximal step inside the PD cone, such that during training we can adaptively set the step size
accordingly.

Appendix F. Supplemental Results

Precision at k for three datasets: Reuters CV1 1K features, Caltech-256 249 categories and Protein.

(a) (b)

k
1 5 10 15 20

p
re

c
is

io
n

0.8

0.85

0.9

0.95

k
1 5 10 15 20

p
re

c
is

io
n

0.4

0.45

0.5

0.55

(c)

k
1 5 10 15 20

p
re

c
is

io
n

0.02

0.03

0.04

0.05

0.06

0.07
dCOMET
spCOMET
HDSL
LEGO
Euclid

Figure 4: precision-at-top-k for three datasets. (a) REUTERS CV1 with 1000 features. (b) Protein
(LIBSVM) with 357 features. (c) Caltech256 (249 Categories) with 1000 features.

48

	Introduction
	Related work
	The learning setup
	Learning a PD metric with block-coordinate descent: Dense COMET
	Selecting a step size that guarantees remaining within the PD cone

	Learning a block-sparse PD metric: Sparse COMET
	Computational complexity
	Experiments
	Competing approaches
	Datasets
	Experimental setup and evaluation measures
	Results

	Summary

