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Abstract

Deep learning provides a natural way to obtain feature representations from data without relying
on hand-crafted descriptors. In this paper, we propose to learn deep feature representations using
unsupervised and supervised learning in a cascaded fashion to produce generically descriptive
yet class specific features. The proposed method can take full advantage of the availability of
large-scale unlabeled data and learn discriminative features (supervised) from generic features
(unsupervised). It is then applied to multiple essential facial regions to obtain multi-channel deep
facial representations for face recognition. The efficacy of the proposed feature representations
is validated on both controlled (i.e., extended Yale-B, Yale, and AR) and uncontrolled (PubFig)
benchmark face databases. Experimental results show its effectiveness.

Keywords: multi-channel features, feature learning, representation learning, face recognition

1. Introduction

Feature extraction is to seek for appropriate transformations from raw data into features that can
be used as the input for machine learning methods. The performance of a learning algorithm heavily
depends on the features to which it is applied. Hence, extracting informative features plays a crucial
role in various applications: not only does it reduce input dimensionality to alleviate the curse of
dimensionality problems, but also a more meaningful representation can disentangle the underlying
factors of variation (Bengio et al., 2013).

We study effective feature learning methods and explore an application to the task of automatic
face recognition in this paper. Over the past two decades, there has been a substantial body of work
on feature representation methods for face recognition to address challenging problems associated
with intra-class or inter-class variations (e.g., arbitrary illumination, pose, expression, occlusion,
etc.). Both global and local feature based approaches have been applied to face recognition problems.
Eigenface (Turk and Pentland, 1991) and Fisherface (Belhumeur et al., 1997b) are two representative
techniques among global feature methods. Global representations generally fail to capture higher-
order statistics. Most methods for face recognition thus rely on local representations, often given by
hand-crafted local descriptors such as Gabor feature (Liu and Wechsler, 2002), local binary pattern
feature (Ahonen et al., 2006), SIFT (Lowe, 2004), and histograms of oriented gradients (Dalal and
Triggs, 2005), or learning-based descriptor (Cao et al., 2010) such as binarized statistical image
features (Kannala and Rahtu, 2012), and discriminant face descriptor (Lei et al., 2014). Recent
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advances in deep learning open a new way to avoid labor-intensive feature engineering, and feature
representations can be automatically learned from data through deep network architectures. They
offer several advantages over those obtained through local descriptors. For example, they are capable
of capturing higher-order statistics. Recently, deep learning based methods (e.g., Schroff et al.,
2015; Taigman et al., 2014; Sun et al., 2014; Zhu et al., 2013; Huang et al., 2012) have shown great
performance on face recognition problems.

In this paper, we propose to learn a new multi-channel deep feature representation (dubbed as
‘McDFR’) for face recognition. The main idea is based on unsupervised learning for generic yet de-
scriptive features followed by supervised learning for class specific features. Specifically, face images
are treated as a set of essential facial regions such as right eyes, left eyes, noses and mouths. For each
facial region, we perform a deep unsupervised learning model on unlabeled data to extract generic
features, which are capable of characterizing the essential representation for the region. Considering
features learned in unsupervised fashion involve no supervision (i.e., label) information and thus
they are not directly related to the recognition task, such generic features for each facial region
are fed into a supervised learning via a deep neural network (DNN) to obtain more discriminative
representations among classes. These multi-channel representations are then fused together to get
the final features which are used as input to a supervised classifier for face recognition.

Different from a general deep learning method such as deep belief nets (Hinton et al., 2006b),
where supervised fine-tuning is applied to the network with the original (raw) data as input, the
proposed approach extracts more discriminative features through another supervised learning on the
generic descriptive features. Furthermore, our approach allows for different datasets in unsupervised
and supervised phases, which can fully utilize the availability of large-scale unlabeled data. In the
proposed method, deep unsupervised learning is to remove redundant information from unlabeled
data for distilling descriptive representations (e.g., the features to suitably represent eyes in general),
and supervised learning is to identify descriptors for optimal discrimination among classes (e.g., the
features to distinguish John’s eyes from Dawvid’s based on the descriptive representations for eyes).
Figure 1 provides an overview of the proposed multi-channel deep feature representations for face
recognition.

As illustrated in Figure 1, the proposed McDFR learning framework is also capable of integrating
other available multimedia content, e.g., speech, by treating it as an additional channel. Compared
to directly fusing heterogeneous data as a single channel, the proposed McDFR method gains more
benefit from complementary information in multimedia data to achieve higher recognition accuracy
(see Section 3.5).

Our main contributions in this paper are three-fold. 1) We propose to learn deep feature repre-
sentations using the idea of unsupervised learning for generic features on which supervised learning
is performed to yield class specific features. 2) We apply such deep feature learning approach to
essential facial regions to obtain multi-channel deep facial representations for face recognition. 3)
The proposed method produces the state-of-the-art recognition accuracy on several benchmark face
databases.

2. Methodology

2.1 Learning Multimodal Deep Facial Representations

As shown in Figure 1, the proposed multi-channel deep facial representations consists of prepro-
cessing, generic image feature learning using deep autoencoders, class specific feature learning using
DNNSs, and integration of multi-channel representations. The details of each part will be described
in the following sections.
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Figure 1: Outline of the proposed multi-channel deep feature representations for face recognition. The input data
(images or other multimedia data) is first preprocessed. In each channel, generic features are learned
on a (unlabeled) facial region or audio data through a deep autoencoder (DAE), and then class specific
features are learned under supervision by feeding generic features into a DNN. The learned features from
multiple channels are fused together as the final representation which is used as input to another DNN
for classification.

2.1.1 PREPROCESSING

All the original face images are converted to grayscale images. Four essential facial regions, i.e.,
right eyes, left eyes, noses and mouths, are segmented from the images. The segmentation can be
done automatically by using a facial region detection software!. Intensities of image pixels in the
entire dataset are normalized to have a zero mean and unit variance. This is all the preprocessing
we apply in this paper.

2.1.2 GENERIC FEATURE LEARNING

We carry out an unsupervised feature learning by training a deep autoencoder with stacked RBMs
(Hinton et al., 2006a) to extract generic image features. The goal in this stage is to remove redundant
information from unlabeled data but distill descriptive features. Other techniques such as stacked
denoising autoencoder, stacked convolutional autoencoders, and their variants can also be used here.

As a building block of the deep autoencoder, an RBM is composed of a visible layer v and a
hidden layer h with an array of connection weights W between the visible and hidden units but
no connections between neurons of the same layer. The energy function of the pair of visible and
hidden variables is bilinear (assume the vectors in this paper are column vectors):

E(v,h) = —b’v —c’h — h"Wv, (1)

where vectors b and c are the biases of the input layer and the hidden layer, respectively. According
to (Hinton et al., 2006b), the conditional distribution in RBM can be factorized due to the lack

1. OKAO Vision, http://www.omron.com/technology/index.html
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of visible-visible and hidden-hidden connections. That is to say, calculation of the conditional
distribution can be decomposed as P (h|v) =[], P(h;|v).

In the binary case (Binary-Binary RBM) where both visible and hidden nodes take either zero
or one, the probability of a hidden node taking value one happens to be a sigmoid function of the
input:

P (h; = 1|v) = sigmoid (W;v + ¢;) , (2)

while the conditional distribution over the hidden nodes given the visible nodes is
P (v; = 1|h) = sigmoid ("W, +b,) . (3)

To handle continuous real-valued data, e.g., face images, we employ Gaussian-Binary Restricted
Boltzmann Machine (GRBM) which is an extension of the Binary-Binary RBM. For a GRBM, the
energy function is

1 1
E(v,h) = §VTAV —bT"Av —c"h —h"WAzv, (4)
where A is the precision matrix of v, which is diagonal. The conditional distributions become
1
P(h|v) = sigmoid( WA2v + ¢), (5)
and )
P(vlh) o« N(hTWA2, A7), (6)

where A denotes a Gaussian distribution. We construct a multilayer encoder by stacking multiple
Binary-Binary RBMs (except the top one which is a Binary-Gaussian RBM) on top of the GRBM.

RBMs can be learned using approximate maximum likelihood estimation with k-step contrastive
divergence (Hinton, 2002). k is set to be 1 in this paper. The learning of a deep autoencoder
is started by a layer-by-layer pretraining procedure which learns a stack of RBMs in the encoder
network. After the pretraining phase, the RBMs are unrolled to form an autoencoder, and the
decoder network is initialized with the transpose of the learned weights for the encoder network. The
whole deep autoencoder network is then fine-tuned for optimal reconstruction by backpropagating
the error derivatives. We use mean square difference as the error and the batch stochastic gradient
descent (SGD) method with momentum is employed to update the weights.

For each essential facial region, we train one such deep autoencoder. The activation of the top
layer in encoder network is considered as the learned representations which capture generic high-
order nonlinear structure of the facial regions. The learned features are normalized to [—1,1]: each
element of a feature vector is divided by its largest absolute value, i.e.,

V(Iregifm)i
max(abs(V (Iregion); €))

V(Iregion) - g(Iregion) - (7)
where V(Iregion) denotes the extracted feature vector for a facial image region I,.cgion or other
multimedia data, and ¢ is capped factor, e.g., 0.01 to avoid dividing by a too small value.

2.1.3 CLASS SPECIFIC FEATURE LEARNING

Since the optimization objective of unsupervised feature learning is not directly related to the recog-
nition task, the learned features cannot preserve identity information (Zhu et al., 2013). To further
improve the discriminative power among subjects, we conduct an class specific feature learning via
training a supervised DNN on a multi-class face recognition task. Identity information (i.e., label) is
explicitly incorporated into the objective function and directly used as the supervision of the feature
learning. The stage is to identify good descriptors, based on the normalized features extracted in
Section 2.1.2, for optimal discrimination among classes. The activation of the last hidden layer is
treated as the learned class specific features.
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For the design of the DNN model architecture, we employ several recent advanced techniques,
such as the rectified linear units (ReLU) (Nair and Hinton, 2010) activation function and the dropout
regularization method (Hinton et al., 2012). The ReLU, that we use for all hidden layers, produces
sparse activity vectors and learns much faster than ordinary logistic units. On the top layer, we
adopt a softmax function which produces a distribution over the subject labels. The probability
assigned to the c-th subject is

(WX T14b7)

Pe = Z]Q:1 e(w]I/XL—lerJI/) ’ (8)
where L denotes the number of layers, C' denotes the number of subjects, WL is the c—th row of the
last layer weight matrix, and b” is the c-th value in the last layer bias vector. During training, the
goal is to maximize the probability of the correct subject, which can be accomplished by minimizing

the cross-entropy error
N «C
L==> "> w'logp, 9)

where N denotes the number of training samples, and y denotes the true labels. Backpropagation
algorithm is applied to compute the gradient of £ with respect to the weight and bias, and batch
SGD is used to update them.

To avoid the overfitting problem in DNNs, we use the dropout method as a regularization which
randomly sets each unit’s activation in all hidden layers to be 0 with a probability p. The value of
p can be chosen based on the specific problem at hand (a typical value of p is 0.5).

2.1.4 INTEGRATION OF MULTI-CHANNEL REPRESENTATIONS

Similarly, the features learned in Section 2.1.3 to represent each facial region are first normalized to
[-1,1], which brings them within the same dynamic range and thus improves the stability of the
classification. Then, these normalized features are fused together through concatenating one by one
to get the final facial representation V(I) for a given face image I:

V(I) = [V(ILeye)§V(IReye);V(Imouth)§V(Inose)] (10)
where the feature vector for a facial region is V (I,.) = ¢ (fd?NN (g ( AE (Ir)))) , 'r’ represents an

essential facial region: Leye (left eye), Reye (right eye), mouth or nose, f5¥() and ff NN () denote

the deep autoencoder with parameters # and the DNN model with parameters ¢, respectively, and
g() denotes the normalized function defined in Eq. (7). When other multimedia data is available,
Eq. (10) becomes

V(I) = [V(ILeye); V(IReye); V(Imouth); V(Inose); V(M)], (11)

where V (I) = g (PN (g (f% (1)) )

The integration of multi-channel facial representations is a crucial step in the proposed method,
since different essential facial regions provide complementary discriminability among subjects to a
significant extent. It is found that, comparing with the feature extracted from a single region, the
fused feature highly improves the recognition accuracy in the experiments (see Section 3).

2.2 Recognition Algorithm

We apply the proposed McDFR to the face identification task. This can be accomplished by training
another DNN over the obtained feature vectors in Eq. (10) or Eq. (11) for a multi-class classification.
The design of this DNN architecture is similar to that described in Section 2.1.3. Note that, in
addition to a DNN model, other supervised classifiers, such as support vector machines, can be an
alternative choice to perform face recognition here.
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Once the proposed framework is trained, it can be used to identify a test face image. All the test
images should be preprocessed in the same way as the training phase, then undergo the deep encoder
(Section 2.1.2), the trained deep feedforward neural networks (Section 2.1.3), the same manner to
integrate the multi-channel feature vectors (Section 2.1.4), and finally are classified by the trained
DNN in this section to get the subject index.

3. Experiments and Results

The efficacy of the proposed framework is demonstrated on both controlled and uncontrolled bench-
mark face recognition databases including the extended Yale-B (Belhumeur et al., 2001), Yale (Bel-
humeur et al., 1997a), AR (Martinez and Benavente, 1998), PubFig83 (Pinto et al., 2011), and a
multimedia data. In the experiments, we define three data subsets, i.e. DATA-A, DATA-B, and
DATA-C. DATA-A does not contain label information whereas DATA-B and DATA-C contain the
labels and same subjects but completely distinct images. Moreover, images and subjects in DATA-A
can be joint or disjoint with those included in DATA-B. While DATA-A is employed to train the
deep autoencoders for generic image feature learning, Data-B is adopted to train the DNNs for class
specific feature learning, as well as train the DNN that is used for face identification. Data-C is only
used for evaluation in the testing phase.

Table 1: Average recognition rates on extended Yale-B database with the use of features from each single facial
region and the fused representation, respectively.

Region Recognition rate (%)
Left eye 94.71 £ 0.43
Right eye 96.39 £ 0.52
Nose 94.98 + 0.53
Mouth 95.78 £ 0.38
McDFR 99.66 + 0.13

3.1 Face Recognition on extended Yale-B database

The extended Yale-B database, which contains 38 subjects, around 64 frontal images per subject
and thus about 2,414 images in total, is used to asses the proposed method on severe illumination
changes. Each subject was imaged under 64 different illumination conditions. We segment four
essential facial regions with sizes of 26 x 34 (left eye and right eye), 25 x 47 (mouth), and 36 x 33
(nose).

In this experiment, we conduct 10 runs for training-test procedures to get the average recognition
rates. For each run, a random subset with 32 images per subject is selected to get DATA-B in the
training phase whereas the rest of the database is considered to be the testing set, i.e., DATA-C.
We choose DATA-A to be the same as DATA-B.

Table 1 gives the average recognition rates and standard deviations across 10 runs with the
use of features from each single facial region and the multi-channel representation, respectively. It
is observed that the fused features provide a clear accuracy advantage over single ones. Table 2
presents the face recognition rates and the comparison with current state-of-the-art results. It is
seen that the proposed method provides the highest accuracy on this database. Specifically, our
method obtains an average recognition rate of 99.66% with standard deviation of 0.13%. Out of
10 randomly runs, the maximum and minimum accuracies are 99.92% and 99.42%, respectively.
Even with the minimum one, to our best knowledge in the literature, we achieve the state-of-the-art
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performance. This proves that the proposed multi-channel deep facial representations are robust to
various illuminations on the face images.

Table 2: Comparison of face recognition rates on extended Yale-B database

Methods Recognition rate (%) #Train
Aw-SpLPP (Wang et al., 2010) 98.25 30
CRC-RLS (Zhang et al., 2011) 97.90 32

SRC (Yang et al., 2011) 99.40 32

McDFR 99.66 32

3.2 Face Recognition on Yale Database

The Yale database contains 15 subjects and around 11 frontal images per subject, where each image
has one type of facial expressions and configurations, e.g., normal, happy, sad, sleepy, surprised,
wink, and with or without glasses. Four essential facial regions are segmented as 20 x 30 (left eye
and right eye), 16 x 23 (mouth), and 30 x 24 (nose).

The proposed method is applied on this dataset to assess that the extracted facial representations
are tolerate to expression, and some of the other challenges such as occlusion and illumination. In
this experiment, a random selection of 2, 3, 4, 5, 6, 7 or 8 images per subject is used as the training
set (DATA-B), and the rest of images is used as the testing set (DATA-C). For each case, we run 10
times for the training-test procedure.

Table 3: Average recognition rates on Yale database with the use of features from each single facial region and the
fused representation, respectively.

Recognition rate(%)
Region 8 Train 5 Train 6 Train 8 Train
Left eye 71.8 £ 4.1 81.9 £+ 3.3 82.2 +49 86.7 + 3.9
Right eye  73.9 + 3.5 80.4 £+ 4.1 83.2 + 24 88.2 + 3.8
Nose 62.2 + 2.2 70.7 £ 4.6 73.2 +£ 4.3 77.8 + 6.6
Mouth 55.6 + 4.7 65.2 £ 4.4 66.1 £ 4.1 71.9 £ 6.1
McDFR 84.8 +3.1 94.7+ 3.9 96.0+ 3.3 97.8+ 1.9

The average recognition rates and standard deviations with the use of features from each single
facial region and the fused representation, respectively, and with various numbers of images per
subject for the training are presented in Table 3. Similarly, the multi-channel representation improves
the recognition accuracy significantly. Table 4 compares the recognition rates obtained by the
proposed method with current state-of-the-art results reported in (Gui et al., 2012). It can be seen
that, for each case of training, our method outperforms all the existing methods.

3.3 Face Recognition on AR Database

The AR database (Martinez and Benavente, 1998) contains 100 subjects (50 men and 50 women),
with 26 different images per subject which totals to 2,600 images taken in two sessions. In this
database, there are facial expression (neural, smile, anger, scream), illumination, and occlusion
(sunglass, scarf) challenges. We segment four essential facial regions with sizes of 26 x 34 (left eye
and right eye), 20 x 40 (mouth), and 30 x 28 (nose).

We conduct two experiments on AR database: (1) training and testing on unoccluded images,
(2) training on unoccluded images and test on occluded images. In the first experiment, we follow a

66



MULTI-CHANNEL DEEP FEATURE LEARNING FOR FACE RECOGNITION

Table 4: Comparison of face recognition rates on Yale database, where T represents ‘Train’
Recognition rate(%)

Methods 2T 37T 4T 5T 67T 7T s§T
PCA 42.63 48.08 52.86 55.44 59.13 59.83 64.33
LPP 57.19 67.92 75.14 77.22 81.6 82.25 84.11
NDLPP 56.11 69.70 77.47 81.77 84.60 87.41 89.88
LPDP 56.74 71.75 78.90 81.78 86.73 88.17 90.67
DLPP/MMC  58.19 70.08 78.14 83.56 85.53 88.33 89.56
LDA 45.19 59.42 68.95 74.89 79.27 79.83 83.22
SNPE1 66.77 69.95 73.61 74.27 77.86 76.91 79.33
SNPE2 66.14 70.29 73.57 73.77 78.00 77.41 81.44
DSNPE1 72.33 82.33 86.85 90.61 93.60 93.41 96.00

DSNPE2 72.40 80.70 86.66 89.88 92.00 92.58 95.00

McDFR 76.58 84.83 89.90 94.67 96.00 96.11 97.78

scenario described in (Zang et al., 2012) which reported one of the state-of-the-art recognition rates.
We select a subset of 1400 images which are composed of 14 images per subject with the facial
expression and illumination changes. Various train-test image partitions are used: the training
images (DATA-B) are selected randomly for each subject using the numbers {2,3,4,5}, and the
rest of images ({12,11,10,9}) is considered as the test set (DATA-C). We conduct 10 runs for
train-test procedure to get the average recognition rate for each partition. Table 5 provides the face
recognition rates obtained by the proposed method and the comparison with those reported in (Zang
et al., 2012). Except the case of 2 images per subject as training, our method always achieves the
best performance with around 5% improvement on accuracy over the second highest values. This
indicates that our method is capable of handling various facial expression and illumination challenges
better than other methods.

Table 5: Comparison of face recognition rates on AR database when testing on unoccluded images.
Recognition rate(%)

Methods 2 Train 8 Train 4 Train 5 Train
PCA 34.94 43.44 50.71 56.13
LPP 55.07 62.60 68.12 71.58
NPE 40.45 46.02 52.95 61.12
ONPP 62.20 71.54 77.25 81.76
EPP 72.45 79.53 83.86 86.23

McDFR 70.92 83.61 88.66 91.54

In the second experiment, we follow another scenario described in (Naseem et al., 2010). For
each subject, 8 images with only facial expression changes are used for training, and 4 images
with occlusion (i.e., sunglass, scarf) are considered for test. The results obtained by the proposed
method and the comparison with those reported in (Naseem et al., 2010) are given in Table 6.
Our method obtains significantly improved accuracy over other methods in the case of testing only
on images occluded by scarf. However, it performs worse than other methods when testing only
on images occluded by sunglass, because in the former case three regions (left eye, right eye and
nose) contribute to the recognition whereas in the latter case only two regions (nose and mouth)
contribute. It is found that during the evaluation on most databases, eyes usually dominate the
contribution. Overall, the proposed method yields the best results for occlusion.

3.4 Unconstrained Face Recognition on PubFig Database

In recent years, several uncontrolled databases have emerged in the literature for face recognition.
Unlike the traditional face databases which are composed of images taken in controlled environments,
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Table 6: Comparison of face recognition rates on AR database when testing on occluded images
Recognition rate(%)
Methods Sunglass Scarf Sunglass+Scarf

PCA+NN 70.00 12.00 41.00
ICA+NN 53.50 15.00 34.25
LNMF+NN 33.50 24.00 28.75
12+NS 64.50 12.50 38.50
SRC 87.00 59.50 73.75
LRC 96.00 26.00 61.00
McDFR 63.00 94.50 78.75

face images in uncontrolled databases are generally collected from Internet sources. In particular,
these images contain unrestricted varieties of expression, pose, lighting, occlusion, resolution, etc.
Thus, unconstrained face recognition is a very challenging task.

Kumar et al. (2009) introduced the PubFig database, which contains 200 subjects and various
numbers of images for different subjects. A modified subset of PubFig dataset, called PubFig83
(containing 83 subjects and 13,002 images), was introduced by Pinto et al. (2011) through removing
duplicated photos and subjects with few photos. In this experiment, we use an aligned version of
PubFig83 which is provided by Chiachia et al. (2014).

We segment four essential facial regions with sizes of 20 x 26 (left eye and right eye), 24 x 38
(mouth), and 30 x 24 (nose). Following the original protocol of (Pinto et al., 2011), we run 10 times
and, for each run, take a random selection of 90 images per subject as the training set (DATA-B), the
rest of images as the testing set (DATA-C). Table 7 gives the recognition accuracy and a comparison
with other methods. Benefiting from the learned multi-channel deep features, our method achieves
comparable accuracy, even on this challenging database, with current state-of-the-art methods.

Table 7: Comparison of face recognition rates on the PubFig83 database.
Method Accuracy (%)
Pinto et al., 2011 87.114+0.56
Chiachia et al., 2012 88.751+0.26
Chiachia et al., 2014 92.28+0.28
McDFR 90.14+0.49

3.5 Face Recognition on a Multimedia Database

To assess the feasibility of the proposed framework on the multimedia data, we prepare a data
set containing face images and speech. We select 10 subjects along their face images from aligned
version of PubFig83 database (Chiachia et al., 2014), and then download a video for each subject
from YouTube to extract around 5 minute speech information. Note that the content and quality
of the speech data are heterogenous. Thus, we have a multimedia data set containing 10 subjects,
1000 images, and 10 audio files.

For the images, we randomly select 50 images per subject as the training set (DATA-B), and
the rest of images is used as the testing set (DATA-C). Same as in Section 3.4, four essential facial
regions are used for facial representation learning. We employ the Mel frequency cepstral coeffi-
cients (MFCCs) (Davis and Mermelstein, 1980), and their first and second derivatives to represent
the acoustic features. These features are calculated every 10 milliseconds using 25 milliseconds
Hamming-window?, and their first 12 elements are selected to form a 36-dimensional feature vector

2. We used Dan Ellis’ implementation for MFCC which is available at
http://www.ee.columbia.edu/ dpwe/resources/matlab/rastamat/
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for each frame. In the experiment, features extracted from every 40 consecutive frames are concate-
nated to be a 1440-dimensional feature vector which is considered as one training/test example.

Table 8 gives the average recognition accuracy across 10 runs for direct fusion of image intensity
and features of speech as a single channel, multi-channel representation with images and/or speech,
respectively. Compared to the case of single channel, multi-channel representation with both images
and speech provides an around 10% improvement on the recognition accuracy. This shows that the
proposed framework is able to leverage multimedia data to benefit the face recognition.

Table 8: Recognition rates on a multimedia data set.

Features Recognition rate(%)
McDFR (Images) 83.92 £+ 0.86
Single Channel (Images + Speech) 82.24 £+ 0.83
McDFR (Images + Speech) 92.08 + 0.41

3.6 Compare to DBN for Face Recognition

In this experiment, we compare the proposed McDFR method to a supervised deep belief net (DBN)
in the task of face recognition. We train a DBN to learn features for each essential facial region, and
then perform an exactly same DNN architecture as the proposed method for recognition. Table 9
provides recognition rates on all the database for comparison. We can see that the proposed method
always outperforms DBN. As stated in Section 1, we believe the reason is that, although the learning
of a DBN consists of an unsupervised training over unlabeled data, the supervised fine-tuning is
conducted over the original (raw) input data and network, while the proposed method extracts
more discriminative features based on the learned generic features.

Table 9: Comparison between the proposed method and DBN
Recognition rate(%)
Methods Yale (8 Train) Yale-B (32 Train) AR (5 Train)  PubFig83 (90 Train)
DBN 945 + 1.1 99.34 £ 0.10 87.42 £ 0.28 87.53 £ 0.44
McDFR 97.78 £ 1.9 99.66 + 0.13 91.54 + 0.33 90.14 + 0.49

4. Conclusions

We have presented a new approach to learning deep feature representations. We conduct unsuper-
vised learning through deep autoencoders to extract generic features on which supervised learning
through deep networks are performed to produce class specific features. Such deep feature learning
is applied to each essential facial region (or other multimedia data) to learn its discriminative repre-
sentation. A type of multi-channel deep facial representations is obtained by integrating the features
of multiple essential facial regions (and other multimedia data). The multi-channel representations
are then fed into a supervised classifier for face recognition. The proposed method achieves the
state-of-the-art performance on several benchmark face databases. We believe that the proposed
method can be extended to other pattern recognition problems.
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